54

Mathematical Induction, Summation and Product Notation

Embed Size (px)

DESCRIPTION

Mathematical induction

Citation preview

Page 1: Mathematical Induction, Summation and Product Notation
Page 2: Mathematical Induction, Summation and Product Notation

92

Appl

ied

Mat

hem

atic

s 11

Man

y in

tere

stin

g an

d im

port

ant r

esul

ts in

mat

hem

atic

s ha

ve b

een

disc

over

ed b

y fir

st o

bser

ving

patt

ern

s in

som

e sp

ecif

ic c

ases

an

d th

en m

akin

g ge

ner

alis

atio

ns

from

th

e ob

serv

atio

ns,

th

at

is, b

y ap

plyi

ng

indu

ctiv

e re

ason

ing.

For

exa

mpl

e, it

is e

asy

to fo

rm a

con

ject

ure

abo

ut t

he

sum

of t

he

firs

t k

odd

posi

tive

inte

gers

.

1=

1

1 +

3=

4

1 +

3 +

5=

9

1 +

3 +

5 +

7=

16

1 +

3 +

5 +

7 +

9=

25

. . .

Th

e n

um

bers

1,

4, 1

6, a

nd

25 a

re t

he

squ

ares

of

the

firs

t fi

ve p

osit

ive

inte

gers

, an

d so

it

appe

ars

that

the

sum

of t

he fi

rst k

odd

posi

tive

inte

gers

is e

xact

ly k

2 . Sin

ce th

e kt

h od

d po

sitiv

e

inte

ger

may

be

wri

tten

as

(2k

– 1)

, th

e co

nje

ctu

re m

ay a

lso

be e

xpre

ssed

as

an e

quat

ion

:

1 +

3 +

5 +

... +

(2k

– 1)

= k

2

Alt

hou

gh t

his

par

ticu

lar

form

ula

is

valid

, it

is

impo

rtan

t fo

r yo

u t

o se

e th

at r

ecog

nis

ing

a

patt

ern

an

d th

en s

impl

y ju

mpi

ng

to t

he

con

clu

sion

th

at t

he

patt

ern

mu

st b

e tr

ue

for

all

valu

es o

f n

is n

ot a

logi

cally

val

id m

eth

od o

f pr

oof.

Th

ere

are

man

y ex

ampl

es in

wh

ich

a p

at-

tern

app

ears

to

be d

evel

opin

g fo

r sm

all v

alu

es o

f n

an

d th

en a

t so

me

poin

ts t

he

patt

ern

fai

ls.

On

e of

the

mos

t fam

ous

case

s of

this

was

the

con

ject

ure

by

the

Fren

ch m

ath

emat

icia

n P

ierr

e

de F

erm

at (

1601

- 1

655)

, wh

o sp

ecu

late

d th

at a

ll n

um

bers

of

the

form

F n=

22n

+ 1

, n=

0,1

,2, .

..

are

prim

e. F

or n

= 0

, 1, 2

, 3, a

nd

4, t

he

con

ject

ure

is t

rue.

Th

e fi

fth

Fer

mat

nu

mbe

r (F

5=

429

4967

297)

is

so g

reat

th

at i

t w

as d

iffi

cult

for

Fer

mat

to

dete

rmin

e w

het

her

it

was

pri

me

or n

ot.

How

ever

, an

oth

er w

ell-

know

n m

ath

emat

icia

n,

Leo

nh

ard

Eu

ler

(170

7 -

1783

) , l

ater

fou

nd

the

fact

oris

atio

n

F 5=

429

4967

297

= 6

41(6

7004

17)

wh

ich

pro

ved

that

F5

is n

ot p

rim

e, a

nd

ther

efor

e Fe

rmat

's co

nje

ctu

re w

as f

alse

.

Just

bec

ause

a r

ule

, pa

tter

n,

or f

orm

ula

see

ms

to w

ork

for

seve

ral

valu

es o

f n

, yo

u c

ann

ot

sim

ply

deci

de t

hat

it is

val

id f

or a

ll va

lues

of

n w

ith

out

goin

d th

rou

gh a

legi

tim

ate

proo

f.

