31
MECh300H Introduction to Finite Element Methods Finite Element Analysis (F.E.A.) of 1-D Problems

MECh300H Introduction to Finite Element Methods

  • Upload
    bill

  • View
    56

  • Download
    0

Embed Size (px)

DESCRIPTION

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems. Historical Background . Hrenikoff, 1941 – “frame work method” Courant, 1943 – “piecewise polynomial interpolation” Turner, 1956 – derived stiffness matrice for truss, beam, etc - PowerPoint PPT Presentation

Citation preview

Page 1: MECh300H Introduction to Finite Element Methods

MECh300H Introduction to Finite Element Methods

Finite Element Analysis (F.E.A.) of 1-D Problems

Page 2: MECh300H Introduction to Finite Element Methods

Historical Background

• Hrenikoff, 1941 – “frame work method”

• Courant, 1943 – “piecewise polynomial interpolation”

• Turner, 1956 – derived stiffness matrice for truss, beam, etc

• Clough, 1960 – coined the term “finite element”

Key Ideas: - frame work method piecewise polynomial approximation

Page 3: MECh300H Introduction to Finite Element Methods

Axially Loaded Bar Review:

Stress:

Strain:

Deformation:

Stress:

Strain:

Deformation:

Page 4: MECh300H Introduction to Finite Element Methods

Axially Loaded Bar Review:

Stress:

Strain:

Deformation:

Page 5: MECh300H Introduction to Finite Element Methods

Axially Loaded Bar – Governing Equations and Boundary

Conditions• Differential Equation

• Boundary Condition Types

• prescribed displacement (essential BC)

• prescribed force/derivative of displacement (natural BC)

LxxfdxduxEA

dxd

0 0)()(

Page 6: MECh300H Introduction to Finite Element Methods

Axially Loaded Bar –Boundary Conditions

• Examples

• fixed end

• simple support

• free end

Page 7: MECh300H Introduction to Finite Element Methods

Potential Energy• Elastic Potential Energy (PE)

- Spring case

- Axially loaded bar

- Elastic body

x

Unstretched spring

Stretched bar

0PE

2

21PE kx

undeformed:

deformed:

0PE

L

Adx02

1PE

dvV

Tεσ21PE

Page 8: MECh300H Introduction to Finite Element Methods

Potential Energy• Work Potential (WE)

B

L

uPfdxu 0

WP

Pf

f: distributed force over a lineP: point forceu: displacement

A B

• Total Potential Energy

B

LL

uPfdxuAdx 002

1

• Principle of Minimum Potential Energy For conservative systems, of all the kinematically admissible displacement fields,those corresponding to equilibrium extremize the total potential energy. If the extremum condition is a minimum, the equilibrium state is stable.

Page 9: MECh300H Introduction to Finite Element Methods

Potential Energy + Rayleigh-Ritz Approach

Pf

A B

Example:

Step 1: assume a displacement field nixau ii

i to1

is shape function / basis functionn is the order of approximation

Step 2: calculate total potential energy

Page 10: MECh300H Introduction to Finite Element Methods

Potential Energy + Rayleigh-Ritz Approach

Pf

A B

Example:

Step 3:select ai so that the total potential energy is minimum

Page 11: MECh300H Introduction to Finite Element Methods

Galerkin’s Method

Pf

A B

Example:

PdxduxEA

xu

xfdxduxEA

dxd

Lx

)(

00

0)()( Seek an approximation so

PdxudxEA

xu

dVxfdxudxEA

dxdw

Lx

Vi

~)(

00~

0)(~

)(

u~

In the Galerkin’s method, the weight function is chosen to be the same as the shape function.

Page 12: MECh300H Introduction to Finite Element Methods

Galerkin’s Method

Pf

A B

Example:

0)(~

)(

dVxf

dxudxEA

dxdw

Vi 0

~)(

~)(

00 0

L

i

L L

ii

dxudxEAwfdxwdx

dxdw

dxudxEA

1 2 3

1

2

3

Page 13: MECh300H Introduction to Finite Element Methods

Finite Element Method – Piecewise Approximation

x

u

x

u

Page 14: MECh300H Introduction to Finite Element Methods

FEM Formulation of Axially Loaded Bar – Governing Equations

• Differential Equation

• Weighted-Integral Formulation

• Weak Form

LxxfdxduxEA

dxd

0 0)()(

0)()(0

dxxf

dxduxEA

dxdw

L

LL

dxduxEAwdxxwf

dxduxEA

dxdw

00

)()()(0

Page 15: MECh300H Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example:

Step 1: Discretization

Step 2: Weak form of one element P2P1x1 x2

0)()()()()(2

1

2

1

x

x

x

x dxduxEAxwdxxfxw

dxduxEA

dxdw

0)()()( 1122

2

1

PxwPxwdxxfxw

dxduxEA

dxdwx

x

Page 16: MECh300H Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 3: Choosing shape functions - linear shape functions

2211 uuu

lx1 x2

x

lxx

lxx 1

22

1 ;

2

1 ;2

121

11 2

1 ;12 xlxxxl

Page 17: MECh300H Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 4: Forming element equation

