MD1-0-V-360-07-00725_0

  • Upload
    hatot

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 8/10/2019 MD1-0-V-360-07-00725_0

    1/19

    A 31/01/2013 Issued for approval Pezzoni Brambilla Di Poi

    REV. DATE DESCRIPTION DSGN CHKD APPD

    SUB-CONTRACTORS DOCUMENT NUMBER: 0280725

    A Issued for approval

    REV. DATE DESCRIPTION DSGN CHKD APPD

    PROJECT :

    TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

    EMPLOYER :

    CONSULTANT :

    CONTRACTOR : SUB-CONTRACTOR :

    DESIGNED BY DATE TITLE :

    ROOF SLAB -CALCULATION REPORTCHECKED BY DATE

    APPROVED BY DATE PROJECT NUMBER DOCUMENT NUMBER REV.

    ADB/MD1-TPIP/EPC150911 MD1-0-V-360-07-00725 A

  • 8/10/2019 MD1-0-V-360-07-00725_0

    2/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 2 di 19

    CRI 0280725 rev.A 31.01.2013

    CONTENTS

    1.0 INTRODUCTION ........................................................................................... 3

    1.1

    Description ..................................................................................................... 3

    1.2 References .................................................................................................... 4

    1.3 Basic design standards .................................................................................. 4

    1.4 Materials ........................................................................................................ 4

    2.0 LOAD ANALYSIS .......................................................................................... 4

    3.0 CHECK OF CORRUGATED SHEET DURING CONSTRUCTION ................ 5

    3.1 Two simple supports beam (case A) .............................................................. 5

    3.2 Three simple supports beam with asymmetric load (case B) ......................... 6

    3.3 Conclusion ..................................................................................................... 7

    3.4 Check of stress .............................................................................................. 8

    3.5 Check of deflection ........................................................................................ 8

    4.0 CHECK OF CONCRETE SLAB .................................................................... 8

    4.1 Check of stress Positive bending moment .................................................. 9

    4.2 Check of stress Negative bending moment .............................................. 10

    4.3 Check of stress Shear................................................................................ 11

    ATTACHMENTS:

    ATTACHMENT 1: STEEL DECK DATA SHEET

    ATTACHMENT 2: BENDING MOMENT FOR ASYMMETRIC LOAD

    ATTACHMENT 3: BENDING MOMENT FOR SYMMETRIC LOAD

  • 8/10/2019 MD1-0-V-360-07-00725_0

    3/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 3 di 19

    CRI 0280725 rev.A 31.01.2013

    1.0 INTRODUCTION

    1.1 Description

    The steel liners support platform consists of a two level steel frame supported by the

    concrete shell. The design of the mentioned frame is described in a separate report (pleaserefer to MD1-0-V-360-52-00120).

    The upper level of the frame at el. +213.500 m (T.O.S.) is supporting a roof slab, which

    consists of a reinforced concrete slab protected by an acid resistant coating and tiles.

    The present report is relevant to the design of the concrete slab, which is considered as a

    simple load for the design of the lower steel structure, since not connected.

    The concrete slab will be cast using steel forms as follow:

    corrugated steel sheets 1.0 mm thick in the areas between the main beams of the

    steel structure and the concrete shell

    flat steel plates 5.0 mm thick in the areas around the steel liners

    The arrangement of the roof slab is shown in fig. 1:

    Fig. 1 Roof slab arrangement

  • 8/10/2019 MD1-0-V-360-07-00725_0

    4/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 4 di 19

    CRI 0280725 rev.A 31.01.2013

    The present reports includes the following:

    design of corrugated sheets during construction

    design of concrete slab on corrugated sheets

    No calculation is provided for the concrete slab around the liners due to the very limited

    span length. The reinforcement in this area will consist of an upper and lower steel square

    mesh D10 at 240 mm centers.

    1.2 References

    Dwg. MD1-0-V-360-01-00001 Chimneys General Layout

    Dwg. MD1-0-V-360-52-00120 Roof slab General Arrangement and Details

    1.3 Basic design standards

    The design of the roof slab has been carried out according to the ACI 318-08 Building

    Code Requirements for Reinforced Concrete standard.

    1.4 Materials

    For the construction of the reinforced concrete slab the following materials will be used.

