31
Module #27 Module #27 Composite Materials (an overview) READING LIST DIETER: Ch. 6, Pages 220-226. Chapter 15 in Meyers & Chawla. • N. Chawla & K.K. Chawla, Metal Matrix Composites , Springer (2006) D. Hull & T.W. Clyne, An Introduction to Composite Materials, 2 nd Edition , Cambridge (1996)

Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

  • Upload
    ngohanh

  • View
    225

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Module #27Module #27

Composite Materials(an overview)

READING LIST►DIETER: Ch. 6, Pages 220-226.

• Chapter 15 in Meyers & Chawla.• N. Chawla & K.K. Chawla, Metal Matrix Composites, Springer

(2006)• D. Hull & T.W. Clyne, An Introduction to Composite Materials, 2nd

Edition, Cambridge (1996)

Page 2: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

IntroductionIntroduction

• So far, we’ve considered the improvement of the mechanical properties of materials by modifying the internal structure of the material system either by alloying or processing.

• We can also develop materials with even different properties by introducing additional phases/materials into a host material. This mixture of phases is termed a composite.

• In general, composites are relatively macroscopic mixtures of phases/materials. These mixtures are sometimes natural, but are generally artificial.

• By mixing two different phases or materials, we can develop materials that have properties which are an average of those of the two components.

Page 3: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Introduction (2)Introduction (2)• In a composites, strength/properties = average of

strength/properties of the individual materials.

• We design composites so as to obtain the best attributes of the individual constituents.

• Microstructure of a composite = matrix + reinforcement

– Matrix: • phase that holds reinforcement together• protects the reinforcement• transmits load to the reinforcement.

– Reinforcement: • filaments, fibers, whiskers, etc., which have intrinsically high strength and modulus;

reinforcements are often too brittle to use in monolithic forms. Sometimes “soft” reinforcements are used too.

Page 4: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Introduction (3)Introduction (3)• Interface between reinforcement and matrix is often the most

critical element in determining materials properties and performance.

– Is interface strong or weak?

• Influences transfer of stress from matrix to fiber

• Influences crack propagation

• Etc.

– Is there reaction at the interface? Is there no reaction?

• Reactions change the properties of the fiber and matrix locally. Chemistry change

• Stress concentration

• Etc.

Page 5: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Classification of Composites (1)Classification of Composites (1)

• On basis of matrix:

– Polymer matrix composites (PMCs)

– Metal matrix composites (MMCs)

– Ceramic matrix composites (CMCs)

• Purpose of reinforcement

– PMC: increase stiffness (E), yield strength, tensile strength, and creep resistance

– MMC: increase yield strength, tensile strength, and creep resistance

– CMC: increase fracture toughness (Kc)

Page 6: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Classification of Composites (2)Classification of Composites (2)

• On basis of reinforcement

– Particle reinforced composites• Natural

– Ex., precipitates• Artificial

– Addition of immiscible phases

– Short fiber or whisker reinforced composites• Artificial

– Continuous fiber or sheet reinforced MMCs• Natural (“sort of”)

– Ex., DS eutectics• Artificial

Page 7: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

[Meyers & Chawla]

Page 8: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

What can composites look like?What can composites look like?

Fiber reinforced

[Meyers & Chawla]

MMC

Figure 15.1 (a) Transverse section of a boron fiber reinforced aluminum composite. Vf = 10%. (b) Transverse section of a carbon fiber reinforced polyester resin. Vf = 50% (Optical). (c) Deeply etched transverse section of a eutectic composite showing NbC fibers in a Ni-Cr matrix. (d) SiC particles in an Al alloy matrix (SEM). Vf = 17%.

Particle reinforced

Fiber reinforced

Fiber reinforced (eutectic)

PMC

MMC MMC

(a) (b)

(c) (d)[Meyers & Chawla]

Page 9: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

What can composites look like?What can composites look like?

Which phase is the reinforcing phase?

MMC

[Bewlay et al., MRS Bulletin, v.28, n.9 (2003) p. 646-653]

Figure 5. Microstructural evolution in Nb-19.5Ti-13Cr-2Hf-17.5Si-2Al-1.2Sn (at.%) in the following conditions: (a) as-cast, (b) homogenized (1300°C/24h + 1400°C/76 h), and (c), (d) extruded (1350°C at 6:1 ratio), transverse and longitudinal sections, respectively. The light phase is Nb, the gray phase in (Nb)5Si3, and the black phase is the Cr2(Nb)-type Laves phase.

(a) (b)

(a) (b)

Page 10: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

GRAY DUCTILE

WHITE MALLEABLE

graphite

-ferrite

Fe3C

pearlite

graphite

-ferrite

graphite

-ferrite

[From Callister, 7th Ed., Fig. 11.3, pages 367-368]

Cast Iron: another good example of a compositeCast Iron: another good example of a compositeParticle reinforced MMCs

Page 11: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

What do properties depend upon?What do properties depend upon?

