150
Bridges between Logic and Algebra Part 2: Pitts’ Theorem & A General Framework George Metcalfe Mathematical Institute University of Bern TACL 2019 Summer School, Île de Porquerolles, June 2019 George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 1 / 29

math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Bridges between Logic and AlgebraPart 2: Pitts’ Theorem & A General Framework

George Metcalfe

Mathematical InstituteUniversity of Bern

TACL 2019 Summer School, Île de Porquerolles, June 2019

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 1 / 29

Page 2: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Yesterday

We saw that intuitionistic logic. . .

has the class of Heyting algebras as an equivalent algebraic semantics

can be presented via a sequent calculus that admits cut elimination

is decidable, has the disjunction property, and admits interpolation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 2 / 29

Page 3: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Yesterday

We saw that intuitionistic logic. . .

has the class of Heyting algebras as an equivalent algebraic semantics

can be presented via a sequent calculus that admits cut elimination

is decidable, has the disjunction property, and admits interpolation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 2 / 29

Page 4: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Yesterday

We saw that intuitionistic logic. . .

has the class of Heyting algebras as an equivalent algebraic semantics

can be presented via a sequent calculus that admits cut elimination

is decidable, has the disjunction property, and admits interpolation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 2 / 29

Page 5: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Yesterday

We saw that intuitionistic logic. . .

has the class of Heyting algebras as an equivalent algebraic semantics

can be presented via a sequent calculus that admits cut elimination

is decidable,

has the disjunction property, and admits interpolation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 2 / 29

Page 6: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Yesterday

We saw that intuitionistic logic. . .

has the class of Heyting algebras as an equivalent algebraic semantics

can be presented via a sequent calculus that admits cut elimination

is decidable, has the disjunction property,

and admits interpolation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 2 / 29

Page 7: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Yesterday

We saw that intuitionistic logic. . .

has the class of Heyting algebras as an equivalent algebraic semantics

can be presented via a sequent calculus that admits cut elimination

is decidable, has the disjunction property, and admits interpolation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 2 / 29

Page 8: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Today

We will. . .

consider Pitts’ uniform interpolation theorem for intuitionistic logic

explain some of the nuts and bolts of universal algebra

investigate consequence and interpolation in this algebraic setting.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 3 / 29

Page 9: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Today

We will. . .

consider Pitts’ uniform interpolation theorem for intuitionistic logic

explain some of the nuts and bolts of universal algebra

investigate consequence and interpolation in this algebraic setting.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 3 / 29

Page 10: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Today

We will. . .

consider Pitts’ uniform interpolation theorem for intuitionistic logic

explain some of the nuts and bolts of universal algebra

investigate consequence and interpolation in this algebraic setting.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 3 / 29

Page 11: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Today

We will. . .

consider Pitts’ uniform interpolation theorem for intuitionistic logic

explain some of the nuts and bolts of universal algebra

investigate consequence and interpolation in this algebraic setting.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 3 / 29

Page 12: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Interpolation in Classical Logic

TheoremClassical logic admits interpolation: for any formulas α(x , y), β(y , z)satisfying α CL β,

there exists a formula γ(y) such that α CLγ and γ CL β.

For example. . .

α = ¬(x → y)

β = y → ¬z

γ =

¬y

In fact, for any formula δ(y , z),

α CL δ ⇐⇒ γ CL δ.

001

101

100

000

011

111

110

010

α

βγ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 4 / 29

Page 13: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Interpolation in Classical Logic

TheoremClassical logic admits interpolation: for any formulas α(x , y), β(y , z)satisfying α CL β, there exists a formula γ(y) such that α CLγ and γ CL β.

For example. . .

α = ¬(x → y)

β = y → ¬z

γ =

¬y

In fact, for any formula δ(y , z),

α CL δ ⇐⇒ γ CL δ.

001

101

100

000

011

111

110

010

α

βγ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 4 / 29

Page 14: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Interpolation in Classical Logic

TheoremClassical logic admits interpolation: for any formulas α(x , y), β(y , z)satisfying α CL β, there exists a formula γ(y) such that α CLγ and γ CL β.

For example. . .

α = ¬(x → y)

β = y → ¬z

γ =

¬y

In fact, for any formula δ(y , z),

α CL δ ⇐⇒ γ CL δ.

001

101

100

000

011

111

110

010

α

βγ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 4 / 29

Page 15: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Interpolation in Classical Logic

TheoremClassical logic admits interpolation: for any formulas α(x , y), β(y , z)satisfying α CL β, there exists a formula γ(y) such that α CLγ and γ CL β.

For example. . .

α = ¬(x → y)

β = y → ¬z

γ =

¬y

In fact, for any formula δ(y , z),

α CL δ ⇐⇒ γ CL δ.

001

101

100

000

011

111

110

010

α

βγ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 4 / 29

Page 16: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Interpolation in Classical Logic

TheoremClassical logic admits interpolation: for any formulas α(x , y), β(y , z)satisfying α CL β, there exists a formula γ(y) such that α CLγ and γ CL β.

For example. . .

α = ¬(x → y)

β = y → ¬z

γ =

¬y

In fact, for any formula δ(y , z),

α CL δ ⇐⇒ γ CL δ.

001

101

100

000

011

111

110

010

α

β

γ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 4 / 29

Page 17: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Interpolation in Classical Logic

TheoremClassical logic admits interpolation: for any formulas α(x , y), β(y , z)satisfying α CL β, there exists a formula γ(y) such that α CLγ and γ CL β.

For example. . .

α = ¬(x → y)

β = y → ¬z

γ = ¬y

In fact, for any formula δ(y , z),

α CL δ ⇐⇒ γ CL δ.

001

101

100

000

011

111

110

010

α

βγ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 4 / 29

Page 18: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Interpolation in Classical Logic

TheoremClassical logic admits interpolation: for any formulas α(x , y), β(y , z)satisfying α CL β, there exists a formula γ(y) such that α CLγ and γ CL β.

For example. . .

α = ¬(x → y)

β = y → ¬z

γ = ¬y

In fact, for any formula δ(y , z),

α CL δ ⇐⇒ γ CL δ.

001

101

100

000

011

111

110

010

α

βγ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 4 / 29

Page 19: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Uniform Interpolation in Classical Logic

TheoremClassical logic admits uniform interpolation: for any formula α(x , y),there exist formulas αL(y) and αR(y)

such that for any formula β(y , z),

β(y , z) CL α(x , y) ⇐⇒ β(y , z) CL αL(y)

α(x , y) CL β(y , z) ⇐⇒ αR(y) CL β(y , z).

Proof.Given any formula α(x , y), we just define

αL(y) =∧{α(a, y) | a ⊆ {⊥,>}}

αR(y) =∨{α(a, y) | a ⊆ {⊥,>}}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 5 / 29

Page 20: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Uniform Interpolation in Classical Logic

TheoremClassical logic admits uniform interpolation: for any formula α(x , y),there exist formulas αL(y) and αR(y) such that for any formula β(y , z),

β(y , z) CL α(x , y) ⇐⇒ β(y , z) CL αL(y)

α(x , y) CL β(y , z) ⇐⇒ αR(y) CL β(y , z).

Proof.Given any formula α(x , y), we just define

αL(y) =∧{α(a, y) | a ⊆ {⊥,>}}

αR(y) =∨{α(a, y) | a ⊆ {⊥,>}}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 5 / 29

Page 21: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Uniform Interpolation in Classical Logic

TheoremClassical logic admits uniform interpolation: for any formula α(x , y),there exist formulas αL(y) and αR(y) such that for any formula β(y , z),

β(y , z) CL α(x , y) ⇐⇒ β(y , z) CL αL(y)

α(x , y) CL β(y , z) ⇐⇒ αR(y) CL β(y , z).

Proof.Given any formula α(x , y), we just define

αL(y) =∧{α(a, y) | a ⊆ {⊥,>}}

αR(y) =∨{α(a, y) | a ⊆ {⊥,>}}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 5 / 29

Page 22: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Uniform Interpolation in Classical Logic

TheoremClassical logic admits uniform interpolation: for any formula α(x , y),there exist formulas αL(y) and αR(y) such that for any formula β(y , z),

β(y , z) CL α(x , y) ⇐⇒ β(y , z) CL αL(y)

α(x , y) CL β(y , z) ⇐⇒ αR(y) CL β(y , z).