    1.4.1 Reinforcement

    Class (beams) ASTM A615M Gr. 420

    Specified minimum yield stress Fy= 420 N/mm2

    Modulus of elasticity E = 200000 N/mm2

    1.4.2 Concrete

    Cylindrical compression strenght fc= 28 N/mm2

    Compressive stress limit = 0.45 fc= 12.6 N/mm2Shear stress limit = 1.2 = 6.35 N/mm2Modulus ratio n = 8

    1.4.3 Corrugated steel sheet

    Class of structural steel ASTM A659 Gr. 80 or equivalent

    Specified minimum yield stress Fy= 550 N/mm2

    2.0 LOAD ANALYSIS

    Concrete D1= 4.1 kN/m2

    Corrugated sheet D2= 0.1 kN/m2

    Tile flooring D3= 0.6 kN/m2

    Live load L = 1.0 kN/m2

  • 8/10/2019 MD1-0-V-360-07-00725_0

    5/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 5 di 19

    CRI 0280725 rev.A 31.01.2013

    Combining factored loads

    Load combination 1 (COMB 1) 1.2 DEAD + 1.6 L

    3.0 CHECK OF CORRUGATED SHEET DURING CONSTRUCTION

    The corrugated sheets are supported by the secondary steel structure of the roof. The

    cross section is shown in fig. 2.

    Fig. 2 Corrugated sheet cross section

    The total load during the construction phase is equal to:

    1.2 D + 1.6 L = 1.2 (D1+ D2) + 1.6 L = 1.2 (4.1 + 0.1) + 1.6 x 1.0 = 6.64 kN/m2

    The live load is representing the load due to the personnel working and equipment required

    for the concreting activities.

    A unit width of slab (1 m) is considered in the following calculations.

    The uniformly distributed load is then:

    p = 6.64 kN/m2x 1.0 m = 6.64 kN/m

    Three load cases are considered for the check:

    Case A: two simple supports beam (par. 3.1)

    Case B: three simple supports beam with asymmetric load (par. 3.2.1)

    Case B2: three simple supports beam with symmetric load (par. 3.2.2)

    3.1 Two simple supports beam (case A)

    Fig. 3 Corrugated sheet cross section

  • 8/10/2019 MD1-0-V-360-07-00725_0

    6/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 6 di 19

    CRI 0280725 rev.A 31.01.2013

    The max. positive bending moment is equal to:

    M

    8 6.641.775

    8 2.62 N

    3.2 Three simple supports beam with asymmetric load (case B)

    Two load distribution are considered for this case, depending on whether the load is

    symmetric or not.

    3.2.1 Load case B1: asymmetric load

    Fig. 4 Load case B1 load scheme and bending moment distribution

    The maximum bending moments are calculated throughout a straight-line interpolation of

    the values contained in the Attachment 2 Bending moment for asymmetric load.

    1775

    1725 0.972Negative bending moment at node 1:M M 0.06336.641.775 1.32 NSupport reaction at node 2:

    0.4376.641.775 5.150 NThe bending moment in SPAN II is given by (x = distance from node 2):

    M

    2

    The location of the maximum value of bending moment is calculated by setting the first

  • 8/10/2019 MD1-0-V-360-07-00725_0

    7/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 7 di 19

    CRI 0280725 rev.A 31.01.2013

    derivative (shear force) equal to zero:

    0

    5.150

    6.64 0.775

    M M M0.775 5.150 0.775 6.640.7752 1.997 N3.2.2 Load case B2: symmetric load

    Fig. 5 Load case B2 load scheme and bending moment distribution

    The maximum bending moments are calculated throughout a straight-line interpolation of

    the values contained in the Attachment 3 Bending moment for symmetric load.

    1775 1725 0.972Negative bending moment at node 1:

    M M 0.121 6.64 1.775 2.531 NMax bending moment in span I

    M 0.066 6.64 1.775 1.381 NMax bending moment in span II

    M M 0.072 6.64 1.775 1.506 N3.3 Conclusion

    Considering all three cases, the maximum bending moments are:

  • 8/10/2019 MD1-0-V-360-07-00725_0

    8/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 8 di 19

    CRI 0280725 rev.A 31.01.2013

    M M 2.531 NM M 2.620 N

    3.4 Check of stress

    The section modulus and material properties can be found in Attachment 1 Steel deck data

    sheet, for the 1.0 mm thickness case.

    22206 M2.6201022206 118.0 N/ 550.0 /

    3.5 Check of deflection

    5.2 N/ (distributed load in operating conditions)J 526562.5 5384 EJ 5384 5.21775200000526562.5 6.38 The deflection is lower than the common practice recommended value of 1/200 of the span

    (which is equal to 8.88 mm).

    4.0 CHECK OF CONCRETE SLAB

    The typical cross section of the slab cast on the corrugated sheets has shown in Fig. 6.

