1
www.iter.org Measuring Density in the ITER Fusion Plasma Common Challenges for ITER Diagnostics Iter is significantly larger than previous experiments - ~10x plasma volume of previous experiments Much hotter - 40 keV Burning fusion plasma - Large neutron fluxes - High EM radiation loads - Large mechanical stresses (Disruptions) 2nd International Conference Frontiers in Diagnostic Technologies Christopher Watts, Victor Udintsev, George Vayakis, ITER Team 28-30 November 2011 The ITER Experiment ITER is a largescale scientific experiment that aims to demonstrate that it is possible to produce commercial energy from fusion. α λ 2 n e B d l PolPo (Poloidal Polarimeter) Principle Faraday rotation changes polarization Cotton Mouton effect changes ellipticity Design Features Laser 57 μm; 48 μm Cu CCR behind blankets Particular Challenges CCR thermal distortion Cooling of CCR Low signaltonoise α CM C ω 3 n e ( B × ˆ k ) 2 ds SS HIP Cu Divertor Thomson Scattering Principle Thomson scattering from electrons Design Features NdYAG laser: 2J, 3 ns, 100Hz SiO 2 coated, silver 1 st mirror Complex realtime alignment system Highly dispersive triplegrating polychrometer Particular Challenges Very tight space constraints Steep density gradients High nuclear environment Low temperatures narrow line width High background light C and Be dust in cassette region High etendu vs. deposition protection Divertor: 10 18 – 10 22 m 3 Langmuir Probes Principle Swept Langmuir probe or triple probe Design Feature Attached to cooled divertor support Tapered design to distribute heat load Designed to erode in sync with divertor 0 5 10 15 20 25 10 18 10 19 10 20 10 21 8 MW 1514 n e n e ,m 3 spatial channel 0 5 10 15 20 Δn e , difr Δn e , filter Δ n e ,% Edge: 10 18 – 10 20 m 3 Core: 10 19 – 5x10 20 m 3 Pedestal: 10 18 – 10 20 m 3 Reflectometry (Low field side) Principle Microwave RADAR Amplitude and phase detection Design Features multiantenna system: O and X mode Measures: profiles, fluctuations and flows Particular Challenges Design of core antennas to cope with plasma height variations Performance for large density fluctuation Edge Thomson Scattering Principle Imaging Thomson scattering Multipoint detection along laser beam Design Features NdYAG laser: 5J, 30ns, 100Hz Located in single equatorial port Particular Challenges Viewing optics TIP (Toroidal InterferometerPolarimeter) Reflectometry (Low field side) Edge Thomson Scattering Reflectometry (High field side) Principle Microwave RADAR Amplitude and phase detection X & O mode detection Design Features Xmode observation 1098 GHz Omode observations 15155 GHz Particular Challenges Integration of invessel waveguides and antennas Performance with large density fluctuation Core Thomson Scattering Principle LIDAR Thomson scattering Timeresolved detection of backscattered radiation Design Features 7 x NDYAG lasers: 5J, 250ps, 15Hz UV (300nm) detection Particular Challenges Very high time resolution requirements Highly efficient beam dump required Wide spectral range requirement for mirrors Line Integrated: 10 18 – 5x10 20 m 3 TIP (Toroidal InterferometerPolarimeter) Principle IR interferometer 2nd interferometer for vibration compensation Polarimeter for fringe skips (see PolPo below) Design Features CO2 laser, 10.6 μm; CO laser, 5.7 μm Cu Corner cube retroreflector (CCR) in blankets Particular Challenges CCR thermal distortion Alignment issues Long beam path (50m round trip) Large vibrations Δφ = e 2 λ 4 πε 0 m e c 2 n e dl Basic interferometer detects plasma density and vibrations Particular Challenges Steadystate radiative heat load operating temperatures ~2600° C design of heat shield Erosion issues Distorted probe characteristic Uncertain probe area Long cable lengths Strong magnetic fields Reflectometry horn behind blanket ITER Headquarters building with Experiment Platform in the background ITER Tokamak Scaling of ITER relative to previous devices Heat loads to the Langmuir probes Retroreflector design Five TIP laser chords

Measuring Density in the ITER Fusion Plasma · ! Measuring Density in the ITER Fusion Plasma Common%Challenges%for%ITER%Diagnostics% • Iter%is%significantly%larger%than%previous%experiments%

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Measuring Density in the ITER Fusion Plasma · ! Measuring Density in the ITER Fusion Plasma Common%Challenges%for%ITER%Diagnostics% • Iter%is%significantly%larger%than%previous%experiments%

www.iter.org

!

Measuring Density in the ITER Fusion Plasma

Common  Challenges  for  ITER  Diagnostics  •  Iter  is  significantly  larger  than  previous  experiments  

-  ~10x  plasma  volume  of  previous  experiments  •  Much  hotter  

-  40  keV  •  Burning  fusion  plasma  

-  Large  neutron  fluxes  -  High  EM  radiation  loads  -  Large  mechanical  stresses  

(Disruptions)  

2nd International Conference Frontiers in Diagnostic Technologies Christopher Watts, Victor Udintsev, George Vayakis, ITER Team 28-30 November 2011

The  ITER  Experiment  ITER  is  a  large-­‐scale  scientific  experiment  that  aims  to  demonstrate  that  it  is  possible  to  produce  commercial  energy  from  fusion.  