Proof.Given any formula α(x , y), we just define

αL(y) =∧{α(a, y) | a ⊆ {⊥,>}}

αR(y) =∨{α(a, y) | a ⊆ {⊥,>}}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 5 / 29

Page 23: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Uniform Interpolation in Classical Logic

TheoremClassical logic admits uniform interpolation: for any formula α(x , y),there exist formulas αL(y) and αR(y) such that for any formula β(y , z),

β(y , z) CL α(x , y) ⇐⇒ β(y , z) CL αL(y)

α(x , y) CL β(y , z) ⇐⇒ αR(y) CL β(y , z).

Proof.Given any formula α(x , y), we just define

αL(y) =∧{α(a, y) | a ⊆ {⊥,>}}

αR(y) =∨{α(a, y) | a ⊆ {⊥,>}}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 5 / 29

Page 24: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Uniform Interpolation in Intuitionistic Logic

Theorem (Pitts 1992)Intuitionistic logic admits uniform interpolation: for any formula α(x , y),there exist formulas αL(y) and αR(y) such that for any formula β(y , z),

α(x , y) IL β(y , z) ⇐⇒ αR(y) IL β(y , z)

β(y , z) IL α(x , y) ⇐⇒ β(y , z) IL αL(y).

Proof idea. We define αL(y) and αR(y) by induction on the “weight” of α,guided by derivability in a suitable terminating sequent calculus. . .

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 6 / 29

Page 25: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Uniform Interpolation in Intuitionistic Logic

Theorem (Pitts 1992)Intuitionistic logic admits uniform interpolation: for any formula α(x , y),there exist formulas αL(y) and αR(y) such that for any formula β(y , z),

α(x , y) IL β(y , z) ⇐⇒ αR(y) IL β(y , z)

β(y , z) IL α(x , y) ⇐⇒ β(y , z) IL αL(y).

Proof idea. We define αL(y) and αR(y) by induction on the “weight” of α,guided by derivability in a suitable terminating sequent calculus. . .

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 6 / 29

Page 26: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Sequent Calculus GIL◦

Identity Axioms

Γ, x ⇒ x(id)

Left Operation Rules Right Operation Rules

Γ,⊥ ⇒ δ(⊥⇒)

Γ⇒ >(⇒>)

Γ, α, β ⇒ δ

Γ, α ∧ β ⇒ δ(∧⇒)

Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β(⇒∧)

Γ, α⇒ δ Γ, β ⇒ δ

Γ, α ∨ β ⇒ δ(∨⇒)

Γ⇒ αΓ⇒ α ∨ β

(⇒∨)lΓ⇒ β

Γ⇒ α ∨ β(⇒∨)r

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ(→⇒)

Γ, α⇒ β

Γ⇒ α→ β(⇒→)

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 7 / 29

Page 27: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Sequent Calculus GIL∗

We obtain the sequent calculus GIL∗ by replacing in GIL◦ the rule

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ(→⇒)

with the decomposition rules

Γ⇒ δΓ,⊥ → β ⇒ δ

Γ, x , β ⇒ δ

Γ, x , x → β ⇒ δ

Γ, α1 → (α2 → β)⇒ δ

Γ, (α1 ∧ α2)→ β ⇒ δ

Γ, β ⇒ δ

Γ,> → β ⇒ δ

Γ, α1 → β, α2 → β ⇒ δ

Γ, (α1 ∨ α2)→ β ⇒ δ

Γ, α2 → β ⇒ α1 → α2 Γ, β ⇒ δ

Γ, (α1 → α2)→ β ⇒ δ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 8 / 29

Page 28: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Sequent Calculus GIL∗

We obtain the sequent calculus GIL∗ by replacing in GIL◦ the rule

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ(→⇒)

with the decomposition rules

Γ⇒ δΓ,⊥ → β ⇒ δ

Γ, x , β ⇒ δ

Γ, x , x → β ⇒ δ

Γ, α1 → (α2 → β)⇒ δ

Γ, (α1 ∧ α2)→ β ⇒ δ

Γ, β ⇒ δ

Γ,> → β ⇒ δ

Γ, α1 → β, α2 → β ⇒ δ

Γ, (α1 ∨ α2)→ β ⇒ δ

Γ, α2 → β ⇒ α1 → α2 Γ, β ⇒ δ

Γ, (α1 → α2)→ β ⇒ δ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 8 / 29

Page 29: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Sequent Calculus GIL∗

We obtain the sequent calculus GIL∗ by replacing in GIL◦ the rule

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ(→⇒)

with the decomposition rules

Γ⇒ δΓ,⊥ → β ⇒ δ

Γ, x , β ⇒ δ

Γ, x , x → β ⇒ δ

Γ, α1 → (α2 → β)⇒ δ

Γ, (α1 ∧ α2)→ β ⇒ δ

Γ, β ⇒ δ

Γ,> → β ⇒ δ

Γ, α1 → β, α2 → β ⇒ δ

Γ, (α1 ∨ α2)→ β ⇒ δ

Γ, α2 → β ⇒ α1 → α2 Γ, β ⇒ δ

Γ, (α1 → α2)→ β ⇒ δ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 8 / 29

Page 30: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Sequent Calculus GIL∗

We obtain the sequent calculus GIL∗ by replacing in GIL◦ the rule

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ(→⇒)

with the decomposition rules

Γ⇒ δΓ,⊥ → β ⇒ δ

Γ, x , β ⇒ δ

Γ, x , x → β ⇒ δ

Γ, α1 → (α2 → β)⇒ δ

Γ, (α1 ∧ α2)→ β ⇒ δ

Γ, β ⇒ δ

Γ,> → β ⇒ δ

Γ, α1 → β, α2 → β ⇒ δ

Γ, (α1 ∨ α2)→ β ⇒ δ

Γ, α2 → β ⇒ α1 → α2 Γ, β ⇒ δ

Γ, (α1 → α2)→ β ⇒ δ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 8 / 29

Page 31: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Sequent Calculus GIL∗

We obtain the sequent calculus GIL∗ by replacing in GIL◦ the rule

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ(→⇒)

with the decomposition rules

Γ⇒ δΓ,⊥ → β ⇒ δ

Γ, x , β ⇒ δ

Γ, x , x → β ⇒ δ

Γ, α1 → (α2 → β)⇒ δ

Γ, (α1 ∧ α2)→ β ⇒ δ

Γ, β ⇒ δ

Γ,> → β ⇒ δ

Γ, α1 → β, α2 → β ⇒ δ

Γ, (α1 ∨ α2)→ β ⇒ δ

Γ, α2 → β ⇒ α1 → α2 Γ, β ⇒ δ

Γ, (α1 → α2)→ β ⇒ δ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 8 / 29

Page 32: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Sequent Calculus GIL∗

We obtain the sequent calculus GIL∗ by replacing in GIL◦ the rule

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ(→⇒)

with the decomposition rules

Γ⇒ δΓ,⊥ → β ⇒ δ

Γ, x , β ⇒ δ

Γ, x , x → β ⇒ δ

Γ, α1 → (α2 → β)⇒ δ

Γ, (α1 ∧ α2)→ β ⇒ δ

Γ, β ⇒ δ

Γ,> → β ⇒ δ

Γ, α1 → β, α2 → β ⇒ δ

Γ, (α1 ∨ α2)→ β ⇒ δ

Γ, α2 → β ⇒ α1 → α2 Γ, β ⇒ δ

Γ, (α1 → α2)→ β ⇒ δ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 8 / 29

Page 33: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Sequent Calculus GIL∗

We obtain the sequent calculus GIL∗ by replacing in GIL◦ the rule

Γ, α→ β ⇒ α Γ, β ⇒ δ

Γ, α→ β ⇒ δ(→⇒)

with the decomposition rules

Γ⇒ δΓ,⊥ → β ⇒ δ

Γ, x , β ⇒ δ

Γ, x , x → β ⇒ δ

Γ, α1 → (α2 → β)⇒ δ

Γ, (α1 ∧ α2)→ β ⇒ δ

Γ, β ⇒ δ

Γ,> → β ⇒ δ

Γ, α1 → β, α2 → β ⇒ δ

Γ, (α1 ∨ α2)→ β ⇒ δ

Γ, α2 → β ⇒ α1 → α2 Γ, β ⇒ δ

Γ, (α1 → α2)→ β ⇒ δ

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 8 / 29

Page 34: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Example Derivation

y , y → x , x ⇒ y(id)

x → y , y → x , x ⇒ y(⇒→)

x → y , y → x ⇒ x → y(→⇒)

y , x ⇒ y(id)

x → y , x ⇒ y(→⇒)

x → y , (x → y)→ x ⇒ y(→⇒)

(x → y) ∧ ((x → y)→ x)⇒ y(∧⇒)

⇒ ((x → y) ∧ ((x → y)→ x))→ y(⇒→)