Page 3: Mathematical Induction, Summation and Product Notation

93

Mat

hem

atic

al In

duct

ion

A.

MA

TH

EM

ATIC

AL I

ND

UC

TIO

N

Mat

hem

atic

al in

duct

ion

is b

ased

on

sim

ple

char

acte

rist

ics

of t

he

nat

ura

l nu

mbe

rs w

hic

h a

re

stat

ed in

th

e fo

llow

ing

theo

rem

.

Th

eo

rem

If I

Dis

a s

ubs

et o

f n

atu

ral n

um

bers

so

that

1.1

IDan

d

2.k

IDim

plie

s k

+ 1

ID

, th

en I

D=

IN

+

Pro

of

On

th

e co

ntr

ary,

that

ID

IN+,

then

th

ere

exis

ts a

t le

ast

one

elem

ent,

say

mIN

+

such

th

at

mID

. S

o th

is

impl

ies

that

(m

– 1)

ID

, an

d if

(m

– 1)

ID

, th

en

(m–

1) –

1 =

(m

– 2)

ID

. By

this

way

, we

can

eas

ily s

ee t

hat

,

(m–

3), (

m–

4), .

.. , 3

, 2, 1

will

not

be

an e

lem

ent

of I

D. B

ut

by in

duct

ion

th

eore

m, 1

ID

, so

we

con

clu

de t

he

this

is a

con

trad

icti

on. T

her

efor

e, I

D=

IN

+.

Indu

ctio

n T

heo

rem

Let

IN

+

be t

he

non

-em

pty

set

wit

h

1.1

IN+

.

2.Fo

r ea

ch n

IN+,

n*

IN+

cal

led

succ

esso

r of

n.

3.Fo

r ea

ch n

IN+, w

e h

ave

n*

1.

4.If

m, n

IN

+an

d m

* =

n*,

th

en m

= n

.

5.A

n s

ubs

et K

of I

N+

hav

ing

the

prop

erti

es

a.1

K

b.k*

K

wh

enev

er k

Kis

equ

al t

o IN

+

In o

rder

to

prov

e a

prop

osit

ion

by

mat

hem

atic

al i

ndu

ctio

n,

it i

s en

ough

to

sati

sfy

the

fifth

Pean

o A

xiom

. Th

ese

axio

ms

will

inve

stig

ated

in a

dvan

ced

alge

bra.

Axio

m

Indu

ctio

n t

heo

rem

is

use

ful

part

icu

larl

y fo

r pr

ovin

g pr

opos

itio

ns

invo

lvin

g th

e po

siti

ve

inte

gers

. To

form

ula

te t

he

follo

win

g pr

inci

ple

of m

ath

emat

ical

indu

ctio

n, i

t is

con

ven

ien

t to

let

Pn

be a

pro

posi

tion

wh

ere

n is

th

e po

siti

ve in

tege

r.

Co

nclu

sio

n

Let

aIN

+an

d P

nbe

a p

ropo

siti

on in

volv

ing

the

posi

tive

inte

ger

na.

If,

1.th

e pr

opos

itio

n is

tru

e fo

r n

= 0

, th

at is

Pa

is t

rue,

an

d

2.fo

r ev

ery

posi

tive

inte

ger

k, t

he

tru

th o

f P

kim

plie

s th

e tr

uth

of

Pk

+ 1, t

hen

Pn

mu

st b

e tr

ue

for

all p

osit

ive

inte

gers

n.

Pri

nci

ple

of M

ath

emat

ical

In

duct

ion

Page 4: Mathematical Induction, Summation and Product Notation

94

Appl

ied

Mat

hem

atic

s 11

The

set

Na

= {

n|

na}

whe

re a

IN+

is c

alle

d th

e tr

uth

set

of P

n. N

ote

that

, aft

er v

erif

yin

g

that

Pa

is t

rue

you

mu

st a

ssu

me

that

Pk

is t

rue

for

som

e k

N+.

