62
H-matrix theory and applications Maja Nedović University of Novi Sad, Serbia joint work with Ljiljana Cvetković MatTriad 2015, Coimbra

MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

H-matrix theory and applications

Maja Nedović University of Novi Sad, Serbia

joint work with Ljiljana Cvetković

MatTriad 2015, Coimbra

Page 2: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Contents !   H-matrices and SDD-property

•  Benefits from H-subclasses

!   Breaking the SDD

•  Additive and multiplicative conditions

•  Partitioning the index set

•  Recursive row sums

•  Nonstrict conditions

Page 3: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

H-matrices and SDD-property A complex matrix A=[aij]nxn is an SDD-matrix if for each i from N it holds that aii > ri A( ) = aij

j∈N , j≠i∑

Lev Lévy-Desplanques: nonsingular

Deleted row sums

Page 4: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

H-matrices and SDD-property A complex matrix A=[aij]nxn is an SDD-matrix if for each i from N it holds that

Lev

A complex matrix A=[aij]nxn is an H-matrix if and only if there exists a diagonal nonsingular matrix W such that AW is an SDD matrix.

aii > ri A( ) = aijj∈N , j≠i∑

Page 5: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

H-matrices and SDD-property A complex matrix A=[aij]nxn is an SDD-matrix if for each i from N it holds that

HH

SDD

H aii > ri A( ) = aij

j∈N , j≠i∑

Page 6: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

H-matrices and SDD-property A complex matrix A=[aij]nxn is an SDD-matrix if for each i from N it holds that

HH

SDD

H

?

aii > ri A( ) = aijj∈N , j≠i∑

Page 7: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Subclasses of H-matrices & diagonal scaling characterizations Benefits: 1.  Nonsingularity result covering a wider matrix class 2.  A tighter eigenvalue inclusion area (not just for the observed class) 3.  A new bound for the max-norm of the inverse for a wider matrix class 4.  A tighter bound for the max-norm of the inverse for some SDD matrices 5.  Schur complement related results (closure and eigenvalues) 6.  Convergence area for relaxation iterative methods 7.  Sub-direct sums 8.  Bounds for determinants

Page 8: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Breaking the SDD

SDD Additive and multiplicative

conditions

Partitioning the index set

Recursive row sums

Non-strict conditions

Page 9: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Breaking the SDD

SDD Additive and multiplicative

conditions

Partitioning the index set

Recursive row sums

Non-strict conditions

Page 10: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Breaking the SDD

SDD Additive and multiplicative

conditions

Partitioning the index set

Recursive row sums

Non-strict conditions

Page 11: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Breaking the SDD

SDD Additive and multiplicative

conditions

Partitioning the index set

Recursive row sums

Non-strict conditions

Page 12: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Breaking the SDD

SDD Additive and multiplicative

conditions

Partitioning the index set

Recursive row sums

Non-strict conditions

Ostrowski, Pupkovi

Ostrowski, A. M. (1937), Pupkov, V. A. (1983), Hoffman, A.J. (2000), Varga, R.S. : Geršgorin and his circles (2004)

Page 13: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Breaking the SDD

SDD Additive and multiplicative

conditions

Partitioning the index set

Recursive row sums

Non-strict conditions

Ostrowski, Pupkovi

S-SDD, PH

Gao, Y.M., Xiao, H.W. (1992), Varga, R.S. (2004), Dashnic, L.S., Zusmanovich, M.S. (1970), Kolotilina, l. Yu.(2010), Cvetković, Lj., Nedović, M. (2009), (2012), (2013).

Page 14: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Breaking the SDD

SDD Additive and multiplicative

conditions

Partitioning the index set

Recursive row sums

Non-strict conditions

Ostrowski, Pupkovi

S-SDD, PH

Mehmke, R., Nekrasov, P. (1892), Gudkov, V.V. (1965), Szulc, T. (1995), Li, W. (1998), Cvetković, Lj., Kostić, V., Nedović, M. (2014).

