35
Mechanical Concept Mechanical Concept MOLDFLOW KOREA 1995.8

Mechanical Concept

  • Upload
    sanjiv

  • View
    55

  • Download
    2

Embed Size (px)

DESCRIPTION

Mechanical Concept. 1995.8. MOLDFLOW KOREA. Mechanical Concept. UNIT. mass length time force pressure. SI kg m sec N Pa. Metric kg mm sec kgf kgf/cm 2. English lb in sec lbf psi. Mechanical Concept. - PowerPoint PPT Presentation

Citation preview

Page 1: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

MOLDFLOW KOREA 1995.8

Page 2: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical ConceptUNIT

SI kg m sec N Pa

Metric kg mm sec kgf kgf/cm2

English lb in sec lbf psi

mass length time force pressuremass length time force pressure

Page 3: Mechanical Concept

Examples for UNIT

SI Metric English

Force

Pressure

1 N1 N 9.8 N4.448 N

0.102 kgf 1 kgf1 kgf0.453 kgf

0.225 lbf 2.206 lbf 1 lbf1 lbf

1 MPa1 MPa 0.1 MPa 6.9 kPa

10.2 kgf/cm2

1 kgf/cm1 kgf/cm22

0.07 kgf/cm2

145 psi 14.22 psi 1 psi1 psi

Pa = N / mPa = N / m2 2 psi = lb / in psi = lb / in22

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 4: Mechanical Concept

P ( N or kgf )

A ( m2 or cm2 )L

L

Stress : S = P / A Strain : / LLUnit : N/m2 = Pa (kgf/cm2 ) Unit : %

Stress & Strain

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 5: Mechanical Concept

Tensile Strength = Stress at Yield

Tensile Strength = Stress at Break

Elastic Plastic

Proportional Limit

Elastic Limt

Break Point

Yield Point

E

Ductile FractureDuctile Fracture

Brittle Fracture Brittle Fracture

Strain-Stress Curve (1)

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 6: Mechanical Concept

Stress-Strain Curve (2)

Material-A

Material-B

• E =

Toughness Material A > Material B

Strength & Stiffness Material A < Material B

Strain Energy ;

Toughness

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 7: Mechanical Concept

Examples for Tensile Properties

Tensile Strength (73F,lb/in2)

AcetalABSNylonPolycarbonatePolyethylenePolyesterPMMAPPOPolypropylenePolystyrenePolysulphonePVC

104 - 88 - 128 - 101 - 68 - 108 - 118 - 104 - 65 - 119 - 105 - 9

0.50.2 - 0.50.2 - 0.40.30.02 - 0.2

0.3 - 0.40.40.20.4 - 0.60.40.3 - 0.6

Modulus (73F,b/in2X106)

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 8: Mechanical Concept

Poisson's Ratio () H / H L / L

Poisson's Ratio

H

L

L

H

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 9: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical ConceptExamples for Poisson's ratio

탄소강 알루미늄콩크리트유리Rubber

Most Crystalline & Glassy Polymer

Eng. Plastics

0.28 - 0.29 0.33 0.19

0.250.49 - 0.50

0.25 - 0.33

0.35 - 0.40

Page 10: Mechanical Concept

Principal Stress =Max. Normal Stress

Normal Stress

Shear Stress

Shear Stress is zero on this SurfaceSurface

Principal Stress

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 11: Mechanical Concept

Mohr Circle

x

y

x

yx y+yx

y

11

+

-

y

x'xy x'y'

xy

x'y'

x

x'

22

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 12: Mechanical Concept

Principle Stress

prin-1xyxyxy

prin-2xyxyxy

xy

xy

[Example ]

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 13: Mechanical Concept

1. Von Mises Stress

( Shell Element )

V.MISES > Y

Criterion for Yield

V.MISES

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 14: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

2. Tresca Criterion

| max min | tresca =

-

11

max

tresca > Y

Criterion for Yield

+

22

Page 15: Mechanical Concept

Shear Stress

l

= / l Shear Rate

Shear Stress

G

= Shear force / Area = G

## Shear Modulus

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 16: Mechanical Concept

Shear Stress

Shear Modulus =

0.5 - 0.6 X Tensile Modulus

@ Von-Mises ; 0.6 Tresca ; 0.5

위의 결과는 Yield Point 기준

P P

전단면

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 17: Mechanical Concept

Bending Stiffness

MM

y

x

Compression

Tension

Neutral Axis

Flexural Rigidity

= E I

@ E : Tensile Modulus@ I : Moment of Inertia

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 18: Mechanical Concept

Moment

P

Ymax

L

( Max. Moment & Stress )Position A

M = P LSmax = M / ZYmax = PL3/3EI

M : MomentI : Moment of InertiaSmax : Max. StressYmax : Max. Deflection Z : = I / C

C

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 19: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical ConceptExamples for Moment with Various Boundary condition