Th

is a

ssu

mpt

ion

is

calle

d

“In

duct

ion

hyp

oth

esis

”.

A w

ell

- kn

own

illu

stra

tion

use

d to

exp

lain

wh

y th

epr

inci

ple

of

mat

hem

atic

al

indu

ctio

n

wor

ks

is

the

un

endi

ng

dom

ino

line.

Pro

vin

g th

at “

P1

is t

rue”

is

like

knoc

kin

g ov

er t

he f

irst

dom

ina.

Pro

vin

g th

at “

whe

nev

erP

kis

tru

e th

en P

k+

1is

als

o tr

ue”

is

likeh

avin

g th

e do

min

os a

rran

ged

so t

hat

eac

h o

ne

wou

ld k

noc

k do

wn

the

nex

t on

e as

it

fell.

Th

at m

ean

s, y

ou c

ould

kn

ock

them

al

l do

wn

si

mpl

y by

pu

shin

g th

e fi

rst

one.

Mat

hem

atic

al i

ndu

ctio

n w

orks

in

th

e sa

me

way

. S

ince

P1

is t

rue,

th

en P

2m

ust

be

tru

e. S

ince

P2

is t

rue,

P3

mu

st b

e tr

ue.

Sin

ce P

3is

tru

e, h

hen

P4

mu

st a

lso

betr

ue,

an

d so

on

. T

his

su

gges

ts t

hat

you

can

pro

ve a

stat

emen

t P

n

to b

e tr

ue

for

nk

by s

how

ing

that

Pk

impl

ies

Pk

+ 1.

EX

AM

PLE1

1.Fo

r n

= 1

, P1

is t

rue

sin

ce

2.Fo

r n

= k

, ass

um

e th

at

p k:

1 +

2 +

3 +

... +

hol

ds. W

e m

ust

sh

ow t

hat

, for

n=

k+

1,

P k +

1:

1 +

2 +

3 +

... +

(k

+ 1

) =

Now

, add

ing

“k+

1”

to t

he

each

sid

e of

th

e eq

ual

ity

Pk

: 1

+ 2

+ 3

+ ..

. + k

=

we

obta

in

kk

kk

k

kk

kk

2(1)

12

3...

(1)

(1)

23

22

(1)

(2)

.2

kk(

1).

2

kk

(1)

(2)

.2

kk

k(

1).

2

1(1

11

.2

Pro

ve b

y m

ath

emat

ical

indu

ctio

n t

hat

th

e pr

opos

itio

n

is t

rue

for

all n

IN+.

n

nn

Pn

(1)

:12

3...

2

So

luti

on

Page 5: Mathematical Induction, Summation and Product Notation

95

Mat

hem

atic

al In

duct

ion

EX

AM

PLE2

You

may

wor

k ou

t fo

r th

e pr

oof

by y

ours

elf.

Pro

ve b

y th

e m

ath

emat

ical

indu

ctio

n t

hat

a.2

+ 3

+ 6

+ ..

. + 2

n=

n(n

+ 1

)

b.1

+ 3

+ 5

+ ..

. + (

2n–

1) =

n2

are

tru

e fo

r al

l nIN

+.

So

luti

on

EX

AM

PLE3

1.W

hen

n=

1, t

he

form

ula

is v

alid

, bec

ause

2.A

ssu

me

that

hol

ds.

We

mu

st s

how

th

at

Now

, add

ing

(k+

1)2

to e

ach

sid

e of

th

e in

duct

ion

hpp

oth

esis

, we

obta

in

Th

us,

Pk

+ 1

hol

ds w

hen

Pk

is t

rue.

Hen

ce P

nis

tru

e n

IN+.

kk

kk

k

kk

kk

kk

kk

kk

k

kk

k

22

22

2

2

2

(1)

(21)

12

3...