Let , weak form becomes1w 0111211

122

1

2

1

PPdxfdxluuEA

l

x

x

x

x

1121

2

1

PdxfulEAu

lEA x

x

Let , weak form becomes2w 0112222

122

1

2

1

PPdxfdxluuEA

l

x

x

x

x

2221

2

1

PdxfulEAu

lEA x

x

2

1

2

1

1

1 1 1 1

2 2 2 22

1 11 1

x

x

x

x

fdxu P f PEAu P f Pl

fdx

E,A are constant

Page 18: MECh300H Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 5: Assembling to form system equation

Approach 1:

Element 1:

1 1 1

2 2 2

1 1 0 01 1 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0

I I I

I I II I

I

u f Pu f PE A

l

Element 2:1 1 1

2 2 2

0 0 0 0 0 0 00 1 1 00 1 1 00 0 0 0 0 0 0

II II IIII II

II II IIII

u f PE Au f Pl

Element 3:

1 1 1

2 2 2

0 0 00 0 0 00 0 00 0 0 0

0 0 1 10 0 1 1

III III

III III IIIIII

III III III

E Au f Plu f P

Page 19: MECh300H Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 5: Assembling to form system equation

Assembled System:

1 1 1

2 2 2

3 3 3

4 4 4

0 0

0

0

0 0

I I I I

I I

I I I I II II II II

I I II II

II II II II III III III III

II II III III

III III III III

III III

E A E Al l

u f PE A E A E A E Au f Pl l l lu f PE A E A E A E Au f Pl l l l

E A E Al l

1 1

2 1 2 1

2 1 2 1

2 2

I I

I II I II

II III II III

III III

f Pf f P Pf f P Pf P

Page 20: MECh300H Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 5: Assembling to form system equation

Approach 2: Element connectivity table Element 1 Element 2 Element 3

1 1 2 3

2 2 3 4

global node index (I,J)

local node (i,j)

eij IJk K

Page 21: MECh300H Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 6: Imposing boundary conditions and forming condense system

Condensed system:

2 2

3 3

4 4

000

0

I I II II II II

I II II

II II II II III III III III

II II III III

III III III III

III III

E A E A E Al l l u fE A E A E A E A u fl l l l

u f PE A E Al l

Page 22: MECh300H Introduction to Finite Element Methods

Approximation Methods – Finite Element Method

Example (cont):

Step 7: solution

Step 8: post calculation

dxdu

dxdu

dxdu 2

21

1 2211 uuu

dxdEu

dxdEuE 2

21

1

Page 23: MECh300H Introduction to Finite Element Methods

Summary - Major Steps in FEM• Discretization

• Derivation of element equation

• weak form

• construct form of approximation solution over one element

• derive finite element model

• Assembling – putting elements together

• Imposing boundary conditions

• Solving equations

• Postcomputation

Page 24: MECh300H Introduction to Finite Element Methods

Exercises – Linear Element

Example 1:E = 100 GPa, A = 1 cm2

Page 25: MECh300H Introduction to Finite Element Methods

Linear Formulation for Bar Element

2

1

2212

1211

2

1

2

1

uu

KKKK

ff

PP

2

1

2

1

, x

xii

x

xji

jiij dxffKdx

dxd

dxdEAKwhere

x=x1 x=x2

2 1

x

x=x1 x= x2

u1 u2

1P 2Pf(x)

L = x2-x1

ux

Page 26: MECh300H Introduction to Finite Element Methods

Higher Order Formulation for Bar Element

(x)u(x)u(x)u(x)u 332211

)x(u)x(u)x(u)x(u(x)u 44332211

1 3

u1 u3ux

u2

2

1 4

u1 u4

2

ux

u2 u3

3

)x(u)x(u)x(u)x(u)x(u(x)u nn44332211

1 n

u1 un

2

ux

u2 u3

3

u4 ……………

4 ……………

Page 27: MECh300H Introduction to Finite Element Methods

Natural Coordinates and Interpolation Functions

21 ,

21

21

Natural (or Normal) Coordinate:

x=x1 x= x2

=-1 =1

x

0x x l

1xxx 1 2

2/ 2

x xx

l

1 32

=-1 =1

1 2

=-1 =1

1 42

=-1 =1

3

21 ,11 ,

21

321

1311

1627 ,1

31

31

169

21

31

311

169 ,1

311

1627

43

Page 28: MECh300H Introduction to Finite Element Methods

Quadratic Formulation for Bar Element

2

1

1

1

nd , , 1, 2, 32

x

i i ix

la f f dx f d i j

2

1

1

1

2 x

j ji iij ji

x

d dd dwhere K EA dx EA d Kdx dx d d l

3

2

1

332313

232212

131211

3

2

1

3

2

1

uuu

KKKKKKKKK

fff

PPP

=-1 =0 =1

Page 29: MECh300H Introduction to Finite Element Methods

Quadratic Formulation for Bar Elementu1 u3u2f(x)

P3P1

P2

=-1 =0 =11x 2x 3x

21u11u

21u)(u)(u)(u)(u 321332211

21 ,11 ,

21

321

1 1 2 2 3 32 2 1 2 4 2 2 1, , d d d d d ddx l d l dx l d l dx l d l

1 2

2/ 2

x xx

l

2

l d dx 2d

dx l

Page 30: MECh300H Introduction to Finite Element Methods

Exercises – Quadratic Element

Example 2:

E = 100 GPa, A1 = 1 cm2; A1 = 2 cm2

Page 31: MECh300H Introduction to Finite Element Methods

Some Issues

Non-constant cross section:

Interior load point:

Mixed boundary condition:k