Nekrasov-matrices

Page 15: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Breaking the SDD

SDD Additive and multiplicative

conditions

Partitioning the index set

Recursive row sums

Non-strict conditions

Ostrowski, Pupkovi

S-SDD, PH

O. Taussky (1948), Beauwens (1976), Szulc,T. (1995), Li, W. (1998), Varga, R.S. (2004) Cvetković, Lj., Kostić, V. (2005)

Nekrasov-matrices

IDD, CDD S-IDD, S-CDD

Page 16: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Breaking the SDD

SDD Additive and multiplicative

conditions

Partitioning the index set

Recursive row sums

Non-strict conditions

Ostrowski, Pupkovi

S-SDD, PH

O. Taussky (1948), Beauwens (1976), Szulc,T. (1995), Li, W. (1998), Varga, R.S. (2004) Cvetković, Lj., Kostić, V. (2005)

Nekrasov-matrices

IDD, CDD S-IDD, S-CDD

H

Page 17: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

( ) ( )ArAraa jijjii >

I Additive and multiplicative conditions

( )

( ) ( )ArAraa

Araa

jijjii

ijiijii

+>+

> ≠ }},{min{max

Ostrowski-matrices multiplicative condition:

Pupkov-matrices additive condition:

Ostrowski, A. M. (1937), Pupkov, V. A. (1983), Hoffman, A.J. (2000), Varga, R.S. : Geršgorin and his circles (2004)

Page 18: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

II Partitioning the index set

( ) SiaAraijSjij

Siii ∈=> ∑

≠∈

,,

( )( ) ( )( ) ( ) ( )SjSi

ArArAraAra Sj

Si

Sjjj

Siii

∈∈

>−−

,

,

S

S

S-SDD-matrices Given any complex matrix A=[aij]nxn and given any nonempty proper subset S of N, A is an S-SDD matrix if

Gao, Y.M., Xiao, H.W. LAA (1992)

Cvetković, Lj., Kostić, V., Varga, R. ETNA (2004)

Page 19: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

!   A matrix A=[aij]nxn is an S-SDD matrix iff there exists a matrix W in Ws such that AW is an SDD matrix.

( )⎭⎬⎫

⎩⎨⎧

∈=∈>=== SiforwandSiforwwwwdiagW iinS 10:,...,, 21 γW

S

N\S 1

SDD

γ

γ

1

1

. .

..

S-SDD-matrices

II Partitioning the index set

Page 20: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Diagonal scaling characterization & Scaling matrices

S

N\S 1

SDD

γ

γ

1

1

..

..

We choose parameter from the interval:

( ) ( )( ),, 21 AAI γγγ =

( ) ( )( ),max0 1 Ara

ArA Siii

Si

Si −=≤

∈γ ( )

( )( )

.min2 ArAra

A Sj

Sjjj

Sj

−=

∈γ

Page 21: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Diagonal scaling characterization & Scaling matrices

SDD

S-SDD

Page 22: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Diagonal scaling characterization & Scaling matrices

SDD

S-SDD γ

γ

γ

γγ

γγ

T-SDD

Page 23: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Diagonal scaling characterization & Scaling matrices

SDD

S-SDD γ

γ

γ

γγ

γγ

T-SDD ∑-SDD

Page 24: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Diagonal scaling characterization & Scaling matrices

SDD γ

γ

γ

γγ

γγ

∑-SDD

Page 25: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Eigenvalue localization

( ) ( ){ } ,,: SiArazCzA Siii

Si ∈≤−∈=Γ

( ) ( )( ) ( )( ) ( ) ( ){ }.,

,:

SjSi

ArArArazArazCzAV Sj

Si

Sjjj

Siii

Sij

∈∈

≤−−−−∈=

( ) ( ) ( ) ( ) .,

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛Γ=⊆

∈∈∈ SjSi

Sij

Si

Si

S AVAACAσ

Cvetković, L., Kostić, V., Varga R.S.: A new Geršgorin-type eigenvalue inclusion set ETNA, 2004.

Varga R.S.: Geršgorin and his circles, Springer, Berlin, 2004.

Page 26: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Schur complement

0 Schur

The Schur complement of a complex nxn matrix A, with respect to a proper subset α of index set N={1, 2,…, n}, is denoted by A/ α and defined to be: ( ) ( ) ( )( ) ( )αααααα ,, 1AAAA −−

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

Page 27: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Schur complement

0 Schur

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

SDD

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979), 246-251.