(1)

(1)

6

(1)

(21)

6(1)

6

(1)

[(2

1)6(

1)]

6

(1)

(27

6)6

(1)

(2)

(23)

.6

k

kk

kP

k2

22

21

(1)

(2)

(23)

:12

3...

(1)

.6

k

kk

kP

k2

22

2(

1)(2

1):1

23

...6

P2

1

12

3:1

.6

Use

mat

hem

atic

al in

duct

ion

to

prov

e th

at

for

all n

IN+.

n

nn

nP

n2

22

2(

1)(2

1):1

23

...6

So

luti

on

Th

us,

Pk

+ 1

is t

rue

wh

enev

er P

kis

tru

e. H

ence

.

is t

rue

nIN

+.

n

nn

Pn

(1)

:12

3...

2

Page 6: Mathematical Induction, Summation and Product Notation

96

Appl

ied

Mat

hem

atic

s 11

EX

AM

PLE4

You

may

wor

k ou

t fo

r th

e pr

oof

by y

ours

elf.

Pro

ve b

y m

ath

emat

ical

indu

ctio

n t

hat

for

all n

IN+.

n

nn

Pn

22

33

33

(1)

:12

3...

4

So

luti

on

EX

AM

PLE5

1.Fo

r n

= 1

, is

tru

e.

2.Fo

r n

= k

, ass

um

e

Now

, we

will

sh

ow t

hat

By

hyp

oth

esis

, we

hav

e

By

addi

ng

to e

ach

sid

e of

th

is o

f th

is e

qual

ity,

we

get

Th

at is

, we

hav

e

Th

eref

ore,

Pk+

1is

tru

e. H

ence

, n

IN+:

n

nP

nn

n1

11

1:

...1

22

33

4(

1)1k

kk

kk

k

kk

k

k k

2

2

11

11

21

...1

22

33

4(

1)(

2)(

1)(

2)

(1)

(1)

(2)

(1)

.2

kk

kk

kk

kk

11

11

1...

.1

22

3(

1)(

1)(

2)1

(1)

(2)

kk

1(

1)(

2)

k

kP

kk

k1

11

11

:...

.1

22

3(

1)(

2)2

k

kP

kk

k1

11

11

:...

.1

22

3(

1)(

2)2

k

kP

kk

k1

11

1:

....

12

23

34

(1)

1

P 11

1: 1

21

1

Pro

ve b

y m

ath

emat

ical

indu

ctio

n t

hat

, for

all

posi

tive

nat

ura

l nu

mbe

rs

n

nP

nn

n1

11

1:

....

12

23

34

(1)

1

So

luti

on

Page 7: Mathematical Induction, Summation and Product Notation

97

Mat

hem

atic

al In

duct

ion

EX

AM

PLE6

1.Fo

r n

= 1

, (r

1) is

obv

iosl

y tr

ue.

2.A

ssu

me

that

for

n=

k,

hol

ds. W

e w

ill s

how

th

at P

nis

als

o tr

ue

for

n=

k+

1. N

ow, b

y as

sum

ptio

n

Add

ing

rkto

ea

ch s

ide

of t

he

equ

alit

y ab

ove,

giv

es

Th

at is

, Pn

is t

rue

for

n=

k+

1. H

ence

, n

IN+:

kk

rr

rr

rr

21

11

...,

(1)

1

kk

k

kk

rr

rr

rr

r

rr

rr

21

211

1...

,(

1)1

11

...k r

k

k

rr

r

rr

r

1

1

,(

1)1

1,

(1)

1kk

rr

rr

rr

21

11

...,

(1)

1

kk

k

rP

rr

rr

r2

11

:1...

,(

1)1

rP

r1

1

1:1

,1

Pro

ve b

y m

ath

emat

ical

indu

ctio

n t

hat

nIN

+

nn

n

rP

rr

rr

r2

11

:1...

, (

1).

1

EX

AM

PLE7

Pro

ve b

y th

e m

ath

emat

ical

in

duct

ion

th

at t

he

sum

of

cube

s of

th

ree

con

secu

tive

nat

ura

l

nu

mbe

rs is

div

isib

le b

y 9.

