24
Mathematics in Acoustics Peter Balazs Acoustics Research Institute (ARI) Austrian Academy of Sciences Peter Balazs (ARI) Mathematics in Acoustics 1 / 21

Mathematics in Acoustics - kfs.oeaw.ac.at · Frame Multiplier II : exemplary new theoretical result Theorem Let M m,f k,g k be a frame multiplier for {g k} and {f k} with the upper

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Mathematics in Acoustics

Peter Balazs

Acoustics Research Institute (ARI)Austrian Academy of Sciences

Peter Balazs (ARI) Mathematics in Acoustics 1 / 21

Overview:

1 Applied Mathematics

2 Numerical Mathematics

3 Application-oriented Mathematics

Peter Balazs (ARI) Mathematics in Acoustics 2 / 21

Overview:

1 Applied Mathematics

2 Numerical Mathematics

3 Application-oriented Mathematics

Peter Balazs (ARI) Mathematics in Acoustics 2 / 21

Overview:

1 Applied Mathematics

2 Numerical Mathematics

3 Application-oriented Mathematics

Peter Balazs (ARI) Mathematics in Acoustics 2 / 21

Applied Mathematics, part 1

Peter Balazs (ARI) Mathematics in Acoustics 3 / 21

Applied Mathematics: Vibrations (Numerical Acoustics)

δ

∫t

∫x

L dxdt = 0 ,

L =

∫z

1

2

[(2(ν + 1)

1− 2νG (x , z , θ)

)(u2

x + w2z ) +

1− 2νG (x , z , θ)uxwz +

+ G (x , z , θ)(uz + wx)2]− 1

2ρ(u2

t + w2t )dz − fExtw|z=0 . (1)

Peter Balazs (ARI) Mathematics in Acoustics 4 / 21

Applied Mathematics: Vibrations (Numerical Acoustics)

3 mathematicians

Peter Balazs (ARI) Mathematics in Acoustics 5 / 21

Signal Processing :Time Frequency Analysis

Peter Balazs (ARI) Mathematics in Acoustics 6 / 21

Short Time Fourier Transformation (STFT)

Definition

Let f ,g 6= 0 in L2(Rd

), then we call

Vg f (τ, ω) =

∫Rd

f (x)g(x − τ)e−2πiωxdx .

the Short Time Fourier Transformation (STFT) of the signal f with thewindow g .

Peter Balazs (ARI) Mathematics in Acoustics 7 / 21

Short Time Fourier Transformation (STFT)

Peter Balazs (ARI) Mathematics in Acoustics 8 / 21

Applied Mathematics, part 2

Peter Balazs (ARI) Mathematics in Acoustics 9 / 21

Applied Mathematics: System Identification

Multiple Exponentiell Sweeps Method

Peter Balazs (ARI) Mathematics in Acoustics 10 / 21

Numerical Mathematics

Peter Balazs (ARI) Mathematics in Acoustics 11 / 21

Perfect Reconstruction Resynthesis I

Commonly used windows and their spectra:

Peter Balazs (ARI) Mathematics in Acoustics 12 / 21

Perfect Reconstruction Resynthesis II

Overlap Add: Comparison of Errors for Nwin = 1024 and overlap = 50%.:

window \ error max. rel. error rel. err. rand. sig. rel. err. audio sig.Hanning 0.00153547 0.000471961 0.000468024Hamming 0.0013077 0.000399719 0.00039863

Rectangular 0 3.02468e − 008 1.69078e − 008Bartlett 0 6.49745e − 008 3.72214e − 008

Blackman Harris 1.30664 0.268622 0.26723Trunc. Gaussian 0.148915 0.0503265 0.0499618Kaiser (β = 0.5) 0.0151726 0.00462928 0.00444201

Tukeywin 0.999979 0.227209 0.2303

Peter Balazs (ARI) Mathematics in Acoustics 13 / 21

Perfect Reconstruction Resynthesis III

Frame theory =⇒ perfect reconstruction

window \ error rel. err. audio sig. (50%) rel. err. audio sig. (25%) rel. err. audio sig. (12.5%)Hanning 2.34753e − 008 1.76303e − 008 1.24641e − 008Hamming 2.30809e − 008 1.71258e − 008 1.21008e − 008

Rectangular 2.092e − 016 1.63434e − 016 1.25851e − 016Bartlett 2.25018e − 008 1.69021e − 008 1.20049e − 008

Blackman Harris 2.45796e − 008 2.08936e − 008 1.49229e − 008Trunc. Gaussian 2.33804e − 008 1.78396e − 008 1.26315e − 008Kaiser (β = 0.5) 1.80255e − 008 1.28678e − 008 9.04746e − 009

Tukeywin 7.27761e − 009 6.56274e − 009 4.81764e − 009

Table: ’dual’ method: Comparison of relative Errors for Nwin = 1024 and differentoverlaps.