Page 28: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Schur complement

0 Schur

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

SDD

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979), 246-251.

Page 29: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Schur complement

0 Schur

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

Ostr

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979)

Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997)

Page 30: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Schur complement

0 Schur

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

Ostr

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979)

Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997)

Page 31: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Schur complement

0 Schur

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

$

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979)

Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997)

Zhang, F. : The Schur complement and its applications, Springer, NY, (2005).

Page 32: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Schur complement

0 Schur

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

$

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979)

Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997)

Zhang, F. : The Schur complement and its applications, Springer, NY, (2005).

Page 33: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Schur complements of S-SDD

0 Schur

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

∑-SDD

Cvetković, Lj., Kostić, V., Kovačević, M., Szulc, T. : Further results on H-matrices and their Schur complements. AMC (2008)

Liu, J., Huang, Y., Zhang, F. : The Schur complements of generalized doubly diagonally dominant matrices. LAA (2004)

Page 34: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Schur complements of S-SDD

0 Schur

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

∑-SDD

Cvetković, Lj., Kostić, V., Kovačević, M., Szulc, T. : Further results on H-matrices and their Schur complements. AMC (2008)

Liu, J., Huang, Y., Zhang, F. : The Schur complements of generalized doubly diagonally dominant matrices. LAA (2004)

Page 35: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Schur complements of S-SDD

Cvetković, Lj., Kostić, V., Kovačević, M., Szulc, T. : Further results on H-matrices and their Schur complements. AMC (2008)

Theorem2. Let A=[aij]nxn be an S-SDD matrix. Then for any nonempty proper subset α of N such that S is a subset of α or N\S is a subset of α, A/ α is an SDD matrix.

Theorem1. Let A=[aij]nxn be an ∑-SDD matrix. Then for any nonempty proper subset α of N, A/ α is also an ∑-SDD matrix. More precisely, if A is an S-SDD matrix, then A/ α is an (S\ α)-SDD matrix.

Cvetković, Lj., Nedović, M. : Special H-matrices and their Schur and diagonal-Schur complements. AMC (2009)

Page 36: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Eigenvalues of the SC

σ A( )⊆ Γ A( ) = Γi A( )i∈N =

i∈N z ∈C : z− aii ≤ ri A( ) = aij

j∈N \ i{ }∑

'()

*)

+,)

-)

( )αA ( )αα,A

( )αα ,A ( )αA

( )ασλ /A∈

Liu, J., Huang, Z., Zhang, J. : The dominant degree and disc theorem for the Schur complement. AMC (2010)

SDD

Page 37: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

( )( ),max

AraAr

iii

i

i α

α

αγ

−>

( ) ( )( ) ( )

( ) ( ).

,// 11

ArArR

AWWAWWA

jjj

jj

αα

α

γ

ασασ

+=

Γ⊆=∈

−−

., α=−∈ SSDDSA

Eigenvalues of the SC of S-SDD

Cvetković, Lj., Nedović, M. : Eigenvalue localization refinements for the Schur complement. AMC (2012)

-­‐ 50 0 50

-­‐ 50

0

50

-­‐ 50 0 50

-­‐ 50

0

50

Weighted Geršgorin set for the Schur complement matrix

Cvetković, Lj., Nedović, M. : Diagonal scaling in eigenvalue localization for the Schur complement. PAMM (2013)

Page 38: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Eigenvalues of the SC

!   Let A be an SDD matrix with real diagonal entries and let α be a proper subset of N. Then, A/α and A(N\α) have the same number of eigenvalues whose real parts are greater (less) than w (resp. -w), where

( ) ( ) ( ) ( )⎥⎥⎦

⎢⎢⎣

⎡ −+−=

∈∈Ar

aAra

AraAw jii

iii

ijjjj

α

ααminmin

Liu, J., Huang, Z., Zhang, J. : The dominant degree and disc theorem for the Schur complement. AMC (2010)

0 SC

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

Page 39: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

!   Let A be an S-SDD matrix with real diagonal entries and let α be a proper subset of N. Then, A/ α and A(N\α) have the same number of eigenvalues whose real parts are greater (less) than w (resp. -w), where

( )AWWww 1−=

Eigenvalues of the SC of S-SDD

Cvetković, Lj., Nedović, M. : Eigenvalue localization refinements for the Schur complement. AMC (2012)

Remarks:

• This result covers a wider class of matrices.