So

luti

on

Let

n, n

+ 1

an

d n

+ 2

be

thre

e co

nse

cuti

ve n

atu

ral n

um

bers

(n

IN+).

Th

e gi

ven

pro

posi

-

tion

in m

ath

emat

ical

for

m is

Pn

: 9

|n3

+ (

n+

1)3

+ (

n+

2)3 .

1.Fo

r n

= 1

,

P1

: 9

| 13

+ 2

3 +

33

. P

1 is

cle

arly

tru

e, s

ince

9

| 36

.

2.A

ssu

me

that

Pk

is t

rue,

i.e.

,

k3+

(k

+ 1

)3+

(k

+ 2

)3

is d

ivis

ible

by

9. W

e w

ill s

how

th

at P

kim

plie

s P

k+

1, i

.e.,

we’

ll pr

ove

that

Pk

+ 1

mu

st a

lso

be t

rue,

9 |

(k+

1)3

+ (

k+

2)3

+ (

k+

3)3

So

luti

on

Page 8: Mathematical Induction, Summation and Product Notation

98

Appl

ied

Mat

hem

atic

s 11

Now

, by

the

assu

mpt

ion

, we

hav

e

k3+

(k

+ 1

)3+

(k

+ 2

)3=

9t

(tIN

+).

Add

ing

–k3

+ (

k+

3)3

to t

he

both

sid

es o

f th

e eq

ual

ity

give

s

k3+

(k

+ 1

)3+

(k

+ 2

)3–

k3+

(k

+ 3

)3=

9t

– k3

+ (

k+

3)3

(k+

1)3

+ (

k+

2)3

+ (

k+

3)3

= 9

t–

k3+

k3

+ 9

k2+

27k

+ 2

7

= 9

t+

9k2

+ 2

7k+

27

= 9

(t+

k2

+ 3

k+

3).

Sin

ce 9

(t+

k2

+ 3

k+

3)

is d

ivis

ible

by

9, w

e m

ay e

asily

con

clu

de t

hat

Pk

+ 1

is

also

tru

e.

Hen

ce, b

y 1°

an

d 2°

Pn

: 9

| n

3+

(n

+ 1

)3+

(n

+ 2

)3

is t

rue

for

all n

IN+.

EX

AM

PLE8

Use

mat

hem

atic

al in

duct

ion

to

prov

e th

at f

or a

ll n

IN+

the

nu

mbe

r “3

2n–

1” is

of

the

form

8k, k

Z.

Th

e pr

opos

itio

n is

Pn

: 8

| 32n

– 1.

1.Fo

r n

= 1

,

P1

: 8

| 32

1–

1 is

cle

arly

tru

e.

2.A

ssu

me

that

Pk

: 8

| 32

k–

1 is

tru

e. N

ow, w

e w

ill p

rove

, for

n=

k+

1,

Pk

+ 1

: 8

| 32

(k+

1)

– 1.

By

hyp

oth

esis

, 32k

– 1

= 8

t(t

Z).

Mu

ltip

lyin

g bo

th s

ides

of

this

equ

alit

y by

32 , w

e ob

tain

32(3

2k–

k) =

32

8t32k

+ 2

– 32

= 7

2t

32(k

+ 1

)–

9 =

72t

,

32(k

+ 1

)–

1 –

8 =

72t

32(k

+ 1

)–

1 =

72

t +

8,

32(k

+ 1

)–

1 =

8(9

t+

1).

It c

an e

asily

be

seen

th

at 3

2(k

+ 1

)–

1 is

als

o of

th

e fo

rm 8

k, k

Z.

i.e.,

Pn

is a

l tr

ue

for

n=

k+

1. T

her

efor

e,

nIN

+.

8 |

32n–

1.

So

luti

on

Page 9: Mathematical Induction, Summation and Product Notation

99

Mat

hem

atic

al In

duct

ion

EX

AM

PLE9

Fin

d th

e tr

uth

set

Na,

aIN

+of

Pn

: 2n

< n

! a

nd

pro

ve it

by

mat

hem

atic

al in

duct

ion

.

