30
Heat Transfer Derivation of differential equations for heat transfer conduction without convection. By conservation of energy we have:

ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Heat TransferDerivation of differential equations for heat transfer conduction without convection.  By conservation of energy we have:

Page 2: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Where

Ein is the energy entering the control volume, in units of joules (J) or kW *h or Btu.U is the change in stored energy, in units of kW *h (kWh) or Btu.qx is the heat conducted (heat flux) into the control volume at surfaceedge x, in units of kW/m2 or Btu/(h-ft2).qx+dx is the heat conducted out of the control volume at the surface edge x + dx.t is time, in h or s (in U.S. customary units) or s (in SI units).Q is the internal heat source (heat generated per unit time per unit volumeis positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of thevolume, is negative).A is the cross-sectional area perpendicular to heat flow q, in m2 or ft2.

Page 3: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Fourier’s law of heat conduction gives us.

Kxx is the thermal conductivity in the x direction, in kW/(m * C) or Btu/(h‐ft‐F).T is the temperature, in C or F.dT=dx is the temperature gradient, in C/m or F/ft.This equation states that the heat flux in the x direction is proportional to the gradient of temperature in the x direction. The minus sign in the above equation  states heat flow is positive in the direction opposite the direction of temperature increase.

Page 4: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Similar to

The heat flux can be stated as:

Expanding this using a two term Taylor series

gives us:

Page 5: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Substituting the previous equations into

Gives us the 1D heat conduction equation.

For steady‐state this becomes.                                               or  or

Page 6: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

where TB represents a known boundary temperature and S1 is a surface where the temperature is known, and

On an insulated boundary, qx = 0.

Boundary Conditions

Page 7: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Expansion to 2D Conduction no Convection.

Page 8: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

2D Conduction with Convection

For a given control volume we get the Following:

Newton’s law of cooling gives us.

P in above denotes the perimeter around the constant cross-sectional area A.

Page 9: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Divide by Adx/dt, and simplifying, we obtain the equation for 1D heat conduction with convection as:

Equating the heat flow in the solid wall to the heat flow in the fluid at the solid/fluid interface, we have

Page 10: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Units for variables in heat transfer.

Page 11: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Heat conduction coefficients

Heat transfer coefficients

Page 12: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Shape (interpolation) functions

Page 13: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer
Page 14: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

The total potential energy is given by.

Minimization gives you.

Page 15: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

where

Page 16: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

{fQ}  is a heat source (positive, sink negative) is analogous to a body‐force, and {fq} is heat flux, (positive into the surface) and {fh) is heat transfer or convection) are similar to surface tractions (distributed loading).

[k] can be given by

Page 17: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

So.

The convection part becomes.

Integrating.

Page 18: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Total  element stiffness matrix becomes.

The force terms are as follows.

Page 19: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

The convection at the free end of an element gives us.

Or

But S3 (the surface over which convection occurs) now equal tothe cross‐sectional area A of the rod. 

Page 20: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Direct assembly of globa K matrix is the same as for structural problems.

The global force matrix is given by. kW or Btu/h                    kW or Btu/h

The global equation is 

Solve for the Nodal Temperatures. 

Then solve for the element temperature gradients and heat fluxes.

kW/oC or Btu/(h‐oF).

Page 21: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer
Page 22: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Conduction terms:

Element 4 has a convection from heat loss from the flat surface at the right end.

Page 23: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Collect global force terms.

In this example, there is no heat source (Q = 0)  or heat flux (q = 0) and the only convection is at the right end.

On the element level.

Page 24: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Apply boundary condition F1 = 100.

Solve for temps.

Page 25: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Apply boundary condition F1 = 100.

Page 26: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Next Example. one‐dimensional rod, determine the temperatures at 3‐in. increments along the length of the rod and the rate of heat flow through element 1. Let Kxx = 3 Btu/(h-in.-F), h = 1.0 Btu/(h-in2-F),  and . 

The temperature at the left end of the rod is constant at 200 F.

Page 27: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Element stiffness matrices

Page 28: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Element 3 has an additional (convection) term owing to heat loss from the exposed surface at its right end.

Loading Q = 0, q = 0, and 

Page 29: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

The known nodal temperature boundary condition of t1=200 F.

(200)4 = 800 , ‐0.5(200)4 = ‐400 ,

200o F

Page 30: ME 478 Introduction to Finite Element Analysisfaculty.washington.edu/averess/ME478/heat_transfer.pdf · Units for variables in heat transfer. Heat conduction coefficients Heat transfer

Solve for the temperatures.

Determine the heat flux through element 1.

Determine the rate of heat flow  by multiplying above by cross‐sectional area.