• By changing the parameter in the scaling matrix we obtain more vertical bounds with the same separating property.

• We can apply it to an SDD matrix, observing that it belongs to T-SDD class for any T subset of N.

Page 40: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

0 SC

( )αA ( )αα,A

( )αα ,A ( )αA

( )αA ( )αα,A

Eigenvalues of the SC of S-SDD

Page 41: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Dashnic-Zusmanovich

Dashnic, L. S., Zusmanovich, M.S.: O nekotoryh kriteriyah regulyarnosti matric i lokalizacii spectra. Zh. vychisl. matem. i matem. fiz. (1970)

Dashnic, L. S., Zusmanovich, M.S.: K voprosu o lokalizacii harakteristicheskih chisel matricy. Zh. vychisl. matem. i matem. fiz. (1970)

A matrix A=[aij]nxn is a Dashnic-Zusmanovich (DZ) matrix if there exists an index i in N such that

( )( ) ( ) .,, NjijaAraAraa jiijijjjii ∈≠>+−

1 SDD

γ

1

1 . .

Page 42: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

PH-matrices

Kolotilina, L. Yu. : Diagonal dominance characterization of PM- and PH-matrices. Journal of Mathematical Sciences (2010)

n x n

l x l

Aggregated matrices

lSSS ,...,,: 21π

Page 43: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

PH-matrices

Kolotilina, L. Yu. : Diagonal dominance characterization of PM- and PH-matrices. Journal of Mathematical Sciences (2010)

**

* *

Page 44: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Nekrasov matrices

!   A complex matrix A=[aij]nxn is SDD-matrix if for each i from N it holds that

!   A complex matrix A=[aij]nxn is a Nekrasov-matrix if for each i from N it holds that

( ) ( )ArAd >

( ) ( ) ( )

( )( )

.,...,3,2,

,,

1

1

1

11

niaaAh

aAh

ArAhAhan

ijij

jj

ji

jiji

iii

=+=

=>

∑∑+=

=

( ) ∑≠∈

=>ijNjijiii aAra

,

( ) ( )AhAd >

ULDA −−=

Page 45: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Nekrasov matrices

A complex matrix A=[aij]nxn is a Nekrasov-matrix if for each i from N it holds that

( ) ( ) ( )

( )( )

.,...,3,2

,

,,

1

1

1

11

ni

aaAh

aAh

ArAhAhan

ijij

jj

ji

jiji

iii

=

+=

=>

∑∑+=

=

( ) ( )AhAd > ULDA −−=

Nekrasov row sums

Page 46: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Nekrasov matrices and scaling

Theorem. Let A=[aij]nxn be a Nekrasov matrix with nonzero Nekrasov row sums. Then, for a diagonal positive matrix D where

( ) ,,,1, niaAhdii

iii …== ε

and is an increasing sequence of numbers with ( )nii 1=ε

( ),,,2,,1,11 ni

Aha

i

iii …=⎟⎟

⎞⎜⎜⎝

⎛∈= εε

the matrix AD is an SDD matrix.

Szulc, T., Cvetković, Lj., Nedović, M. : Scaling technique for Nekrasov matrices. AMC (2015) (in print)

Page 47: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Nekrasov matrices and permutations

ULDA −−=

!   Unlike SDD and H, Nekrasov class is NOT closed under

similarity (simultaneous) permutations of rows and columns!

!   Given a permutation matrix P, a complex matrix A=[aij]nxn is called

P-Nekrasov if

•  The union of all P-Nekrasov=

Gudkov class

( ) ( )( ) ( ).

,,

APPhAPPd

NiAPPhAPPTT

Tiii

T

>

∈>

Page 48: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

{P1,P2} – Nekrasov matrices

!   Suppose that for the given matrix A=[aij]nxn and two given permutation matrices P1 and P2

We call such a matrix {P1,P2} – Nekrasov matrix.