• Matrix type– Structure and intrinsic properties

• Reinforcement:– Concentration– Shape– Size– Distribution– Orientation– Matrix/reinforcement interface

• To begin, we will consider a laminate composite in order to develop the basic principles of reinforcement.

Page 12: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Basic mechanics (1)Basic mechanics (1)

• Consider the case where a force is applied along the y-direction. In this instance, the stresses on the and lamellae are equal (i.e., = F/L2).

• The composite strain is the weighted average of the individual strains in each lamellae.

• The composite modulus is given by:

x

y

z

L L

L

L( )

( )

LVL L

LV

L L

c V V

N(L + L)

c

E EE

V E V E

Force

Let be the strong phase

Page 13: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Does Does strengthstrength change as we alter volume change as we alter volume fraction of reinforcing phase?fraction of reinforcing phase?

Answer: NOT FOR THIS ARRANGEMENT!

0 1

1

FF

V

With this type of loading, both phases experience the same force and thus the same stress. Therefore, F/F = 1.

Let F = strong phase.

The force ratio is independent of V.

Page 14: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

• Point 1:– V = 0.5; V = 0.5– E = 100 GPa; E = 10 GPa

21000

100055

GPa(0.5 10 GPa + 0.5 100 GPa)

GPa = 18.1 GPa

cE

• Point 2:– V = 0.1; V = 0.9– E = 100 GPa; E = 10 GPa

21000

100091

GPa(0.1 10 GPa + 0.9 100 GPa)

GPa = 11 GPa

cE

• Point 3:– V = 0.9; V = 0.1– E = 100 GPa; E = 10 GPa

21000

100019

GPa(0.9 10 GPa + 0.1 100 GPa)

GPa = 52.6 GPa

cE

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

Com

posi

te M

odul

us (G

Pa)

Volume Fraction of -phase

#1#2

#3

Does Does modulusmodulus change as we alter volume change as we alter volume fraction of reinforcing phase?fraction of reinforcing phase?

Answer: YES!

Equal stress condition

Page 15: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Basic mechanics (2)Basic mechanics (2)

• Consider the case where a force is applied along the z-direction. In this instance, the stresses on the and lamellae are different.

• The strains on the and lamellae are equal.

• The composite modulus is given by:

x

y

z

L L

L

L( )

( )

LVL L

LV

L L

c

N(L + L)

cE V E V E

Forc

e

Once again, let be the strong phase

Page 16: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

Com

posi

te M

odul

us (G

Pa)

Volume Fraction of -phase

• Point 1:– V = 0.5; V = 0.5– E = 100 GPa; E = 10 GPa

55(0.5 100 GPa + 0.5 10 GPa)

GPacE

• Point 2:– V = 0.1; V = 0.9– E = 100 GPa; E = 10 GPa

19(0.1 100 GPa + 0.9 10 GPa)

GPacE

• Point 3:– V = 0.9; V = 0.1– E = 100 GPa; E = 10 GPa

91(0.9 100 GPa + 0.1 10 GPa)

GPacE

Does Does modulusmodulus change as we alter volume change as we alter volume fraction of reinforcing phase?fraction of reinforcing phase?

Answer: YES!

Equal strain condition

Page 17: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

0.0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

Com

posi

te M

odul

us (G

Pa)

Volume Fraction of -phase

This is a composite plot of the elastic modulus for the composite that we used in the example. The blue curve shows the upper bound for modulus and the red curve shows the lower bound as calculated using the rule of mixtures. The moduli of particle-reinforced materials generally lies between the values predicted for laminate composites, but near the lower bound. In fact, for particle reinforced composites:

c

E EE

V E V E

cE V E V E

,

)

c m m c p p c m m s p p

c s

c s

E V E K V E V K V

K KK K

and

where and are empirical constants with values of less than 1(

Equal strain condition

Equal stress condition

E = 100 GPa E = 10 GPa

More effective use of stiffness of the α phase

Page 18: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Basic mechanics (3)Basic mechanics (3)

• The composite stress for this arrangement is given by:

x

y

z

L L

L

L

N(L + L)

c V V

Forc

eOnce again, let be

the strong phase

Page 19: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

• What this plot shows is that the equal-strain condition for reinforcement (i.e., strong phase aligned parallel to applied force) is most useful for reinforcement.

• Under these conditions, the strengthening phase (i.e., the reinforcement) is much more effective at carrying load.

• However, there must be a certain volume fraction of the reinforcing phase present.

Increasing reinforcement strength/stiffness

Equal-stress arrangement

Influence of reinforcement arrangement on strengthInfluence of reinforcement arrangement on strength

[after Courtney, p. 251]

0

2

4

6

8

10

0 0.2 0.4 0.6 1.00.8

Equal-strain arrangement

E α/Eβ

=1

E α/Eβ

=2

E α/Eβ

=5

E α/Eβ

=10

F α/Fβ

Fα/Fβ = 1

More effective use of stiffness of the α phase

Page 20: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Reinforcement with continuous fibers (1)Reinforcement with continuous fibers (1)

• Most widely utilized phase geometry.