LLL

PP PP PP

M A X I M U M S T R E S S

1 1/81/4 M A X I M U M S T R E S S P O S I T I O N

at Supportat Center & Supportat Center

Page 20: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical ConceptMoment of Inertia

Moment of Inertia

Deflection

yNeutral Axis I = A y2 dA

100100 100100

274 274 36.5 36.5

4600 4600 2.17 2.17

wt

h

r

w=101.6, t=3.18, r=4.76, h=22.22

Page 21: Mechanical Concept

L

L

L

LL

LL

L

L

LL

LL

LL

L

1 0.59 0.55 0.331 0.59 0.55 0.33

0.66 0.51 0.91 0.910.66 0.51 0.91 0.91

Thickness = L/4

Examples for Moment of Inertia

100 wt 78 wt 34 wt 50 wt100 wt 78 wt 34 wt 50 wt

78 wt 63 wt 63 wt 63 wt78 wt 63 wt 63 wt 63 wt

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 22: Mechanical Concept

T2 L L

Coefficient of Thermal Expansion

T1 L

CV = L / LT2 - T1

( Unit : mm/mm/degC )

Sthermal = CV X E)T2X ( T2 - T1 )

HeatingHeating

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 23: Mechanical Concept

Examples for Coefficient of Thermal Expansion

Coefficient of Thermal Expansion (x10-5,in/in/C)

AcetalABSNylonPolycarbonatePolyethylenePolyesterPMMAPPOPolypropylenePolystyrenePolysulphonePVC

8.19.08.36.512.06.07.05.25.86.05.410.0

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 24: Mechanical Concept

Creep ( under Load control )

AP

PA

RE

NT

MO

DU

LU

S

TIME (HOURS)

High Temperature

l

t = 0 t = hour

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 25: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

l1

l2

l1 = l2

AP

PA

RE

NT

MO

DU

LU

S

High Temperature

TIME (HOURS)

Stress Relaxation ( Under Displacement Control )

t = 0

t = hour

Page 26: Mechanical Concept

Examples for Tensile Creep Modulus

Applied Load (lb/in2)

AcetalABSNylonPolycarbonatePolyethylenePolyesterPPOPolypropylenePolystyrenePolysulphonePVC

Creep Modulus (73F,b/in2X103)

1 hr 1000 hr100 hr

15001000150030001000100015001000150040001000

390295160345 50440430165135350330

250210100310 25380320 65 10310180

280255115320 30400400 90 20320280

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 27: Mechanical Concept

Cyclic Loading

Fatigue Failure ( S-N Curve )

Load

Time

Cycle

Load (kg/mm2 )

103 104 105 106 100

400

300

200

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 28: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Load ( lb/in2 )

Cycle102 103 104 0

6000

3000

9000

12000

105

Examples for Fatigue Data

106 107

AcrylicAcetalPCPVCABS

Page 29: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Loa

d (

kg)

& E

ner

gy (

kg.

m)

Time (msec)

Load Energy

Velocity = m/secWeight = kg

Plastics

Impactor

Impact Resistance ( Dynamic Failue )

Page 30: Mechanical Concept

For

ce (

N)

Time (sec)

tL)1 tL)2

Impact Load

Static Load

Factor of Impact

1. Stiffness 2. Mass 3. Course & Velocity

If TL > (5-6) Tn ,

Loading Type = Static( @ Tn : Natural Frequency )

Impact (continued)Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 31: Mechanical Concept

Impact (continued)

1. Elastic Deformation higher than Yield Strength 2. Permanent Deformation3. Tearing4. Fracture

Failure Type

Rapid Deformation1. Fast Loading Rate2. Rate Sensitivity of Mechanical Properties

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 32: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Coefficient of Friction

W

N

F

Friction Force)

F = N

@ : Corfficient of Friction (Static) N : Normal Force : Angle of Friction

When Max. Angle with no sliding

S

S

Page 33: Mechanical Concept

Examples for Coefficient of Friction

AcetalNylonPolycarbonatePolyethylene (LD)Polyethylene (HD)PETPTFEPVCPVDC

Steel on Polymer Polymer on Polymer

s k0.140.370.600.270.180.290.100.450.68

0.130.340.530.260.100.280.050.400.45

-0.42 -0.330.120.270.040.500.90

-0.35 -0.330.110.200.040.400.52

s k

s : Static Friction Coefficientk : Kinetic Friction Coefficient

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 34: Mechanical Concept

Hardness

PP - Indentation Test

- Stiffness

- Wear & Scratchif Hardness-A >> Hardness-B ( ex. Steel >> Polymer )

Abrasive Wear

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Page 35: Mechanical Concept

Mechanical ConceptMechanical ConceptMechanical ConceptMechanical Concept

Wear

V V

Abrasive WearAbrasive Wear Adhesive WearAdhesive Wear

Abrasive Resistance

PE, PSABS, PPAcetal, Nylon, PC, PVC,PPO