A A1 A2

( ) ( ) ( ){ } ( ) ( ) .2,1,,,min 21 ==> kAPPhPAhAhAhAd kTkk

PPP k

Page 49: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

{P1,P2} – Nekrasov matrices

o  Theorem1. Every {P1, P2} – Nekrasov matrix is nonsingular.

o  Theorem2. Every {P1, P2} – Nekrasov matrix is an H – matrix.

o  Theorem3. Given an arbitrary set of permutation matrices

every Пn – Nekrasov matrix is nonsingular, moreover, it is an H – matrix.

{ }pkkn P 1==Π

Cvetković, Lj., Kostić, V., Nedović, M. : Generalizations of Nekrasov matrices and applications. (2014)

Page 50: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Max-norm bounds for the inverse of {P1,P2} – Nekrasov matrices

o  Theorem1. Suppose that for a given set of permutation matrices {P1, P2}, a complex matrix A=[aij]nxn, n>1, is a {P1, P2} – Nekrasov matrix. Then,

where

( ) ( )

( ) ( ),

,min1min

,minmax

21

21

1

⎥⎥⎦

⎢⎢⎣

⎭⎬⎫

⎩⎨⎧

⎥⎥⎦

⎢⎢⎣

⎭⎬⎫

⎩⎨⎧

ii

Pi

ii

Pi

Ni

ii

Pi

ii

Pi

Ni

aAh

aAh

aAz

aAz

A

( ) ( ) ( )( )

( ) ( ) ( )[ ] ( ) ( ).,,,

,,...,3,2,1,

1

1

111

APPPzAzAzAzAz

niaAz

aAzArAz

TPTn

jj

ji

jiji

==

=+== ∑−

=

Cvetković, Lj., Kostić, V., Nedović, M. : Generalizations of Nekrasov matrices and applications. (2014)

Page 51: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

o  Theorem2. Suppose that for a given set of permutation matrices {P1, P2}, a complex matrix A=[aij]nxn, n>1, is a {P1, P2} – Nekrasov matrix. Then,

A−1

∞≤

maxi∈N

min ziP1 A( ), ziP2 A( ){ }%

&'(

mini∈N

aii −min hiP1 A( ),hiP2 A( ){ }%

&'(,

( ) ( ) ( )( )

( ) ( ) ( )[ ] ( ) ( ).,,,

,,...,3,2,1,

1

1

111

APPPzAzAzAzAz

niaAz

aAzArAz

TPTn

jj

ji

jiji

==

=+== ∑−

=

Max-norm bounds for the inverse of {P1,P2} – Nekrasov matrices

Cvetković, Lj., Kostić, V., Nedović, M. : Generalizations of Nekrasov matrices and applications. (2014)

Page 52: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Numerical examples

o  Observe the given matrix B and permutation matrices P1 and P2.

o  Notice that B is a Nekrasov matrix.

Cvetković, Lj., Kostić, V., Doroslovački, K. : Max-norm bounds for the inverse of S-Nekrasov matrices. (2012)

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) .4464.40,857.117,25.101,45

,25.41,607.116,25.101,45

,,

0010100001000001

,

451515151512060600451057515151560

2222

1111

4321

4321

21

====

====

=

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

−−−

−−

−−−

=

BhBhBhBh

BhBhBhBh

IPPB

PPPP

PPPP

Page 53: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

o  Observe the given matrix B and permutation matrices P1 and P2.

Numerical examples

.6843.0

968421.0

76842.1

,,

0010100001000001

,

451515151512060600451057515151560

1

1

1

21

=

=

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

−−−

−−−

−−

−−−

=

B

B

B

IPPB

Although the given matrix IS a Nekrasov matrix, in this way we obtained a better bound for the norm of the inverse.

Page 54: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

∑– Nekrasov matrices

•  Given any matrix A and any nonempty proper subset S of N we say that A is an S-Nekrasov matrix if

( ) ,, SiAha Siii ∈>

( ) ,, SjAha Sjjj ∈>

( )( ) ( )( ) ( ) ( ) .,, SjSiAhAhAhaAha Sj

Si

Sjjj

Siii ∈∈>−−

( ) ( )ArAh SS11 =

( )( )

∑∑∈+=

=

+=n

Sjijij

jj

Sj

i

jij

Si a

aAh

aAh,1

1

1

•  If there exists a nonempty proper subset S of N such that A is an S-Nekrasov matrix, then we say that A belongs to the class of ∑-Nekrasov matrices.

