MECH 251 Session 2

Embed Size (px)

Citation preview

  • 7/26/2019 MECH 251 Session 2

    1/38

    A Process Planning and Optimization System for

    Laminated Object Manufacturing Application

    byAnthony PANG

    IEEM Dept.,

    Hong Kong University of Science & echno!ogy

  • 7/26/2019 MECH 251 Session 2

    2/38

    Presentation Outline1. Problem Description

    2. Geometric Algorithm for Solid Level Process Planning

    a. Convex Cover of the Build Part

    b. Part Orientation Determination

    c. Cutting Plane Generation

    d. Internal Octree-based Grid Generation

    3. Optimization of Layer level Cutting Path

    a. Genetic Algorithmb. Genetic Algorithm with 3-opt

    c. ATSP-Assign Iteration (Tuckers formulation)

    4. Operation Sequence for Proposed System

    5. System Architecture

    6. Conclusion

  • 7/26/2019 MECH 251 Session 2

    3/38

    LOM Process Description

  • 7/26/2019 MECH 251 Session 2

    4/38

    Problem Description

    Build object Traditional Hatcing !rids

    Max. Section Area Layer Lowest Section Layer

    Problems"

    #a$ %asted effort in cutting atc grids

    #b$ %asted time due to poor pat planning

  • 7/26/2019 MECH 251 Session 2

    5/38

    Solid Model Le&el Optimization

    'on&e( 'o&er 'utting Plane !eneration

    Cutting Plane

  • 7/26/2019 MECH 251 Session 2

    6/38

    )inding !ood Parting Planes

    *+ Orient te part on te macine

    ,+ )ind te -best. parting line

    /+ )ind te parting planes

  • 7/26/2019 MECH 251 Session 2

    7/38

    Part Orientation Determination

    0ertical Orientation #assumed as gi&en$

    Depends on surface finis considerations

    Horizontal Orientation

    Metod"Te minimum projection 1idt algoritm

    Algoritm"

    Project on 23 Plane

    4otating 'aliper on 'H#projection$%min%min

    2

    53

    feed roll

    pic67up

    roll

    paper ad&ance

    271idt

    PA4T

  • 7/26/2019 MECH 251 Session 2

    8/38

    'utting Plane Determination

  • 7/26/2019 MECH 251 Session 2

    9/38

    'utting Plane Determination

  • 7/26/2019 MECH 251 Session 2

    10/38

    Parting Line Determination

    #a$ )lattest Parting Line

    &*

    &,

    &/

    &8

    &9&:

    &;

    &nside te 'on&e( Hull" Octree cuts

    Object

    ?numeration Octree

  • 7/26/2019 MECH 251 Session 2

    14/38

    Te !eometric Planning Se@uence

  • 7/26/2019 MECH 251 Session 2

    15/38

    Solid Model Le&el Process Planning

  • 7/26/2019 MECH 251 Session 2

    16/38

    Solid Model Le&el Process Planning

  • 7/26/2019 MECH 251 Session 2

    17/38

    Performance 'omparison

    Surface Area Part 'on&e(Hull

    BoundingBo(

    'uttingPlane

    !rids Total 4eduction

    SL

    0

    Test'ase

    Traditional

    'H 1it 4ect

    'H 1it Octree

    88;+=,

    8/

  • 7/26/2019 MECH 251 Session 2

    18/38

    Laser Pat Planning )or ?ac Layer

    1

    2

    3

    4

    5

    6

    78

    9

    10

    11

    12

    13

    14

    15

    1 2

    3

    4

    5

    89

    1011

    1213

    14

    6

    7

  • 7/26/2019 MECH 251 Session 2

    19/38

    T1o decisions at eac step"*+ %ic is te next arcto be macined

    ,+ %at is te senseof dra1ing arci

    7 using t1o &ariables to depict tese decisions"

    "iC * if start &erte( of arciis vi# if start &erte( of arciis vi$

    %iC * if te i7t arc dra1n is arc oter1ise

    'learlyE all"i' s and %i' s can eiter be E or *

    Laser Pat Planning )or ?ac Layer ++

    Prob!e( )escription

    cur&ei

    cur&ej

    &j,

    &j*

    &i*

    &i,

  • 7/26/2019 MECH 251 Session 2

    20/38

    Laser Pat Planning )or ?ac Layer +++

    Problem formulation

    cur&ei

    cur&ej

    &j,

    &j*

    &i*

    &i,

    aij

    dijbij

    cij=

    +n

    *"*"%*

    ** F$*#G

    =

    +n

    n *"*"%*

    * F$*#G

    $#*

    * * *E*

    = = =

    +

    n

    i

    n

    n

    t

    ttii+%%

    &tt&&tt&&tt&&tt&&t )""c""b""*""+ $*$#*#$*#$*# +++=

  • 7/26/2019 MECH 251 Session 2

    21/38

    !enetic Algoritm Basics

    *+ !enerate a large number of random solutions population

    ,+ 4an6E Sort populations based on performance of te solutions

    /+ Iill a fraction of te 1orst solutionE e+g+ %orst ,

    8+ Mate te better solutions randomly to create ne(t generation

    9+ 4epeat Step ,78 until an acceptable solution performance obtained

  • 7/26/2019 MECH 251 Session 2

    22/38

    !A Metodology

    T1o7cromosome organismJ 27cromosome and 37cromosome

    ?ac cromosome as te same number of genesE nArcs+

    >nput " nArcsarcsE eac 1it t1o #possibly coincident$ &erticesE v1and v2+

    Setup of te genes "