1.P

1:

21<

1!

2

< is

not

tru

e.

P2

: 22

< 2

!

4 <

2

is n

ot t

rue.

P3

: 32

< 3

!

8 <

6

is n

ot t

ure

.

P4

: 24

< 4

!

16 <

24

is t

rue.

So

the

tru

th s

et is

N4

{4, 5

, 6 ..

.}

2.A

ssu

min

g th

at P

kis

tru

e, i.

e., P

k: 2

k<

k!,

we

hav

e to

pro

ve t

hat

th

e tr

uth

of

Pk

+ 1

follo

ws

from

th

at o

f P

k. In

oth

er w

ords

, we

will

sh

ow t

hat

Pk

+ 1

: 2k

+ 1

< (

k+

1)!

is t

rue.

It

is c

lear

th

at fo

r k

> 3

, 2 <

k+

1. A

lso,

by

hyp

oth

esis

2k

< k

!. M

ult

iply

ing

thes

e

ineq

ual

itie

s si

de b

y si

de, w

e ge

t

2k· 2

< k

! · (

k+

1)

2k+

1<

(k

+ 1

)!

We

con

clu

de t

hat

Pn

is a

lso

tru

e fo

r n

= k

+ 1

, hen

ce

Pn

: 2n

< n

!C

is t

rue

for

all n

N4.

So

luti

on

EX

AM

PLE10

Pro

ve

“Ber

nou

lli I

neq

ual

ity”

by

mat

hem

atic

al in

duct

ion

.

“Ber

nou

lli I

neq

ual

ity”

nIN

+an

d fo

r 1

+ x

0, (

1 +

x)n

1 +

nx.

1.Fo

r n

= 1

, (1

+ x

)11

+ 1

x

and

also

for

n=

2, (

1 +

x)2

1 +

2

2

Sin

ce

1 +

2x

+ x

21

+ 2

xx2

0

is a

lway

s tr

ue.

2.A

ssu

min

g fo

r n

= k

, Pk

: (1

+ x

)k1

+ k

xh

olds

, we

will

ver

ify

that

Pk

+ 1

: (1

+ x

)k+1

1 +

(k

+ 1

)x

also

hol

ds. B

y h

ypot

hes

is, w

e h

ave

(1 +

x)k

1 +

kx.

Mu

ltip

lyin

g bo

th s

ides

of

this

ineq

ual

ity

by 1

+ x

give

s.

(1 +

x)k

(1 +

x)

(1 +

kx)

(1

+ x

)

(1 +

x)k

+ 1

1 +

x+

kx

+ k

x2

(1 +

x)k

+ 1

1 +

(k

+ 1

)x+

kx2 .

So

luti

on

Page 10: Mathematical Induction, Summation and Product Notation

100

Appl

ied

Mat

hem

atic

s 11

Rec

all b

y th

e tr

ansi

tive

pro

pert

y, a,

b, c

IRif

aan

d b

c, t

he

ac.

By

usi

ng

this

th

is p

rope

rty,

sin

ce

(1 +

x)k

+ 1

1 +

(k

+ 1

)x+

kx2

and,

kx2

0 fo

r k

IN+,

1 +

(k

+ 1

)x+

kx2

1 +

(k

+ 1

)x,

we

can

get

(1 +

x)k

+ 1

1 +

(k

+ 1

)x.

Th

at m

ean

s, P

k+

1is

als

o tr

ue.

Hen

ce, B

ern

oulli

In

equ

alit

y is

tru

e fo

r al

l nIN

+.

BIO

GR

AP

HIC

AL

SK

ET

CH

BE

RN

OU

LLI,

JAK

OP

or J

ACQ

UE

S (

1654

- 1

705)

Sw

iss

mat

hem

atic

ian,

bor

n in

Bas

el.