Page 55: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

∑– Nekrasov matrices

Cvetković, Lj., Kostić, V., Rauški, S. : A new subclass of H-matrices. AMC (2009)

( )⎭⎬⎫

⎩⎨⎧

∈=∈>=== SiforwandSiforwwwwdiagW iinS 10:,...,, 21 γW

S

N\S 1

Nekrasov

γ

γ

1

1

. .

..

Page 56: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

∑– Nekrasov matrices

Szulc, T., Cvetković, Lj., Nedović, M. : Scaling technique for Nekrasov matrices. AMC (2015) (in print)

Cvetković, Lj., Nedović, M. : Special H-matrices and their Schur and diagonal-Schur complements. AMC (2009)

Cvetković, Lj., Kostić, V., Rauški, S. : A new subclass of H-matrices. AMC (2009)

Page 57: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Nonstrict conditions

( ) .,...,2,1, niAra iii =≥

DD - matrices

( )Ara kkk >

irreducibility

for one k in N

Olga Taussky (1948)

IDD-matrices ( ) .,...,2,1, niAra iii =≥

( )Ara kkk > for one k in N

non-zero chains

T. Szulc (1995)

CDD-matrices

Page 58: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Nonstrict conditions

( ) .,...,2,1, niAra iii =≥

DD - matrices

( )Ara kkk >

irreducibility

for one k in N

Olga Taussky (1948)

IDD-matrices ( ) .,...,2,1, niAra iii =≥

( )Ara kkk > for one k in N

non-zero chains

T. Szulc (1995)

CDD-matrices

Li, W. : On Nekrasov matrices. LAA (1998)

Page 59: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Nonstrict conditions

S-IDD Given an irreducible complex matrix A=[aij]nxn, if there is a nonempty proper subset S of N such that the following conditions hold, where the last inequality becomes strict for at least one pair of indices i in S and j in N\S, then A is an H-matrix.

( ) SiaAraijSjij

Siii ∈=≥ ∑

≠∈

,,

( )( ) ( )( ) ( ) ( ) .,, SjSiArArAraAra Sj

Si

Sjjj

Siii ∈∈≥−−

Cvetković, Lj., Kostić, V. : New criteria for identifying H-matrices. JCAM (2005)

Page 60: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Nonstrict conditions

S-CDD Given a complex matrix A=[aij]nxn, if there is a nonempty proper subset S of N such that the following conditions hold, where the last inequality becomes strict for at least one pair of indices i in S and j in N\S, and for every pair of indices i in S and j in N\S for which equality holds there exists a pair of indices k in S and l in N\S for which strict inequality holds and there is a path from i to l and from j to k, then A is an H-matrix. ( ) SiaAra

ijSjij

Siii ∈=≥ ∑

≠∈

,,

( )( ) ( )( ) ( ) ( ) .,, SjSiArArAraAra Sj

Si

Sjjj

Siii ∈∈≥−−

Cvetković, Lj., Kostić, V. : New criteria for identifying H-matrices. JCAM (2005)

Page 61: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

Cvetković, Lj., Kostić, V., Kovačević, M., Szulc, T. : Further results on H-matrices and their Schur complements. AMC (2008)

Cvetković, Lj., Nedović, M. : Special H-matrices and their Schur and diagonal-Schur complements. AMC (2009)

Cvetković, Lj., Nedović, M. : Eigenvalue localization refinements for the Schur complement. AMC (2012)

Cvetković, Lj., Nedović, M. : Diagonal scaling in eigenvalue localization for the Schur complement. PAMM (2013)

Szulc, T., Cvetković, Lj., Nedović, M. : Scaling technique for Nekrasov matrices. AMC (2015) (in print)

Cvetković, Lj., Kostić, V., Nedović, M. : Generalizations of Nekrasov matrices and applications. (2014)

Page 62: MatTriad 2015, Coimbra - University of Novi Sad · MatTriad 2015, Coimbra . Contents ! ... Nekrasov-matrices IDD, CDD S-IDD, S-CDD . Breaking the SDD Additive and SDD multiplicative

THANK YOU FOR YOUR ATTENTION!

HVALA NA PAŽNJI!

Mat Triad Coimbra 2015