α∝λ 2 neB ⋅dl∫

PolPo  (Poloidal  Polarimeter)  •  Principle  

–  Faraday  rotation  changes  polarization  –  Cotton  Mouton  effect  changes  ellipticity  

•  Design  Features  –  Laser  57  μm;  48  μm  –  Cu  CCR  behind  blankets  

•  Particular  Challenges  –  CCR  thermal  distortion  –  Cooling  of  CCR  –  Low  signal-­‐to-­‐noise  

αCM ≈Cω3

ne(B× k̂)2 ds∫

SS

HIP

Cu

Divertor  Thomson  Scattering  •  Principle  

–  Thomson  scattering  from  electrons  

•  Design  Features  –  Nd-­‐YAG  laser:  2J,  3  ns,  100Hz  –  SiO2  coated,  silver  1st  mirror  –  Complex  real-­‐time  alignment  system  –  Highly  dispersive  triple-­‐grating  polychrometer  

•  Particular  Challenges  –  Very  tight  space  constraints  –  Steep  density  gradients  –  High  nuclear  environment  –  Low  temperatures  ➜  narrow  line  width  –  High  background  light  –  C  and  Be  dust  in  cassette  region  –  High  etendu  vs.  deposition  protection  

Divertor:  1018  –  1022  m-­‐3  

Langmuir  Probes  •  Principle  

–  Swept  Langmuir  probe  or  triple  probe  •  Design  Feature  

–  Attached  to  cooled  divertor  support  –  Tapered  design  to  distribute  heat  load  –  Designed  to  erode  in  sync  with  divertor  

0 5 10 15 20 251018

1019

1020

1021

8  MW  -­‐  1514  ne

n e,  m

-­‐3

s pa tia l  channe l

0

5

10

15

20  Δne, difr

 Δne, filter

Δne,  %

Edge:  1018  –  1020  m-­‐3  

Core:  1019  –  5x1020  m-­‐3  

Pedestal:  1018  –  1020  m-­‐3  

Reflectometry  (Low  field  side)  •  Principle  

–  Microwave  RADAR  •  Amplitude  and  phase  detection  

•  Design  Features  –   multi-­‐antenna  system:  O  and  X  mode  –  Measures:  profiles,  fluctuations  and  flows  

•  Particular  Challenges  –  Design  of  core  antennas  to  cope  with  plasma  height  variations  –  Performance  for  large  density  fluctuation  

 

Edge  Thomson  Scattering  •  Principle  

–  Imaging  Thomson  scattering  –  Multi-­‐point  detection  along  laser  beam  

•  Design  Features  –  Nd-­‐YAG  laser:  5J,  30ns,  100Hz  –  Located  in  single  equatorial  port  

•  Particular  Challenges  –  Viewing  optics  

 

TIP  (Toroidal  Interferometer-­‐Polarimeter)  Reflectometry  (Low  field  side)  Edge  Thomson  Scattering  

Reflectometry  (High  field  side)  •  Principle  

–  Microwave  RADAR  •  Amplitude  and  phase  detection  •  X  &  O  mode  detection  

•  Design  Features  –   X-­‐mode  observation  10-­‐98  GHz    –  O-­‐mode  observations  15-­‐155  GHz  

•  Particular  Challenges  –  Integration  of  in-­‐vessel  waveguides  and  

antennas  –  Performance  with  large  density  

fluctuation  

Core  Thomson  Scattering  •  Principle  

–  LIDAR  Thomson  scattering  –  Time-­‐resolved  detection  of  backscattered  radiation  

•  Design  Features  –  7  x  ND-­‐YAG  lasers:  5J,  250ps,  15Hz  –  UV  (300nm)  detection  

•  Particular  Challenges  –  Very  high  time  resolution  requirements  –  Highly  efficient  beam  dump  required  –  Wide  spectral  range  requirement  for  mirrors  

 

Line  Integrated:  1018  –  5x1020  m-­‐3  TIP  (Toroidal  Interferometer-­‐Polarimeter)  •  Principle  

–  IR  interferometer  –  2nd  interferometer  for  vibration  compensation  –  Polarimeter  for  fringe  skips  (see  PolPo  below)  

•  Design  Features  –  CO2  laser,  10.6  μm;  CO  laser,  5.7  μm  –  Cu  Corner  cube  retroreflector  (CCR)  in  blankets  

•  Particular  Challenges  –  CCR  thermal  distortion  –  Alignment  issues  

•  Long  beam  path  (50m  round  trip)  •  Large  vibrations    

Δφ =e2λ

4πε0mec2 ne∫ dl

Basic interferometer detects plasma density and vibrations

•  Particular  Challenges  –  Steady-­‐state  radiative  heat  load  

•  operating  temperatures  ~2600°  C  •  design  of  heat  shield  

–  Erosion  issues  •  Distorted  probe  characteristic  •  Uncertain  probe  area  

–  Long  cable  lengths  –  Strong  magnetic  fields  

Reflectometry horn behind blanket

ITER Headquarters building with Experiment Platform in the background

ITER Tokamak

Scaling of ITER relative to previous devices

Heat loads to the Langmuir probes

Retroreflector design

Five TIP laser chords