    27cromosome " permutation of G*++nArcsF

    J ithgene = Kimplies itcur&e to be macined by te tool is cur&eK+

    37cromosome " array of GE*F

    J if Yi= 0E ten te i7t cur&e macined from &*++to++&,

    J if Yi= 1E ten tat cur&e macined from &,++to++&*+

  • 7/26/2019 MECH 251 Session 2

    23/38

    Layer Le&el 'utting Pat Optimization

    !enetic Algoritm ?(ample 4esults "Kai&e pat #Traditional$* , / 8 9 : ; < = * ** *, */ *8 *9 *: *; *< *= , ,* ,,

    Kon7cutting distance

    *8+;98; units

    >teration Time sec

    !A pat* , / 8 9 : ; = < ** *8 *, */* *= *: *; *< *9, ,* ,,

    Kon7cutting distance

    **+,teration Time

    *,+< seconds for * iterations

    4eal7time -optimization. can be done

  • 7/26/2019 MECH 251 Session 2

    24/38

    >mpro&ing te !A+

    !A

    ,7Optp@

    b

    d

    c

    a

    e*e,

    GcurrentF

    pa bc d@

    G,7opt optionsF

    pa bd c@

    pb ac d@

    pb ad c@

    pc ad b@

    pc bd a@

    pd bc a@

    pd ac b@

    Nump7distances"

    *

    /

    ,

    8

    *

    2

    3

    8p@

    bd

    c

    a

    e*e,e/

    f

    e

    !A

    /7Opt

  • 7/26/2019 MECH 251 Session 2

    25/38

    Anoter 1ay to do te pat planning

    Assume" Start &erte( of eac 'ur&e is gi&en

    C Asymmetric Tra&eling Salesman Problem

    Assume" Te Se@uence of &isiting eac 'ur&e is fi(ed

    C Assignment problem

    Strategy" >terate bet1een te ATSP and te Assignment

  • 7/26/2019 MECH 251 Session 2

    26/38

    *

    ,

    /

    8

    *

    ,

    /

    8

    Te ATSP

    = =

    =*

    * *

    n

    i

    n

    &

    i&i&D%+

    GTuc6erF i7 j p%ijp7*E i C *+++n j C *n i j

    iE

    jarbitraryE p C ma( no of arcs &isited by tool

    ni%n

    i

    i& EE*E**

    ===

    n&%

    n

    &

    i&

    EE*E**==

    =

    minimize"

    subject to"

  • 7/26/2019 MECH 251 Session 2

    27/38

    Te Assignment Problem

    arct arct* arct,

    ( Dt1x

    t1 + D

    t2x

    t2 + D

    t3x

    t3 + D

    t4x

    t4)

    t=1

    n1

    xt1 + x t2 + xt3 + x t4 = 1

    xt1

    + xt3

    + xt+11 + xt+1 2 1

    xt2

    + xt4

    + xt+1 3 + xt+1 4 1

    minimize

    s+t+

    P t*

    P t H ,,

    P t H ,*

    P t H *,

    P t H **

    P t,

    2 t *

    2 t H * 8

    2 t H * /

    2 t H * ,

    2 t H * *

    2 t 8

    2 t /

    2 t ,

  • 7/26/2019 MECH 251 Session 2

    28/38

    Performance comparisons

    Toy planeE ,9: layers

    )ull partE #!A performance$ Total Numping Distance

    Traditional metod ,=

  • 7/26/2019 MECH 251 Session 2

    29/38

    Operation se@uence for proposed system-per*tion Seence /!o0ch*rt1

    LoadQDesign te /D solid model in te system

    'alculate te con&e( ull of te part

    Determine te optimal parting direction

    !enerate te partingQcutting planes

    Slice te object 1it all te artifacts into layers

    !enerate te internal Octree7based 1aste grids

    Optimize te laser cutting operation for eac layer by /7Opt !A algoritm

  • 7/26/2019 MECH 251 Session 2

    30/38

    System Arcitecture

    Rser

    Solid Model

    AP>.s

    Tessellation #STL$

    Surface Model

    Artifacts

    Build direction

    Slice data

    #uniform$

    or

    Slice data

    #adapti&e$

    'AD

  • 7/26/2019 MECH 251 Session 2

    31/38

    System Arcitecture

    !eometry ?ngine

    'on&e( Hull

    Minimum bo( co&er

    Spline Appro(imation

    +++

    Optimization ?ngine

    !enetic Algoritm

    +++

    'AD system

    Design

    +++

    Tessellation

    Slicing

    Object Transformations

    Artifact Planning

    Macine 'ontrol Planning

    Slice Planning

    Tool Motion Planning

    Application Layer 'ore Rtilities

    Macine 'ontrol Data

    Part model

    )eature7based Model

    STL

    Part Le&el Artifacts

    Layer !eometry

    Tool Motion Data

    Data )lo1

  • 7/26/2019 MECH 251 Session 2

    32/38

    'onclusion

    Main )eatures"