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 9 / 29

Page 35: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Example Derivation

y , y → x , x ⇒ y(id)

x → y , y → x , x ⇒ y(⇒→)

x → y , y → x ⇒ x → y(→⇒)

y , x ⇒ y(id)

x → y , x ⇒ y(→⇒)

x → y , (x → y)→ x ⇒ y(→⇒)

(x → y) ∧ ((x → y)→ x)⇒ y(∧⇒)

⇒ ((x → y) ∧ ((x → y)→ x))→ y(⇒→)

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 9 / 29

Page 36: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Example Derivation

y , y → x , x ⇒ y(id)

x → y , y → x , x ⇒ y(⇒→)

x → y , y → x ⇒ x → y(→⇒)

y , x ⇒ y(id)

x → y , x ⇒ y(→⇒)

x → y , (x → y)→ x ⇒ y(→⇒)

(x → y) ∧ ((x → y)→ x)⇒ y(∧⇒)

⇒ ((x → y) ∧ ((x → y)→ x))→ y(⇒→)

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 9 / 29

Page 37: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Example Derivation

y , y → x , x ⇒ y(id)

x → y , y → x , x ⇒ y(⇒→)

x → y , y → x ⇒ x → y(→⇒)

y , x ⇒ y(id)

x → y , x ⇒ y(→⇒)

x → y , (x → y)→ x ⇒ y(→⇒)

(x → y) ∧ ((x → y)→ x)⇒ y(∧⇒)

⇒ ((x → y) ∧ ((x → y)→ x))→ y(⇒→)

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 9 / 29

Page 38: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Example Derivation

y , y → x , x ⇒ y(id)

x → y , y → x , x ⇒ y(⇒→)

x → y , y → x ⇒ x → y(→⇒)

y , x ⇒ y(id)

x → y , x ⇒ y(→⇒)

x → y , (x → y)→ x ⇒ y(→⇒)

(x → y) ∧ ((x → y)→ x)⇒ y(∧⇒)

⇒ ((x → y) ∧ ((x → y)→ x))→ y(⇒→)

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 9 / 29

Page 39: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Example Derivation

y , y → x , x ⇒ y(id)

x → y , y → x , x ⇒ y(⇒→)

x → y , y → x ⇒ x → y(→⇒)

y , x ⇒ y(id)

x → y , x ⇒ y(→⇒)

x → y , (x → y)→ x ⇒ y(→⇒)

(x → y) ∧ ((x → y)→ x)⇒ y(∧⇒)

⇒ ((x → y) ∧ ((x → y)→ x))→ y(⇒→)

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 9 / 29

Page 40: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Example Derivation

y , y → x , x ⇒ y(id)

x → y , y → x , x ⇒ y(⇒→)

x → y , y → x ⇒ x → y(→⇒)

y , x ⇒ y(id)

x → y , x ⇒ y(→⇒)

x → y , (x → y)→ x ⇒ y(→⇒)

(x → y) ∧ ((x → y)→ x)⇒ y(∧⇒)

⇒ ((x → y) ∧ ((x → y)→ x))→ y(⇒→)

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 9 / 29

Page 41: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Example Derivation

y , y → x , x ⇒ y(id)

x → y , y → x , x ⇒ y(⇒→)

x → y , y → x ⇒ x → y(→⇒)

y , x ⇒ y(id)

x → y , x ⇒ y(→⇒)

x → y , (x → y)→ x ⇒ y(→⇒)

(x → y) ∧ ((x → y)→ x)⇒ y(∧⇒)

⇒ ((x → y) ∧ ((x → y)→ x))→ y(⇒→)

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 9 / 29

Page 42: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Formulas

The weight wt(α) of a formula α is defined inductively by

wt(x) = wt(⊥) = wt(>) = 1;

wt(α ∨ β) = wt(α→ β) = wt(α) + wt(β) + 1;

wt(α ∧ β) = wt(α) + wt(β) + 2,

yielding a well-ordering ≺ on formulas

α ≺ β :⇐⇒ wt(α) < wt(β).

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 10 / 29

Page 43: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Formulas

The weight wt(α) of a formula α is defined inductively by

wt(x) = wt(⊥) = wt(>) = 1;

wt(α ∨ β) = wt(α→ β) = wt(α) + wt(β) + 1;

wt(α ∧ β) = wt(α) + wt(β) + 2,

yielding a well-ordering ≺ on formulas

α ≺ β :⇐⇒ wt(α) < wt(β).

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 10 / 29

Page 44: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Formulas

The weight wt(α) of a formula α is defined inductively by

wt(x) = wt(⊥) = wt(>) = 1;

wt(α ∨ β) = wt(α→ β) = wt(α) + wt(β) + 1;

wt(α ∧ β) = wt(α) + wt(β) + 2,

yielding a well-ordering ≺ on formulas

α ≺ β :⇐⇒ wt(α) < wt(β).

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 10 / 29

Page 45: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Formulas

The weight wt(α) of a formula α is defined inductively by

wt(x) = wt(⊥) = wt(>) = 1;

wt(α ∨ β) = wt(α→ β) = wt(α) + wt(β) + 1;

wt(α ∧ β) = wt(α) + wt(β) + 2,

yielding a well-ordering ≺ on formulas

α ≺ β :⇐⇒ wt(α) < wt(β).

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 10 / 29

Page 46: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Formulas

The weight wt(α) of a formula α is defined inductively by

wt(x) = wt(⊥) = wt(>) = 1;

wt(α ∨ β) = wt(α→ β) = wt(α) + wt(β) + 1;

wt(α ∧ β) = wt(α) + wt(β) + 2,

yielding a well-ordering ≺ on formulas

α ≺ β :⇐⇒ wt(α) < wt(β).

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 10 / 29

Page 47: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

Γ ≺ Π :⇐⇒Γ = Γ′,∆ and Π = Π′,∆ with Π′ 6= ∅ andeach α ∈ Γ′ is ≺-smaller than some β ∈ Π′

and on sequents by defining

Γ⇒ α ≺ Π⇒ β :⇐⇒ Γ, α ≺ Π, β.

The premises of each rule of GIL∗ are all ≺-smaller than its conclusion;e.g., wt(α1 → (α2 → β)) < wt((α1 ∧ α2)→ β) and

Γ, α1 → (α2 → β)⇒ δ ≺ Γ, (α1 ∧ α2)→ β ⇒ δ.

Hence proof search in GIL∗ is terminating.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 11 / 29

Page 48: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

Γ ≺ Π :⇐⇒Γ = Γ′,∆ and Π = Π′,∆ with Π′ 6= ∅ andeach α ∈ Γ′ is ≺-smaller than some β ∈ Π′

and on sequents by defining

Γ⇒ α ≺ Π⇒ β :⇐⇒ Γ, α ≺ Π, β.

The premises of each rule of GIL∗ are all ≺-smaller than its conclusion;e.g., wt(α1 → (α2 → β)) < wt((α1 ∧ α2)→ β) and

Γ, α1 → (α2 → β)⇒ δ ≺ Γ, (α1 ∧ α2)→ β ⇒ δ.

Hence proof search in GIL∗ is terminating.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 11 / 29

Page 49: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

Γ ≺ Π :⇐⇒Γ = Γ′,∆ and Π = Π′,∆ with Π′ 6= ∅ andeach α ∈ Γ′ is ≺-smaller than some β ∈ Π′

and on sequents by defining

Γ⇒ α ≺ Π⇒ β :⇐⇒ Γ, α ≺ Π, β.

The premises of each rule of GIL∗ are all ≺-smaller than its conclusion;e.g., wt(α1 → (α2 → β)) < wt((α1 ∧ α2)→ β) and

Γ, α1 → (α2 → β)⇒ δ ≺ Γ, (α1 ∧ α2)→ β ⇒ δ.

Hence proof search in GIL∗ is terminating.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 11 / 29

Page 50: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

Γ ≺ Π :⇐⇒Γ = Γ′,∆ and Π = Π′,∆ with Π′ 6= ∅ andeach α ∈ Γ′ is ≺-smaller than some β ∈ Π′

and on sequents by defining

Γ⇒ α ≺ Π⇒ β :⇐⇒ Γ, α ≺ Π, β.

The premises of each rule of GIL∗ are all ≺-smaller than its conclusion;

e.g., wt(α1 → (α2 → β)) < wt((α1 ∧ α2)→ β) and

Γ, α1 → (α2 → β)⇒ δ ≺ Γ, (α1 ∧ α2)→ β ⇒ δ.