He

was

the

firs

t of

the

fam

ous

Ber

noul

li fa

mily

to

achi

eve

dist

inct

ion

in m

athe

mat

ics.

He

deve

lope

d th

e ne

wly

inve

nted

cal

culu

s in

to a

pow

erfu

l

mat

hem

atic

al t

ool,

appl

ying

it t

o th

e so

lutio

n of

a v

arie

ty o

f pr

oble

ms.

In

1682

he

open

ed a

sem

inar

y in

Bas

el f

or m

athe

mat

ics

and

expe

rimen

tal p

hysi

cs.

He

was

app

oint

ed p

rofe

ssor

of

mat

hem

atic

s at

the

Uni

vers

ity o

f Bas

el in

168

7. In

his

Ars

con

ject

andi

he

laid

the

foun

datio

ns

of th

e th

eory

of p

roba

bilit

y; B

erno

ulli’

s T

heor

em, g

iven

ther

e, is

of g

reat

impo

rtan

ce w

here

the

num

ber

of “

tria

ls”

is l

arge

. H

e an

d hi

s br

othe

r Jo

hann

wer

e th

e fir

st t

o be

ele

cted

for

eign

asso

ciat

es o

f the

Par

is A

cade

my

of S

cien

ces.

EX

AM

PLE11

Pro

ve t

hat

hep

pro

posi

tion

hol

ds f

or a

ll n

IN+.

n

nP

n2

22

22

:12

3...

(1)

3

1.Fo

r n

= 1

, P1

: (1

– 1

)2 <

is

tru

e.

2.In

duct

ion

hyp

oth

esis

:

Ass

um

e P

kis

tru

e; i.

e.,

Pk

: 12

+ 2

2+

32

+ ..

. + (

k–

1)2

<

hold

s. T

hen,

we

will

pro

ve t

hat

P k+

1is

als

o tr

ue. B

y ad

ding

k2

to b

oth

side

s of

the

ineq

ualit

y

12+

22

+ 3

2+

... +

(k

– 1)

2<

,

we

obta

in

12+

22

+ 3

2+

... +

(k

– 1)

2+

k2

<

+ k

2(I

)k3 3

k3 3

k3 3

3 1 3S

olu

tio

n

Page 11: Mathematical Induction, Summation and Product Notation

101

Mat

hem

atic

al In

duct

ion

EX

AM

PLE12

Use

mat

hem

atic

al in

duct

ion

to

prov

e th

at

nPIN

fIN

ff

nf

nn

n:

,(1

)1,

()

(1)

!.

1.P

1is

tru

e, s

ince

f(2

– 1

) · 2

= 2

!.

2.F

irst

, we

assu

me

for

n=

k,

Pk

: IN

+IN

+, f

(1)

= 1

, f(k

) =

f(k

– 1)

k=

k!.

hol

ds. Y

et, w

e m

ust

sh

ow P

k+1

hol

ds e

ith

er. B

y in

duct

ion

hyp

oth

esis

, we

know

f(k)

= f

(k–

1)k

= k

!

Mu

ltip

lyin

g bo

th s

ides

of

this

equ

alit

y by

k+

1 g

ives

f(k

– 1)

· k

(k+

1)

= k

! · (

k+

1)

= f

(k)

(k+

1)

= k

+ 1

)!.

Th

at is

Pk+

1:

IN+

IN+, f

(1)

= 1

, f(k

+ 1

) =

f(k

) (k

+ 1

) =

(k

+ 1

)!

Hen

ce, P

nis

tru

e n

IN+.

f

f

So

luti

on

Now

, it

is c

lear

th

at f

or e

very

kIN

+

k3+

3k2

< k

3+

3k2

+ 3

k+

1

k3+

3k2

< (

k+

1)3 ,

By

usi

ng

the

tran

siti

ve p

rope

rty,

from

th

e in

equ

alit

ies

I an

d II

, we

get

Th

us,

Pk

+ 1

is a

lso

tru

e. H

ence

, we

can

con

clu

de t

hat

nn

32

22

21

23

...(

1).