• WHY? Extraordinary strengths can be obtained in fibrous materials. Some particularly important ones are noted in this table.

• High strength fibers must be protected as their fracture toughness is generally low.

[Courtney]

Page 21: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Reinforcement with continuous fibers (2)Reinforcement with continuous fibers (2)

matrix

fibers

c f f m mV V

c

c

I

IIIII “Stress-strain

behavior is a composite too”

f

Page 22: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

c

c

I

IIIII

• Stage I– Both fiber and matrix deform elastically.

• Stage II– Generally, the matrix will begin to deform plastically at a strain that

is less than the elastic limit of the fiber.

c c c c f f m mE V E V E

c

stress carriedby matrix atstrain

c f c f c m fV E V

f

Page 23: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

c

c

I

IIIII

f

• Stage III– This stage only occurs if the fibers deform plastically prior to

fracture

• f = fiber failure strain– Fibers begin to deform locally or fracture.

c f f c m m cV V

UTS of matrix

Matrix fracture

Fiber fracture

Page 24: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Critical fiber volume fraction needed to strengthenCritical fiber volume fraction needed to strengthen

• Vc = critical volume fraction of fibers

• Vmin = minimum fiber volume fraction required to increase strength of matrix

m

Fiber volume fraction, Vf

Stre

ss

0 1

f

Vc

Vmin

( )c f f m m fV V

(1 )c m m f mV V

min

( )( )

m m f

f m f

V

( )( )

m m fc

f m m f

V

Typical values for Vc and Vminrange from 0.02 to 0.10

Page 25: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Discontinuous fibersDiscontinuous fibers• The equal strain volume fraction rule does not apply to composites

containing discontinuous fibers.

• In discontinuous fibers, there is a critical fiber length Lc for effective strengthening.

where f = tensile strength of fiber, m = shear strength of fiber-matrix interface, and d = fiber diameter.

• For glass and carbon composites, Lc (20 – 150 d) mm.

• Fibers that are shorter than the critical length have less strengthening per unit volume than continuous fibers.

• WHY?

fc

m

dL

Page 26: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Figure 6.9 (a) A schematic of a matrix containing discontinuous fibers. (b) The geometry of one fiber is shown in the cross-hatched region. At the fiber end, tensile load can’t be instantaneously transferred to the fiber from the matrix. (c) The tensile load-transfer process is accomplished by development of a shear stress at the fiber-matrix interface owing to the relative displacement of the fiber and matrix along this interface. The displacement is proportional to the arrows shown, and is zero at the fiber midpoint and a maximum at the fiber end. (d) A small increment of length dx of a fiber; the incremental fiber tensile stress (dσf) is obtained by a force balance; i.e., (πdf2/4) df = m(πdf2dx), where m is the interfacial shear stress.

[after Courtney, p. 258]

Fiber midpoint

Fiber midpoint

Fiber

dx

MatrixF

(a) (b)

(c) (d)

dx

f

m

Page 27: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

• The shear stress at the midpoint of a fiber is less than that atthe ends.

• Fibers do work by transferring load from the “weak” matrix to the “strong/stiff” fiber. This requires a large interfacial area.

[after Courtney, p. 259]

Page 28: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

matrixfiber

• No load is transferred to the fiber at its ends.

• Load is transferred along the length of the fiber

[after Courtney, p. 259]

Page 29: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

• Fibers need to be of a certain length to yield maximum strengthening.

• Read the captions for the two figures presented on the left.

• Fiber orientation is also important.

F

fibers

Fcos

[Courtney]

Page 30: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

Fiber failure

Shear yielding of matrix

Normal yielding of matrix

4 4

2 2, 2 2 2 2* * *

cos 1 1 sincos sinUTS c

my

Tsai-Hill failure criterion for fiber reinforce composites

[Courtney]

Page 31: Mechanical Behavior Notes-2009d - Weaver Research Groupweavergroup.ua.edu/uploads/4/8/9/0/48901279/n27.pdf · Module #27 Composite Materials (an overview) READING LIST DIETER: Ch

CrossCross--PlyingPlying• Cross-plying aligned fibers to

produce sandwich structures provides better utilization of composites.

• A 0-90° composite is illustrated to the right.

• Most composites contain more than two plies.

• Other ply arrangements are possible and are used to improve in-plane loading.

Schematic of a 0-90° cross-ply fiber composite. Such configurations are useful for biaxial loading of composites. Other configurations (e.g. 0-45°, 45-45°, or 0-45-90°) can be similarly employed. [Figure scanned from Courtney, p. 267].