Hence proof search in GIL∗ is terminating.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 11 / 29

Page 51: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

Γ ≺ Π :⇐⇒Γ = Γ′,∆ and Π = Π′,∆ with Π′ 6= ∅ andeach α ∈ Γ′ is ≺-smaller than some β ∈ Π′

and on sequents by defining

Γ⇒ α ≺ Π⇒ β :⇐⇒ Γ, α ≺ Π, β.

The premises of each rule of GIL∗ are all ≺-smaller than its conclusion;e.g., wt(α1 → (α2 → β)) < wt((α1 ∧ α2)→ β)

and

Γ, α1 → (α2 → β)⇒ δ ≺ Γ, (α1 ∧ α2)→ β ⇒ δ.

Hence proof search in GIL∗ is terminating.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 11 / 29

Page 52: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

Γ ≺ Π :⇐⇒Γ = Γ′,∆ and Π = Π′,∆ with Π′ 6= ∅ andeach α ∈ Γ′ is ≺-smaller than some β ∈ Π′

and on sequents by defining

Γ⇒ α ≺ Π⇒ β :⇐⇒ Γ, α ≺ Π, β.

The premises of each rule of GIL∗ are all ≺-smaller than its conclusion;e.g., wt(α1 → (α2 → β)) < wt((α1 ∧ α2)→ β) and

Γ, α1 → (α2 → β)⇒ δ ≺ Γ, (α1 ∧ α2)→ β ⇒ δ.

Hence proof search in GIL∗ is terminating.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 11 / 29

Page 53: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Weighing Sequents

We then obtain also a well-ordering on multisets of formulas

Γ ≺ Π :⇐⇒Γ = Γ′,∆ and Π = Π′,∆ with Π′ 6= ∅ andeach α ∈ Γ′ is ≺-smaller than some β ∈ Π′

and on sequents by defining

Γ⇒ α ≺ Π⇒ β :⇐⇒ Γ, α ≺ Π, β.

The premises of each rule of GIL∗ are all ≺-smaller than its conclusion;e.g., wt(α1 → (α2 → β)) < wt((α1 ∧ α2)→ β) and

Γ, α1 → (α2 → β)⇒ δ ≺ Γ, (α1 ∧ α2)→ β ⇒ δ.

Hence proof search in GIL∗ is terminating.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 11 / 29

Page 54: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Soundness and Completeness

Theorem

`GIL∗ α1, . . . , αn ⇒ β ⇐⇒ IL (α1 ∧ . . . ∧ αn)→ β.

Proof.(⇒) It suffices to check that the new implication left rules of GIL∗ preservederivability in IL; e.g.,

IL (γ ∧ (α1 → β) ∧ (α2 → β))→ δ =⇒ IL (γ ∧ ((α1 ∨ α2)→ β))→ δ.

(⇐) It suffices to prove that any sequent that is derivable in GIL◦ is alsoderivable in GIL∗, proceeding by induction on the weight of the sequentand considering all possible last steps of the GIL◦-derivation.

Note. GIL∗ can also be used to show that derivability in IL is in PSPACE.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 12 / 29

Page 55: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Soundness and Completeness

Theorem

`GIL∗ α1, . . . , αn ⇒ β ⇐⇒ IL (α1 ∧ . . . ∧ αn)→ β.

Proof.(⇒) It suffices to check that the new implication left rules of GIL∗ preservederivability in IL;

e.g.,

IL (γ ∧ (α1 → β) ∧ (α2 → β))→ δ =⇒ IL (γ ∧ ((α1 ∨ α2)→ β))→ δ.

(⇐) It suffices to prove that any sequent that is derivable in GIL◦ is alsoderivable in GIL∗, proceeding by induction on the weight of the sequentand considering all possible last steps of the GIL◦-derivation.

Note. GIL∗ can also be used to show that derivability in IL is in PSPACE.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 12 / 29

Page 56: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Soundness and Completeness

Theorem

`GIL∗ α1, . . . , αn ⇒ β ⇐⇒ IL (α1 ∧ . . . ∧ αn)→ β.

Proof.(⇒) It suffices to check that the new implication left rules of GIL∗ preservederivability in IL; e.g.,

IL (γ ∧ (α1 → β) ∧ (α2 → β))→ δ =⇒ IL (γ ∧ ((α1 ∨ α2)→ β))→ δ.

(⇐) It suffices to prove that any sequent that is derivable in GIL◦ is alsoderivable in GIL∗, proceeding by induction on the weight of the sequentand considering all possible last steps of the GIL◦-derivation.

Note. GIL∗ can also be used to show that derivability in IL is in PSPACE.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 12 / 29

Page 57: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Soundness and Completeness

Theorem

`GIL∗ α1, . . . , αn ⇒ β ⇐⇒ IL (α1 ∧ . . . ∧ αn)→ β.

Proof.(⇒) It suffices to check that the new implication left rules of GIL∗ preservederivability in IL; e.g.,

IL (γ ∧ (α1 → β) ∧ (α2 → β))→ δ =⇒ IL (γ ∧ ((α1 ∨ α2)→ β))→ δ.

(⇐) It suffices to prove that any sequent that is derivable in GIL◦ is alsoderivable in GIL∗,

proceeding by induction on the weight of the sequentand considering all possible last steps of the GIL◦-derivation.

Note. GIL∗ can also be used to show that derivability in IL is in PSPACE.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 12 / 29

Page 58: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Soundness and Completeness

Theorem

`GIL∗ α1, . . . , αn ⇒ β ⇐⇒ IL (α1 ∧ . . . ∧ αn)→ β.

Proof.(⇒) It suffices to check that the new implication left rules of GIL∗ preservederivability in IL; e.g.,

IL (γ ∧ (α1 → β) ∧ (α2 → β))→ δ =⇒ IL (γ ∧ ((α1 ∨ α2)→ β))→ δ.

(⇐) It suffices to prove that any sequent that is derivable in GIL◦ is alsoderivable in GIL∗, proceeding by induction on the weight of the sequentand considering all possible last steps of the GIL◦-derivation.

Note. GIL∗ can also be used to show that derivability in IL is in PSPACE.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 12 / 29

Page 59: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Soundness and Completeness

Theorem

`GIL∗ α1, . . . , αn ⇒ β ⇐⇒ IL (α1 ∧ . . . ∧ αn)→ β.

Proof.(⇒) It suffices to check that the new implication left rules of GIL∗ preservederivability in IL; e.g.,

IL (γ ∧ (α1 → β) ∧ (α2 → β))→ δ =⇒ IL (γ ∧ ((α1 ∨ α2)→ β))→ δ.

(⇐) It suffices to prove that any sequent that is derivable in GIL◦ is alsoderivable in GIL∗, proceeding by induction on the weight of the sequentand considering all possible last steps of the GIL◦-derivation.

Note. GIL∗ can also be used to show that derivability in IL is in PSPACE.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 12 / 29

Page 60: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 61: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 62: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 63: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 64: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α)

and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 65: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 66: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 67: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y),

then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 68: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅),

by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 69: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y);

conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 70: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y),

then since, by (ii),`GIL∗ α

L(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 71: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α,

also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 72: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α.

The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 73: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

The Key Lemma for Uniform Interpolation

LemmaFor any sequent Γ⇒ α, there exist formulas Ex(Γ) and Ax(Γ;α) such that

(i) Var(Ex(Γ)) ⊆ Var(Γ)\{x} and Var(Ax(Γ;α)) ⊆ Var(Γ, α)\{x};

(ii) `GIL∗ Γ⇒ Ex(Γ) and `GIL∗ Γ,Ax(Γ;α)⇒ α;

(iii) whenever `GIL∗ Π, Γ⇒ α and x 6∈ Var(Π),

`GIL∗ Π,Ex(Γ)⇒ α if x 6∈ Var(α) and `GIL∗ Π,Ex(Γ)⇒ Ax(Γ;α).

Pitts’ theorem then follows by defining for any formula α(x , y),

αL(y) = Ax(∅;α) and αR(y) = Ex(α).

If β(y , z) IL α(x , y), then since, by (ii), `GIL∗⇒ Ex(∅), by (iii),β(y , z) IL α

L(y); conversely, if β(y , z) IL αL(y), then since, by (ii),

`GIL∗ αL(y)⇒ α, also β(y , z) IL α. The case of αR(y) is similar.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 13 / 29

Page 74: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺

via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α) using the clauses

Γ matches Ex(Γ) containsΓ′, y Ex(Γ′) ∧ yΓ′, β1 ∧ β2 Ex(Γ′, β1, β2)Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains...

...Γ′, x ; x >Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 75: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺ via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α)

using the clauses

Γ matches Ex(Γ) containsΓ′, y Ex(Γ′) ∧ yΓ′, β1 ∧ β2 Ex(Γ′, β1, β2)Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains...

