24
MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE J.N. Abdurashitov, V.N. Gavrin, A.V. Kalikhov, V.L. Matushko, A.A. Shikhin , V.E. Yants and O.S. Zaborskaia Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia International Workshop Topics in Astroparticle & Underground Physics 8 – 12 September 2001 LN Gran Sasso (L’Aquila), Italy

MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Embed Size (px)

DESCRIPTION

MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE. Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia. J.N. Abdurashitov, V.N. Gavrin, A.V. Kalikhov, V.L. Matushko, A.A. Shikhin , V.E. Yants and O.S. Zaborskaia. International Workshop - PowerPoint PPT Presentation

Citation preview

Page 1: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

J.N. Abdurashitov, V.N. Gavrin, A.V. Kalikhov, V.L. Matushko,A.A. Shikhin, V.E. Yants and O.S. Zaborskaia

Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia

International Workshop Topics in Astroparticle & Underground

Physics

8 – 12 September 2001LN Gran Sasso (L’Aquila), Italy

Page 2: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

CONTENTS

• High sensitive spectrometer – brief description• Main performance data• Operation principle• Design• Data acquisition system• Calibration of the spectrometer• Base properties of the spectrometer• The results of fast neutrons flux measurements

in SAGE facilities

Page 3: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Main performance data

• Energy range: 1-15 MeV

• Sensitivity: 10-610-7 n·cm-2·s-1

• Detection efficiency: 0.110.01 (En>1 MeV)

• Energy resolution: ~60%

• Scintillator volume: 30 l

• Sizes: 3636 cm3

• Masse: 50 kg.

Page 4: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Detector structure

•FEATURES:•Liquid scintillator (V=30l):

•CnH2n, =0.84 g/cm3

•L.Y.=40% of anthracene•Counters (19):

•Mixture: 3He+4%Ar•Pressure: 400 kPa

•Geometrical cross section:•6267,5 cm2

Page 5: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Operation principle

• Calorimeter• Combined detector:

– Organic scintillator-thermalizer

– 3He proportional counters

• Delay coincidence technique

• Pulse shape record

Page 6: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Light Yield for NE-213 scintillator

Dependences for:

1. Electrons

2. Single proton

3. Neutron (effective Light Yield)

The main problem:

nonlinear light yield

rough resolution

42.1i

piEA

Page 7: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

General view of the detector

Spectrometer of fast neutrons

Page 8: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Spectrometer of fast neutrons

Typical passive shield(one half of lead brick thickness)

Page 9: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Spectrometer of fast neutrons

Data acquisition system

Page 10: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Data acquisition system

Page 11: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Typical correlated event

Page 12: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Calibration of the PMT channel(60Co source, -lines of 1.17&1.33 MeV)

Page 13: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Calibration of the NC channel(Pu-Be neutron source, 2000 ns-1)

3He + n p + t + 760 keV, Ep=570 keV, Et=190 keV

Page 14: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Time delay distribution for neutron events (Pu-Be source)

Page 15: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Time delay distribution for background events (H2O+BPE shield)

Page 16: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Dependence detector response function on neutron energy (MC simulation)

Page 17: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Response function of the detector (experimental)

14 MeV neutrons source:

D + t + n + 17.6 MeV

• Peak – 87 ch. (5.8 MeV of electron scale)

• Threshold – 4 ch

• Left – scattered neutrons

• Right - saturations

Page 18: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Efficiency dependence on neutron energy(MC simulation)

E= tot(En)=thr(En)(1-out(En))

Page 19: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Dependence between electron and neutron energy scales

Page 20: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Fast neutrons background flux measurements

ConditionsR, s-1

RNC, h-1 RNW, h-1 RTot, h-1 RRand, h-1

RCor, h-1 RCor/E h-1

H2O 2196.4 0.8

29.5 0.5

1.25 0.4

0.070.001

1.25 0.40

11.36 3.78

Mine Rock1400.4

106.4 0.3

46.6 0.2

2.96 0.13

0.29 0.17

1.42 0.45

12.91 4.29

SAGE512 4

74.2 0.2

25.8 0.1

1.93 0.12

1.11 0.17

-0.43 0.45

-3.91 4.11

RTot=RN+RRand+RBkg, RCor=RTot-RRand=RN+RBkg, Rrand=rrwnT

Page 21: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Fast neutrons amplitude

distributions –

mine rock (electron scale)

Page 22: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

Fast neutrons amplitude

distributions –

SAGE main room

(electron scale)

Page 23: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

THE RESULTS OF FAST NEUTRON BACKGROUND FLUX MEASUREMENT AT SAGE

Neutron flux, 10-7cm-2s-1

(1.0–11.0 Energy range, for E=0.110.01)

Internal background of the detector (H2O + Borated Polyethylene shield)

6.52.1

Surrounding mine rock (at 4800 m.w.e.)

7.32.4

SAGE main room 2.3

Page 24: MEASUREMENT OF FAST NEUTRON BACKGROUND IN SAGE

CONCLUSIONS

• The fast neutron spectrometer created with:• high efficiency 11%, 1-11 MeV;

• low internal background high sensitivity 10-7 cm-2·s-1

• n/ discrimination (/n107) without any special technique such as PSD

• Pulse Shape registration.

• Measurements:• n-background for SAGE

• internal background of the detector.

• Possible improvements:• new fast electronics (PMT)

• new NC

• PSD

• new spectrometer (sectioned)!