Peter Balazs (ARI) Mathematics in Acoustics 14 / 21

Double Preconditioning I

To find dual window efficiently:

P = C�D (S)−1 · S

�−1

D(S)−1

Figure: The double preconditioning matrix

- Parameter: g , a,b

- Initialization: B = block(g , a, b)

- Preconditioning :

P1 = invblock (diagblock (B))

S1 = P1 •block B

P2 = invblock (circblock (S1))

S2 = P2 •block S1

Figure: The double preconditioning algorithm

Peter Balazs (ARI) Mathematics in Acoustics 15 / 21

Double Preconditioning II

−20 0 200

0.5

1

Original window

−20 0 20−0.05

0

0.05

0.1Canonical dual

−20 0 20−0.05

0

0.05

0.1Diagonal dual

−20 0 20−0.05

0

0.05

0.1Circulant dual

−20 0 20−0.05

0

0.05

0.1Double dual

Peter Balazs (ARI) Mathematics in Acoustics 16 / 21

Application-oriented MathematicsAbstract Nonsense with Motivation in Applications

Peter Balazs (ARI) Mathematics in Acoustics 17 / 21

Frames I : definition

Definition

The sequence (gk |k ∈ K ) is called a frame for the Hilbert space H, ifconstants A,B > 0 exist, such that

A · ‖f ‖2H ≤

∑k

|〈f , gk〉|2 ≤ B · ‖f ‖2H ∀ f ∈ H

• Gabor frame : (gm,n) = (MnbTmag) for some a, b.

• frames = ”spanning systems in H”

• frames = generalization of bases

• frame condition = generalization of Parseval’s theorem

• Perfect reconstruction is guaranteed with the ’canonical dual frame’gk = S−1gk with S the frame operator (i.e. combinedanalysis/resynthesis operator).

Peter Balazs (ARI) Mathematics in Acoustics 18 / 21

Frames I : definition

Definition

The sequence (gk |k ∈ K ) is called a frame for the Hilbert space H, ifconstants A,B > 0 exist, such that

A · ‖f ‖2H ≤

∑k

|〈f , gk〉|2 ≤ B · ‖f ‖2H ∀ f ∈ H

• Gabor frame : (gm,n) = (MnbTmag) for some a, b.

• frames = ”spanning systems in H”

• frames = generalization of bases

• frame condition = generalization of Parseval’s theorem

• Perfect reconstruction is guaranteed with the ’canonical dual frame’gk = S−1gk with S the frame operator (i.e. combinedanalysis/resynthesis operator).

Peter Balazs (ARI) Mathematics in Acoustics 18 / 21

Frame Multiplier I : definition

Definition

Let H1, H2 be Hilbert-spaces, let (gk)k∈K be a frame in H1, (fk)k∈K

in H2. Define the operator Mm,(fk ),(gk ) : H1 → H2, the framemultiplier for these frames as the operator

Mm,(fk ),(gk )f =∑

k

mk 〈f , gk〉 fk

where m ∈ l∞(K ) is called the symbol.

Peter Balazs (ARI) Mathematics in Acoustics 19 / 21

Frame Multiplier II : exemplary new theoretical result

Theorem

Let Mm,fk ,gkbe a frame multiplier for {gk} and {fk} with the upper frame

bounds B and B ′ respectively. Then

1 If m ∈ l∞ M is a well defined bounded operator.‖M‖Op ≤

√B ′√

B · ‖m‖∞.

2 M∗m,fk ,gk

= Mm,gk ,fk . Therefore if m is real-valued and fk = gk , M isself-adjoint.

3 If m ∈ c0, M is compact.

4 If m ∈ l1, M is a trace class operator with‖M‖trace ≤

√B ′√

B ‖m‖1. And tr(M) =∑k

mk 〈fk , gk〉.

5 If m ∈ l2, M is a Hilbert Schmidt operator with‖M‖HS ≤

√B ′√

B ‖m‖2.

Peter Balazs (ARI) Mathematics in Acoustics 20 / 21

Personal References:

P. Balazs, Regular and Irregular Gabor Multipliers with Application toPsychoacoustic Masking, PhD Thesis, Universitat Wien (2005)

P. Balazs, H. G. Feichtinger, M. Hampejs, G. Kracher, Doublepreconditioning for Gabor frames, accepted for IEEE Trans. Signal Processing(2005)

P. Balazs, Basic Definition and Properties of Bessel Multipliers, Journal ofMathematical Analysis and Applications (in press, available online)

P. Balazs, W. Kreuzer, H. Waubke, A stochastic 2D-model for calculatingvibrations in liquids and soils,accepted for Journal of ComputationalAcoustics (2006)

P. Majdak, P. Balazs, Multiple Exponential Sweep Method with Applicationto HRTF measurements, preprint

P. Balazs, J.-P. Antoine, Weighted and controlled frames, submitted

Peter Balazs (ARI) Mathematics in Acoustics 21 / 21