...Γ′, x ; x >Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 76: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺ via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α) using the clauses

Γ matches Ex(Γ) contains

Γ′, y Ex(Γ′) ∧ yΓ′, β1 ∧ β2 Ex(Γ′, β1, β2)Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains...

...Γ′, x ; x >Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 77: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺ via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α) using the clauses

Γ matches Ex(Γ) containsΓ′, y Ex(Γ′) ∧ y

Γ′, β1 ∧ β2 Ex(Γ′, β1, β2)Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains...

...Γ′, x ; x >Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 78: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺ via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α) using the clauses

Γ matches Ex(Γ) containsΓ′, y Ex(Γ′) ∧ yΓ′, β1 ∧ β2 Ex(Γ′, β1, β2)

Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains...

...Γ′, x ; x >Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 79: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺ via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α) using the clauses

Γ matches Ex(Γ) containsΓ′, y Ex(Γ′) ∧ yΓ′, β1 ∧ β2 Ex(Γ′, β1, β2)Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)

Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains...

...Γ′, x ; x >Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 80: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺ via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α) using the clauses

Γ matches Ex(Γ) containsΓ′, y Ex(Γ′) ∧ yΓ′, β1 ∧ β2 Ex(Γ′, β1, β2)Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains...

...Γ′, x ; x >Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 81: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺ via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α) using the clauses

Γ matches Ex(Γ) containsΓ′, y Ex(Γ′) ∧ yΓ′, β1 ∧ β2 Ex(Γ′, β1, β2)Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains

......

Γ′, x ; x >Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 82: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺ via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α) using the clauses

Γ matches Ex(Γ) containsΓ′, y Ex(Γ′) ∧ yΓ′, β1 ∧ β2 Ex(Γ′, β1, β2)Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains...

...Γ′, x ; x >

Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 83: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺ via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α) using the clauses

Γ matches Ex(Γ) containsΓ′, y Ex(Γ′) ∧ yΓ′, β1 ∧ β2 Ex(Γ′, β1, β2)Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains...

...Γ′, x ; x >Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 84: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Proof Sketch

The formulas Ex(Γ) and Ax(Γ;α) are defined simultaneously by inductionover the well-ordering ≺ via finite sets of formulas Ex(Γ) and Ax(Γ;α):

Ex(Γ) :=∧Ex(Γ) and Ax(Γ;α) :=

∨Ax(Γ;α) using the clauses

Γ matches Ex(Γ) containsΓ′, y Ex(Γ′) ∧ yΓ′, β1 ∧ β2 Ex(Γ′, β1, β2)Γ′, β1 ∨ β2 Ex(Γ′, β1) ∨ Ex(Γ′, β2)Γ′, (β1 → β2)→ β3 (Ex(Γ′, β2 → β3)→ Ax(Γ, β2 → β3;β1 → β2))→ Ex(Γ′, β3)...

...

Γ;α matches Ax(Γ;α) contains...

...Γ′, x ; x >Γ;β1 → β2 Ex(Γ, β1)→ Ax(Γ, β1;β2)

The calculus GIL∗ is then used to check that conditions (i)-(iii) are satisfied.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 14 / 29

Page 85: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Remarks

Other proofs of Pitts’ theorem have been given using bisimulations(Ghilardi 1995, Visser 1996) and duality (van Gool and Reggio 2018).

There are exactly eight intermediate logics that admit interpolation(Maksimova 1977), and all of these also have uniform interpolation(Ghilardi and Zawadowski 2002).

Iemhoff has shown recently that any intermediate or modal logichaving a certain decomposition calculus admits uniform interpolation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 15 / 29

Page 86: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Remarks

Other proofs of Pitts’ theorem have been given using bisimulations(Ghilardi 1995, Visser 1996) and duality (van Gool and Reggio 2018).

There are exactly eight intermediate logics that admit interpolation(Maksimova 1977), and all of these also have uniform interpolation(Ghilardi and Zawadowski 2002).

Iemhoff has shown recently that any intermediate or modal logichaving a certain decomposition calculus admits uniform interpolation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 15 / 29

Page 87: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Remarks

Other proofs of Pitts’ theorem have been given using bisimulations(Ghilardi 1995, Visser 1996) and duality (van Gool and Reggio 2018).

There are exactly eight intermediate logics that admit interpolation(Maksimova 1977), and all of these also have uniform interpolation(Ghilardi and Zawadowski 2002).

Iemhoff has shown recently that any intermediate or modal logichaving a certain decomposition calculus admits uniform interpolation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 15 / 29

Page 88: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Application to Independence

Theorem (De Jongh and Chagrova 1995)Independence in intuitionistic logic is decidable; that is, there exists analgorithm to decide for formulas α1, . . . , αn if for any formula β(y1, . . . , yn),

IL β(α1, . . . , αn) =⇒ IL β.

Proof.For formulas α1(x), . . . , αn(x), let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)and observe that for any formula β(y),

IL β(α1, . . . , αn) ⇐⇒ γ IL β.

By the constructive proof of Pitts’ theorem, we obtain a right uniforminterpolant γR(y) such that for any formula β(y),

γ IL β ⇐⇒ γR IL β and, in particular, IL γR(α1, . . . , αn).

So α1, . . . , αn are independent if and only if IL γR , which is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 16 / 29

Page 89: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Application to Independence

Theorem (De Jongh and Chagrova 1995)Independence in intuitionistic logic is decidable; that is, there exists analgorithm to decide for formulas α1, . . . , αn if for any formula β(y1, . . . , yn),

IL β(α1, . . . , αn) =⇒ IL β.

Proof.For formulas α1(x), . . . , αn(x),

let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)and observe that for any formula β(y),

IL β(α1, . . . , αn) ⇐⇒ γ IL β.

By the constructive proof of Pitts’ theorem, we obtain a right uniforminterpolant γR(y) such that for any formula β(y),

γ IL β ⇐⇒ γR IL β and, in particular, IL γR(α1, . . . , αn).

So α1, . . . , αn are independent if and only if IL γR , which is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 16 / 29

Page 90: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Application to Independence

Theorem (De Jongh and Chagrova 1995)Independence in intuitionistic logic is decidable; that is, there exists analgorithm to decide for formulas α1, . . . , αn if for any formula β(y1, . . . , yn),

IL β(α1, . . . , αn) =⇒ IL β.

Proof.For formulas α1(x), . . . , αn(x), let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)

and observe that for any formula β(y),

IL β(α1, . . . , αn) ⇐⇒ γ IL β.

By the constructive proof of Pitts’ theorem, we obtain a right uniforminterpolant γR(y) such that for any formula β(y),

γ IL β ⇐⇒ γR IL β and, in particular, IL γR(α1, . . . , αn).

So α1, . . . , αn are independent if and only if IL γR , which is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 16 / 29

Page 91: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Application to Independence

Theorem (De Jongh and Chagrova 1995)Independence in intuitionistic logic is decidable; that is, there exists analgorithm to decide for formulas α1, . . . , αn if for any formula β(y1, . . . , yn),

IL β(α1, . . . , αn) =⇒ IL β.

Proof.For formulas α1(x), . . . , αn(x), let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)and observe that for any formula β(y),

IL β(α1, . . . , αn) ⇐⇒ γ IL β.

By the constructive proof of Pitts’ theorem, we obtain a right uniforminterpolant γR(y) such that for any formula β(y),

γ IL β ⇐⇒ γR IL β and, in particular, IL γR(α1, . . . , αn).

So α1, . . . , αn are independent if and only if IL γR , which is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 16 / 29

Page 92: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Application to Independence

Theorem (De Jongh and Chagrova 1995)Independence in intuitionistic logic is decidable; that is, there exists analgorithm to decide for formulas α1, . . . , αn if for any formula β(y1, . . . , yn),

IL β(α1, . . . , αn) =⇒ IL β.

Proof.For formulas α1(x), . . . , αn(x), let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)and observe that for any formula β(y),

IL β(α1, . . . , αn) ⇐⇒ γ IL β.

By the constructive proof of Pitts’ theorem, we obtain a right uniforminterpolant γR(y) such that for any formula β(y),

γ IL β ⇐⇒ γR IL β

and, in particular, IL γR(α1, . . . , αn).

So α1, . . . , αn are independent if and only if IL γR , which is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 16 / 29

Page 93: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Application to Independence

Theorem (De Jongh and Chagrova 1995)Independence in intuitionistic logic is decidable; that is, there exists analgorithm to decide for formulas α1, . . . , αn if for any formula β(y1, . . . , yn),

IL β(α1, . . . , αn) =⇒ IL β.