    Accomplisments"De&eloped anProcess P!*nningE-pti(i2*tion3DrivenE

    'ADQ'AM support system for4*(in*te) -bect M*nf*ctring

    1. Geometric Base

    2. !euce "aste cut

    #. $%timi&e laser cutting motion

    '. $%en(Architecture system

  • 7/26/2019 MECH 251 Session 2

    33/38

    PublicationsNournal"

    Antony PangE Iatta !+ MurtyE Ajay NonejaE Leung 'i 'iuE oo! P*th -pti(i2*tion in 4*yere)

    M*nf*ctring,5>>? TransactionsE /8#8$"//97/8;E April ,,+Antony PangE Ajay NonejaE Da&id '+'+ LamE Matte1 3uen, 6A 7AD87AM syste( for process

    p!*nning *n) opti(i2*tion in 4-M,5 >>? TransactionsE //#8$" /897/99E April ,*

    Ajay NonejaE Antony PangE Da&id LamE Matte1 3uen, 6A 7AD87AM syste( for vector3b*se) !*yere)

    (*nf*ctring syste(s,5 >nt+ N+ of 'omputer >ntegrated ManufacturingE ,E &ol+ */E no+ 9E /ntl 'onference on 4P and MfgE TsingHua Rni&E BeijingE

    Nuly ,*7,/E *==

  • 7/26/2019 MECH 251 Session 2

    34/38

    )uture %or6

    *+ LOM metods impro&ement" multiple parts

    ,+ ?(tension to oter 4P tecnologies #SLS$

    /+ >mpro&ed disassembly metod #Automated Disassembly 'ec6ing$

    8+ Konlinear programming optimization for te pat planning

    problem

  • 7/26/2019 MECH 251 Session 2

    35/38

    Some tougts on Direct Slice )ormats

    V*

    * +*

    V,

    #L* #L,$EL/ #L8$E L9E L:$

    V/

    VL*

    +;9 8+,9 /+,9 8+,9

    /+,9 8+,9 /+,9 :+9

    /+,9 :+9 +;9 :+9

    +;9 :+9 +;9 8+,9VL,

    *+;9 8+9 ,+;9 8+9

    ,+;9 8+9 ,+;9 9+9

    ,+;9 9+9 *+;9 9+9

    *+;9 9+9 *+;9 8+9

    VL/

    +;9 *+;9 /+;9 *+;9

    * * ,+,9 *+;9 /+;9 *+;9 +;9 *+;9

    VL8

    *+;9 ,+ /+,9 ,+

    /+,9 ,+ /+,9 ,+;9

    /+,9 ,+;9 *+;9 ,+;9 *+;9 ,+;9 *+;9 ,+

    VL9

    * * 9+,9 /+;9 /+;9 /+;9 /+;9 /+;9

    VL:

    /+;9 *+,9 :+;9 ,+9

    :+;9 ,+9 :+;9 *+,9

    :+;9 *+,9 /+;9 *+,9

    'orresponding +DSL )ileSample Slice !eometry

    ttp"QQiesu9+ust+6QdfacultyQajayQprojectsQrp+tml

  • 7/26/2019 MECH 251 Session 2

    36/38

    Te TsingHua Macine

  • 7/26/2019 MECH 251 Session 2

    37/38

    4esult of te tested sample parts

  • 7/26/2019 MECH 251 Session 2

    38/38

    >llustration of te Tuc6er.s formulationGTuc6erF

    i7

    j p%

    ijp7*E i C *+++n j C *n i j

    iE jarbitraryE p C ma( no of arcs &isited by tool

    Assume cutting !*ten go to !,

    *U

    , /%

    *,,

    ,U

    * /%

    ,*,

    *U

    / /%

    */,

    /U

    * /%

    /*,

    ,U

    / /%

    ,/,

    /U

    , /%

    /,,

    %*,C *

    *U

    ,7*

    %,*

    *

    ,U

    *7*

    Assume cutting !*ten go to !, and finally go to !/

    %*,C * W %,/C * *U ,7* W ,U /7*

    If %/*

    C *

    /,W ,*

    /U

    *7*

    *

    / )ontraictory conition

    !*

    !/

    !,