    Fig. 6 - Roof slab cross section

    The design of the roof slab cast on corrugated sheets has ben carried out considering a T-

    Shaped beam having a width of 240 mm as shown in fig. 7.

  • 8/10/2019 MD1-0-V-360-07-00725_0

    9/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 9 di 19

    CRI 0280725 rev.A 31.01.2013

    Fig. 7 - T-beam cross section

    The total load during the operation phase is equal to:

    1.2 D D D 1.6 L 1.2 4.1 0.1 0.6 1.6 1.0 7.36 N/The uniformly distributed load is then:

    7.36N 0.240 1.77 N/The beam, considering the same above load cases, is subject to the following maximum

    bending moments:

    Maximum positive bending moment:

    M

    8 1.771.775

    8 0.70 NMaximum negative bending moment:

    M 0.121 1.77 1.775 0.67 N4.1 Check of stress Positive bending moment

    The check of the stress due to the positive bending moment has been carried out

    considering the T-shaped beam shown in the previous figure.

    The contribution of the corrugated steel sheet is not considered for the check. It is alsoassumed that the neutral axis lean within the upper part of the slab (y < 99 mm).

    240 120 150 25 125 25

    A 78.5

    A 78.5

  • 8/10/2019 MD1-0-V-360-07-00725_0

    10/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 10 di 19

    CRI 0280725 rev.A 31.01.2013

    A AA A 1125 78.5 25 78.578.578.5 1125 0.60

    A A 78.5 78.5150120 0.0087

    1 1 2 8 0.0087 125 1 1 20.608 0.0087 28.46 99

    J 3 A A

    120 28.463 8 78.5 125 28.46 8 78.5 28.46 25 6.78 10M J 0.70 10 28.466.7810 2.93 N 12.6 N/ M J 8 0.70 1012528.466.7810 79.74 N/ 165.0 /

    4.2 Check of stress Negative bending moment

    The check of the stress due to the negative bending moment has been carried out

    considering the following simplifications (conservative approach):

    The D10 square mesh is not taken into account

    A beam rectangular section having a width equal to 120 mm has been used for the

    calculation

    120 150 25 125 25 A AA A 1125 78.5 25 78.578.578.5 1125 0.60A A 78.5 78.5150120 0.0087

    1 1 2 8 0.0087 125 1 1 20.608 0.0087 28.46

  • 8/10/2019 MD1-0-V-360-07-00725_0

    11/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 11 di 19

    CRI 0280725 rev.A 31.01.2013

    J 3 A A

    120 28.46

    3 8 78.5 125 28.46 8 78.5 28.46 25 6.78 10M J 0.67 10 28.466.7810 2.81 N 12.6 N/ M J 8 0.67 10 125 28.466.7810 76.32 N 165.0

    4.3 Check of stress Shear

    The maximum shear stress is located at the supports and is equal to: 2 1.771.7752 1.571 N 0.9 0.9 150 25 112 120 1.5711000120112 0.117 N/ 6.35 /

  • 8/10/2019 MD1-0-V-360-07-00725_0

    12/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 12 di 19

    CRI 0280725 rev.A 31.01.2013

    ATTACHMENT 1: STEEL DECK DATA SHEET

  • 8/10/2019 MD1-0-V-360-07-00725_0

    13/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 13 di 19

    CRI 0280725 rev.A 31.01.2013

  • 8/10/2019 MD1-0-V-360-07-00725_0

    14/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 14 di 19

    CRI 0280725 rev.A 31.01.2013

  • 8/10/2019 MD1-0-V-360-07-00725_0

    15/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 15 di 19

    CRI 0280725 rev.A 31.01.2013

  • 8/10/2019 MD1-0-V-360-07-00725_0

    16/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 16 di 19

    CRI 0280725 rev.A 31.01.2013

  • 8/10/2019 MD1-0-V-360-07-00725_0

    17/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 17 di 19

    CRI 0280725 rev.A 31.01.2013

  • 8/10/2019 MD1-0-V-360-07-00725_0

    18/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 18 di 19

    CRI 0280725 rev.A 31.01.2013

    ATTACHMENT 2: BENDING MOMENT FOR ASYMMETRIC LOAD

  • 8/10/2019 MD1-0-V-360-07-00725_0

    19/19

    Doc. no. MD1-0-V-360-07-00725 REV. APag. 19 di 19

    CRI 0280725 rev A 31 01 2013

    ATTACHMENT 3: BENDING MOMENT FOR SYMMETRIC LOAD