Proof.For formulas α1(x), . . . , αn(x), let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)and observe that for any formula β(y),

IL β(α1, . . . , αn) ⇐⇒ γ IL β.

By the constructive proof of Pitts’ theorem, we obtain a right uniforminterpolant γR(y) such that for any formula β(y),

γ IL β ⇐⇒ γR IL β and, in particular, IL γR(α1, . . . , αn).

So α1, . . . , αn are independent if and only if IL γR , which is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 16 / 29

Page 94: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Application to Independence

Theorem (De Jongh and Chagrova 1995)Independence in intuitionistic logic is decidable; that is, there exists analgorithm to decide for formulas α1, . . . , αn if for any formula β(y1, . . . , yn),

IL β(α1, . . . , αn) =⇒ IL β.

Proof.For formulas α1(x), . . . , αn(x), let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)and observe that for any formula β(y),

IL β(α1, . . . , αn) ⇐⇒ γ IL β.

By the constructive proof of Pitts’ theorem, we obtain a right uniforminterpolant γR(y) such that for any formula β(y),

γ IL β ⇐⇒ γR IL β and, in particular, IL γR(α1, . . . , αn).

So α1, . . . , αn are independent if and only if IL γR ,

which is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 16 / 29

Page 95: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

An Application to Independence

Theorem (De Jongh and Chagrova 1995)Independence in intuitionistic logic is decidable; that is, there exists analgorithm to decide for formulas α1, . . . , αn if for any formula β(y1, . . . , yn),

IL β(α1, . . . , αn) =⇒ IL β.

Proof.For formulas α1(x), . . . , αn(x), let γ(x , y) = (y1 ↔ α1) ∧ . . . ∧ (yn ↔ αn)and observe that for any formula β(y),

IL β(α1, . . . , αn) ⇐⇒ γ IL β.

By the constructive proof of Pitts’ theorem, we obtain a right uniforminterpolant γR(y) such that for any formula β(y),

γ IL β ⇐⇒ γR IL β and, in particular, IL γR(α1, . . . , αn).

So α1, . . . , αn are independent if and only if IL γR , which is decidable.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 16 / 29

Page 96: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Model-Theoretic Consequences

A first-order theory T ∗ is a model completion of a universal theory T if

(a) T and T ∗ entail the same universal sentences;(b) T ∗ admits quantifier elimination.

Moreover, T ∗ is then the theory of the existentially closed models of T .

Theorem (Ghilardi and Zawadowski 1997)(a) The opposite of the category of finitely presented Heyting algebras is

an r-Heyting category.(b) The first-order theory of Heyting algebras has a model completion.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 17 / 29

Page 97: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Model-Theoretic Consequences

A first-order theory T ∗ is a model completion of a universal theory T if

(a) T and T ∗ entail the same universal sentences;(b) T ∗ admits quantifier elimination.

Moreover, T ∗ is then the theory of the existentially closed models of T .

Theorem (Ghilardi and Zawadowski 1997)(a) The opposite of the category of finitely presented Heyting algebras is

an r-Heyting category.(b) The first-order theory of Heyting algebras has a model completion.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 17 / 29

Page 98: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Model-Theoretic Consequences

A first-order theory T ∗ is a model completion of a universal theory T if

(a) T and T ∗ entail the same universal sentences;(b) T ∗ admits quantifier elimination.

Moreover, T ∗ is then the theory of the existentially closed models of T .

Theorem (Ghilardi and Zawadowski 1997)(a) The opposite of the category of finitely presented Heyting algebras is

an r-Heyting category.

(b) The first-order theory of Heyting algebras has a model completion.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 17 / 29

Page 99: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Model-Theoretic Consequences

A first-order theory T ∗ is a model completion of a universal theory T if

(a) T and T ∗ entail the same universal sentences;(b) T ∗ admits quantifier elimination.

Moreover, T ∗ is then the theory of the existentially closed models of T .

Theorem (Ghilardi and Zawadowski 1997)(a) The opposite of the category of finitely presented Heyting algebras is

an r-Heyting category.(b) The first-order theory of Heyting algebras has a model completion.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 17 / 29

Page 100: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

References

A. Day. Varieties of Heyting algebras, II (Amalgamation and injectivity).Unpublished note (1972).

D. de Jongh and L.A. Chagrova. The decidability of dependency in intuitionisticpropositional logic. Journal of Symbolic Logic 60 (1995), no. 2, 498–504.

R. Dyckhoff. Intuitionistic decision procedures since Gentzen.Advances in Proof Theory, Birkhäuser (2016), 245–267.

S. Ghilardi and M. Zawadowski.Sheaves, Games and Model Completions, Kluwer (2002).

A.M. Pitts. On an interpretation of second-order quantification in first-orderintuitionistic propositional logic. Journal of Symbolic Logic 57 (1992), 33–52.

K. Schütte. Der Interpolationssatz der intuitionistischen Pradikatenlogik.Mathematische Annalen 148 (1962), 192–200.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 18 / 29

Page 101: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

A General Setting

We make use of basic tools from universal algebra as found in, e.g.

S.N. Burris and H.P. Sankappanavar. A Course in Universal Algebra.Springer Graduate Texts in Mathematics, 1981.

http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 19 / 29

Page 102: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Languages, Algebras, Terms

Let us fix an algebraic language L with at least one constant symbol.

An L-algebra A consists of a non-empty set A together with an operation?A : An → A for each n-ary operation symbol ? of L.

We will use x , y , z to denote disjoint (possibly infinite) sets of variables, andlet Tm(x) denote the term L-algebra over x with members α, β, γ, . . .

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 20 / 29

Page 103: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Languages, Algebras, Terms

Let us fix an algebraic language L with at least one constant symbol.

An L-algebra A consists of a non-empty set A together with an operation?A : An → A for each n-ary operation symbol ? of L.

We will use x , y , z to denote disjoint (possibly infinite) sets of variables, andlet Tm(x) denote the term L-algebra over x with members α, β, γ, . . .

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 20 / 29

Page 104: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Languages, Algebras, Terms

Let us fix an algebraic language L with at least one constant symbol.

An L-algebra A consists of a non-empty set A together with an operation?A : An → A for each n-ary operation symbol ? of L.

We will use x , y , z to denote disjoint (possibly infinite) sets of variables, andlet Tm(x) denote the term L-algebra over x with members α, β, γ, . . .

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 20 / 29

Page 105: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Congruences

A congruence Θ on an L-algebra A is an equivalence relation on A

that ispreserved by each n-ary operation symbol ? of L, i.e.,

〈a1, b1〉, . . . , 〈an, bn〉 ∈ Θ =⇒ 〈?A(a1, . . . , an), ?A(b1, . . . , bn)〉 ∈ Θ.

The congruences of A form a complete lattice 〈ConA,⊆〉 with bottomelement ∆A = {〈a, a〉 | a ∈ A} and top element ∇A = A× A.

We also let CgA

(R) denote the congruence on A generated by R ⊆ A× A.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 21 / 29

Page 106: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Congruences

A congruence Θ on an L-algebra A is an equivalence relation on A that ispreserved by each n-ary operation symbol ? of L, i.e.,

〈a1, b1〉, . . . , 〈an, bn〉 ∈ Θ =⇒ 〈?A(a1, . . . , an), ?A(b1, . . . , bn)〉 ∈ Θ.

The congruences of A form a complete lattice 〈ConA,⊆〉 with bottomelement ∆A = {〈a, a〉 | a ∈ A} and top element ∇A = A× A.

We also let CgA

(R) denote the congruence on A generated by R ⊆ A× A.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 21 / 29

Page 107: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Congruences

A congruence Θ on an L-algebra A is an equivalence relation on A that ispreserved by each n-ary operation symbol ? of L, i.e.,

〈a1, b1〉, . . . , 〈an, bn〉 ∈ Θ =⇒ 〈?A(a1, . . . , an), ?A(b1, . . . , bn)〉 ∈ Θ.

The congruences of A form a complete lattice 〈ConA,⊆〉 with bottomelement ∆A = {〈a, a〉 | a ∈ A} and top element ∇A = A× A.

We also let CgA

(R) denote the congruence on A generated by R ⊆ A× A.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 21 / 29

Page 108: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Congruences

A congruence Θ on an L-algebra A is an equivalence relation on A that ispreserved by each n-ary operation symbol ? of L, i.e.,

〈a1, b1〉, . . . , 〈an, bn〉 ∈ Θ =⇒ 〈?A(a1, . . . , an), ?A(b1, . . . , bn)〉 ∈ Θ.

The congruences of A form a complete lattice 〈ConA,⊆〉 with bottomelement ∆A = {〈a, a〉 | a ∈ A} and top element ∇A = A× A.

We also let CgA

(R) denote the congruence on A generated by R ⊆ A× A.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 21 / 29

Page 109: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Quotients

Given any Θ ∈ ConA, the quotient L-algebra A/Θ consists of the set

A/Θ := {[a]Θ | a ∈ A} where [a]Θ := {b ∈ A | 〈a, b〉 ∈ Θ}

equipped for each n-ary operation symbol ? of L with an n-ary operation

?A/Θ([a1]Θ, . . . , [an]Θ) = [?A(a1, . . . , an)]Θ.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 22 / 29

Page 110: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Quotients

Given any Θ ∈ ConA, the quotient L-algebra A/Θ consists of the set

A/Θ := {[a]Θ | a ∈ A} where [a]Θ := {b ∈ A | 〈a, b〉 ∈ Θ}

equipped for each n-ary operation symbol ? of L with an n-ary operation

?A/Θ([a1]Θ, . . . , [an]Θ) = [?A(a1, . . . , an)]Θ.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 22 / 29

Page 111: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Homomorphisms and Kernels

LemmaFor any homomorphism h : A→ B between L-algebras A and B:

(a) ker h := {〈a, b〉 ∈ A× A | h(a) = h(b)} is a congruence on A.

(b) A/ ker h is isomorphic to the subalgebra h[A] of B.

(c) h is an embedding (i.e., injective) if and only if ker h = ∆A.

For any Θ ∈ ConA, there exists an onto homomorphism with kernel Θ,

h : A→ A/Θ; a 7→ [a]Θ.

So the kernels of homomorphisms from A are exactly the congruences of A.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 23 / 29

Page 112: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Homomorphisms and Kernels

LemmaFor any homomorphism h : A→ B between L-algebras A and B:

(a) ker h := {〈a, b〉 ∈ A× A | h(a) = h(b)} is a congruence on A.

(b) A/ ker h is isomorphic to the subalgebra h[A] of B.

(c) h is an embedding (i.e., injective) if and only if ker h = ∆A.

For any Θ ∈ ConA, there exists an onto homomorphism with kernel Θ,

h : A→ A/Θ; a 7→ [a]Θ.

So the kernels of homomorphisms from A are exactly the congruences of A.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 23 / 29

Page 113: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Homomorphisms and Kernels

LemmaFor any homomorphism h : A→ B between L-algebras A and B:

(a) ker h := {〈a, b〉 ∈ A× A | h(a) = h(b)} is a congruence on A.

(b) A/ ker h is isomorphic to the subalgebra h[A] of B.

(c) h is an embedding (i.e., injective) if and only if ker h = ∆A.

For any Θ ∈ ConA, there exists an onto homomorphism with kernel Θ,

h : A→ A/Θ; a 7→ [a]Θ.

So the kernels of homomorphisms from A are exactly the congruences of A.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 23 / 29

Page 114: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Homomorphisms and Kernels

LemmaFor any homomorphism h : A→ B between L-algebras A and B:

(a) ker h := {〈a, b〉 ∈ A× A | h(a) = h(b)} is a congruence on A.

(b) A/ ker h is isomorphic to the subalgebra h[A] of B.

(c) h is an embedding (i.e., injective) if and only if ker h = ∆A.

For any Θ ∈ ConA, there exists an onto homomorphism with kernel Θ,

h : A→ A/Θ; a 7→ [a]Θ.

So the kernels of homomorphisms from A are exactly the congruences of A.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 23 / 29

Page 115: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Homomorphisms and Kernels

LemmaFor any homomorphism h : A→ B between L-algebras A and B:

(a) ker h := {〈a, b〉 ∈ A× A | h(a) = h(b)} is a congruence on A.

(b) A/ ker h is isomorphic to the subalgebra h[A] of B.

(c) h is an embedding (i.e., injective) if and only if ker h = ∆A.

For any Θ ∈ ConA, there exists an onto homomorphism with kernel Θ,

h : A→ A/Θ; a 7→ [a]Θ.

So the kernels of homomorphisms from A are exactly the congruences of A.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 23 / 29

Page 116: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Homomorphisms and Kernels

LemmaFor any homomorphism h : A→ B between L-algebras A and B:

(a) ker h := {〈a, b〉 ∈ A× A | h(a) = h(b)} is a congruence on A.

(b) A/ ker h is isomorphic to the subalgebra h[A] of B.

(c) h is an embedding (i.e., injective) if and only if ker h = ∆A.

For any Θ ∈ ConA, there exists an onto homomorphism with kernel Θ,

h : A→ A/Θ; a 7→ [a]Θ.

So the kernels of homomorphisms from A are exactly the congruences of A.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 23 / 29

Page 117: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Varieties

An L-equation is an ordered pair 〈α, β〉 of L-terms, also written α ≈ β.

An L-variety is a class of L-algebras that is

closed under taking homomorphic images, subalgebras, and products,

or, equivalently, by a famous theorem of Birkhoff,

defined by L-equations.

We let V be any L-variety, e.g., Boolean algebras, Heyting algebras,MV-algebras, modal algebras, groups, rings, bounded lattices, groups. . .

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 24 / 29

Page 118: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Varieties

An L-equation is an ordered pair 〈α, β〉 of L-terms, also written α ≈ β.

An L-variety is a class of L-algebras that is

closed under taking homomorphic images, subalgebras, and products,

or, equivalently, by a famous theorem of Birkhoff,

defined by L-equations.

We let V be any L-variety, e.g., Boolean algebras, Heyting algebras,MV-algebras, modal algebras, groups, rings, bounded lattices, groups. . .

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 24 / 29

Page 119: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Varieties

An L-equation is an ordered pair 〈α, β〉 of L-terms, also written α ≈ β.

An L-variety is a class of L-algebras that is

closed under taking homomorphic images, subalgebras, and products,

or, equivalently, by a famous theorem of Birkhoff,

defined by L-equations.

We let V be any L-variety, e.g., Boolean algebras, Heyting algebras,MV-algebras, modal algebras, groups, rings, bounded lattices, groups. . .

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 24 / 29

Page 120: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Varieties

An L-equation is an ordered pair 〈α, β〉 of L-terms, also written α ≈ β.

An L-variety is a class of L-algebras that is

closed under taking homomorphic images, subalgebras, and products,

or, equivalently, by a famous theorem of Birkhoff,

defined by L-equations.

We let V be any L-variety, e.g., Boolean algebras, Heyting algebras,MV-algebras, modal algebras, groups, rings, bounded lattices, groups. . .

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 24 / 29

Page 121: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence

For any set of L-equations Σ ∪ {ε} containing exactly the variables in x ,

Σ |=V ε :⇐⇒for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker(e) =⇒ ε ∈ ker(e).

We also write Σ |=V ∆ if Σ |=V ε for all ε ∈ ∆.

Note. If we fix x , then |=V is an equational consequence relation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 25 / 29

Page 122: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence

For any set of L-equations Σ ∪ {ε} containing exactly the variables in x ,

Σ |=V ε :⇐⇒for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker(e) =⇒ ε ∈ ker(e).

We also write Σ |=V ∆ if Σ |=V ε for all ε ∈ ∆.

Note. If we fix x , then |=V is an equational consequence relation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 25 / 29

Page 123: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence

For any set of L-equations Σ ∪ {ε} containing exactly the variables in x ,

Σ |=V ε :⇐⇒for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker(e) =⇒ ε ∈ ker(e).

We also write Σ |=V ∆ if Σ |=V ε for all ε ∈ ∆.

Note. If we fix x , then |=V is an equational consequence relation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 25 / 29

Page 124: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence

For any set of L-equations Σ ∪ {ε} containing exactly the variables in x ,

Σ |=V ε :⇐⇒for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker(e) =⇒ ε ∈ ker(e).

We also write Σ |=V ∆ if Σ |=V ε for all ε ∈ ∆.

Note. If we fix x , then |=V is an equational consequence relation.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 25 / 29

Page 125: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Free Algebras

The free algebra of a variety V over a set of variables x can be defined as

F(x) = Tm(x)/ΘV(x) where 〈α, β〉 ∈ ΘV(x) :⇐⇒ |=V α ≈ β.

We write α to denote both a term α in Tm(x) and [α]ΘV (x) in F (x);we also deliberately confuse an equation α ≈ β with 〈α, β〉 in F (x)2.

Examples:

1. The free Boolean algebra over {x1, . . . , xn} has 22n elements.

2. The free bounded lattice over {x , y} contains ⊥,>, x , y , x ∧ y , x ∨ y ,but the free bounded lattice over three variables is already infinite.

3. The free monoid over x consists of all words over x , and the freegroup over x consists of all reduced words over x and {x−1

i | xi ∈ x}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 29

Page 126: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Free Algebras

The free algebra of a variety V over a set of variables x can be defined as

F(x) = Tm(x)/ΘV(x) where 〈α, β〉 ∈ ΘV(x) :⇐⇒ |=V α ≈ β.

We write α to denote both a term α in Tm(x) and [α]ΘV (x) in F (x);

we also deliberately confuse an equation α ≈ β with 〈α, β〉 in F (x)2.

Examples:

1. The free Boolean algebra over {x1, . . . , xn} has 22n elements.

2. The free bounded lattice over {x , y} contains ⊥,>, x , y , x ∧ y , x ∨ y ,but the free bounded lattice over three variables is already infinite.

3. The free monoid over x consists of all words over x , and the freegroup over x consists of all reduced words over x and {x−1

i | xi ∈ x}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 29

Page 127: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Free Algebras

The free algebra of a variety V over a set of variables x can be defined as

F(x) = Tm(x)/ΘV(x) where 〈α, β〉 ∈ ΘV(x) :⇐⇒ |=V α ≈ β.

We write α to denote both a term α in Tm(x) and [α]ΘV (x) in F (x);we also deliberately confuse an equation α ≈ β with 〈α, β〉 in F (x)2.

Examples:

1. The free Boolean algebra over {x1, . . . , xn} has 22n elements.

2. The free bounded lattice over {x , y} contains ⊥,>, x , y , x ∧ y , x ∨ y ,but the free bounded lattice over three variables is already infinite.

3. The free monoid over x consists of all words over x , and the freegroup over x consists of all reduced words over x and {x−1

i | xi ∈ x}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 29

Page 128: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Free Algebras

The free algebra of a variety V over a set of variables x can be defined as

F(x) = Tm(x)/ΘV(x) where 〈α, β〉 ∈ ΘV(x) :⇐⇒ |=V α ≈ β.

We write α to denote both a term α in Tm(x) and [α]ΘV (x) in F (x);we also deliberately confuse an equation α ≈ β with 〈α, β〉 in F (x)2.

Examples:

1. The free Boolean algebra over {x1, . . . , xn} has 22n elements.

2. The free bounded lattice over {x , y} contains ⊥,>, x , y , x ∧ y , x ∨ y ,but the free bounded lattice over three variables is already infinite.

3. The free monoid over x consists of all words over x , and the freegroup over x consists of all reduced words over x and {x−1

i | xi ∈ x}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 29

Page 129: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Free Algebras

The free algebra of a variety V over a set of variables x can be defined as

F(x) = Tm(x)/ΘV(x) where 〈α, β〉 ∈ ΘV(x) :⇐⇒ |=V α ≈ β.

We write α to denote both a term α in Tm(x) and [α]ΘV (x) in F (x);we also deliberately confuse an equation α ≈ β with 〈α, β〉 in F (x)2.

Examples:

1. The free Boolean algebra over {x1, . . . , xn} has 22n elements.

2. The free bounded lattice over {x , y} contains ⊥,>, x , y , x ∧ y , x ∨ y ,

but the free bounded lattice over three variables is already infinite.

3. The free monoid over x consists of all words over x , and the freegroup over x consists of all reduced words over x and {x−1

i | xi ∈ x}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 29

Page 130: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Free Algebras

The free algebra of a variety V over a set of variables x can be defined as

F(x) = Tm(x)/ΘV(x) where 〈α, β〉 ∈ ΘV(x) :⇐⇒ |=V α ≈ β.

We write α to denote both a term α in Tm(x) and [α]ΘV (x) in F (x);we also deliberately confuse an equation α ≈ β with 〈α, β〉 in F (x)2.

Examples:

1. The free Boolean algebra over {x1, . . . , xn} has 22n elements.

2. The free bounded lattice over {x , y} contains ⊥,>, x , y , x ∧ y , x ∨ y ,but the free bounded lattice over three variables is already infinite.

3. The free monoid over x consists of all words over x , and the freegroup over x consists of all reduced words over x and {x−1

i | xi ∈ x}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 29

Page 131: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Free Algebras

The free algebra of a variety V over a set of variables x can be defined as

F(x) = Tm(x)/ΘV(x) where 〈α, β〉 ∈ ΘV(x) :⇐⇒ |=V α ≈ β.

We write α to denote both a term α in Tm(x) and [α]ΘV (x) in F (x);we also deliberately confuse an equation α ≈ β with 〈α, β〉 in F (x)2.

Examples:

1. The free Boolean algebra over {x1, . . . , xn} has 22n elements.

2. The free bounded lattice over {x , y} contains ⊥,>, x , y , x ∧ y , x ∨ y ,but the free bounded lattice over three variables is already infinite.

3. The free monoid over x consists of all words over x , and the freegroup over x consists of all reduced words over x and {x−1

i | xi ∈ x}.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 26 / 29

Page 132: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Properties of Free Algebras

Lemma

(a) Every free algebra of V is a member of V.

(b) For any A ∈ V and map f : x → A, there exists a uniquehomomorphism f : F(x)→ A satisfying f (xi ) = f (xi ) for all xi ∈ x .

(c) Each A ∈ V is a homomorphic image of some free algebra of V.

(d) For any equation ε with variables in x ,

|=V ε ⇐⇒ F(x) |= ε.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 27 / 29

Page 133: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Properties of Free Algebras

Lemma

(a) Every free algebra of V is a member of V.

(b) For any A ∈ V and map f : x → A, there exists a uniquehomomorphism f : F(x)→ A satisfying f (xi ) = f (xi ) for all xi ∈ x .

(c) Each A ∈ V is a homomorphic image of some free algebra of V.

(d) For any equation ε with variables in x ,

|=V ε ⇐⇒ F(x) |= ε.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 27 / 29

Page 134: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Properties of Free Algebras

Lemma

(a) Every free algebra of V is a member of V.

(b) For any A ∈ V and map f : x → A, there exists a uniquehomomorphism f : F(x)→ A satisfying f (xi ) = f (xi ) for all xi ∈ x .

(c) Each A ∈ V is a homomorphic image of some free algebra of V.

(d) For any equation ε with variables in x ,

|=V ε ⇐⇒ F(x) |= ε.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 27 / 29

Page 135: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Properties of Free Algebras

Lemma

(a) Every free algebra of V is a member of V.

(b) For any A ∈ V and map f : x → A, there exists a uniquehomomorphism f : F(x)→ A satisfying f (xi ) = f (xi ) for all xi ∈ x .

(c) Each A ∈ V is a homomorphic image of some free algebra of V.

(d) For any equation ε with variables in x ,

|=V ε ⇐⇒ F(x) |= ε.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 27 / 29

Page 136: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 137: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 138: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε

and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 139: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 140: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e,

so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 141: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e.

Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 142: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 143: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ,

then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 144: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 145: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒

ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 146: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x)

⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 147: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Equational Consequence Again

LemmaFor any set of equations Σ ∪ {ε} with variables in x ,

Σ |=V ε ⇐⇒ ε ∈ CgF(x)

(Σ).

Proof.Let Ψ := Cg

F(x)(Σ).

(⇒) Suppose that Σ |=V ε and consider the homomorphism

e : Tm(x)→ F(x)/Ψ; α 7→ [α]Ψ.

Then clearly Σ ⊆ ker e, so also ε ∈ ker e. Hence ε ∈ Ψ.

(⇐) If ε ∈ Ψ, then for any A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker e =⇒ ε ∈ CgTm(x)

(Σ) ∨ΘV(x) ⊆ ker e.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 28 / 29

Page 148: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Tomorrow. . .

We will. . .

explore relationships between interpolation and amalgamation

describe uniform interpolation algebraically.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 29 / 29

Page 149: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Tomorrow. . .

We will. . .

explore relationships between interpolation and amalgamation

describe uniform interpolation algebraically.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 29 / 29

Page 150: math.unice.frThe Key Lemma for Uniform Interpolation Lemma Foranysequent ) ,thereexistformulasE x() andA x(; ) suchthat (i)Var(E x()) Var() nfxgand Var(A x(; )) Var( ; )nfxg; (ii

Tomorrow. . .

We will. . .

explore relationships between interpolation and amalgamation

describe uniform interpolation algebraically.

George Metcalfe (University of Bern) Bridges between Logic and Algebra June 2019 29 / 29