3

kk

22

22

2(

1)1

23

....

3

kk

k

kk

k

32

3

33

2

3(

1),

33

(1)

33

(II)

Page 12: Mathematical Induction, Summation and Product Notation

102

Appl

ied

Mat

hem

atic

s 11

EX

AM

PLE13

For

n3,

Pn

: 2n

> 2

n+

1. P

rove

th

at P

nis

tru

e fo

r al

l nIN

+.

1.Fo

r n

= 3

, P3

: 23

> 2

· 3

+ 1

is c

lear

ly t

rue.

2.A

ssu

min

g

Pk

: 2k

> 2

k+

1

is t

rue,

we

will

ver

ify

that

Pk

+ 1

is a

lso

tru

e. N

ow,

for

k3

it i

s cl

ear

that

2k

> 2

an

d by

hyp

oth

esis

, we

hav

e

2k>

2k

+ 1

.

Add

ing

thes

e tw

o in

equ

alit

ies

side

by

side

yie

lds.

2k+

2k

> 2

k+

3

2k+

1>

2(k

+ 1

) +

1.

Th

eref

ore,

Pk+

1is

als

o tr

ue.

Hen

ce,

n3,

2n

> 2

n+

1.

So

luti

on

EX

AM

PLE14

Pro

ve “

De

Moi

vre’

s T

heo

rem

” by

mat

hem

atic

al in

duct

ion

.

1.Fo

r n

= 1

, [(r

cos

+ i

sin

)

]1=

r(c

os (

1)

+ i

sin

(1

) is

tru

e.

2.A

ssu

min

g th

at t

he

form

ula

[r(c

os

+ i

sin

)

]k=

rk

(cos

k+

isi

n k

)

is t

rue,

we

mu

st s

how

th

at t

he

form

ula

[r(c

os

+ i

sin

)

]k+

1=

rk

+ 1

[cos

(k

+ 1

)+

isi

n (

k+

1)

)

also

hol

ds. N

ow, b

y in

duct

ion

hyp

oth

esis

, we

hav

e

[r(c

os

+ i

sin

)k

= r

k(c

os k

+ i

sin

k).

If w

e m

ult

iply

eac

h s

ide

of t

his

equ

alit

y by

r(c

os+

isi

n

), w

e ob

tain

[r(c

os

+ i

sin

)]

k[r

(cos

+

isi

n

)]=

rk

(cos

k+

isi

n k

) [r

(cos

+

isi

n

)],

[r(c

os

+ i

sin

)]

k+

1=

rk

+ 1

[co

s (k

+

) +

isi

n (

k+

)]

= r

k+

1[c

os (

k+

1)

+ i

sin

(k

+ 1

) ].

Hen

ce, f

or a

ll po

siti

ve in

tege

r n

,

[r(c

os

+ i

sin

)]

n=

rn

(cos

n+

isi

n n

).

So

luti

on

Th

eo

rem

If z

= r

(cos

+

isi

n

) is

a c

ompl

ex n

um

ber

and

n is

a p

osit

ive

inte

ger,

then

zn=

[r

(cos

+

isi

n

) ]n

= r

n(c

os n

+ i

sin

n).

De

Moi

vre’

s T

heo

rem

Page 13: Mathematical Induction, Summation and Product Notation

103

Mat

hem

atic

al In

duct

ion

EX

AM

PLE15

Pro

ve b

y m

ath

emat

ical

indu

ctio

n t

hat

n

IN+, n

! n

n–

1 .

EX

AM

PLE16

Pro

ve “

Bin

omia

l Th

eore

m”

by m

ath

emat

ical

indu

ctio

n.

1.Fo

r n

= 1

, P1

: 1!

11

– 1 , f

or n

= 2

, P2

: 2!

n

2 –

1an

d fo

r n

= 3

, P3

: 3!

33

– 1 . T

hu

s P

1, P

2

and

P3

are

all t

rue.

2.A

ssu

me

that

, for

n=

k,

Pk

: k!

kk

– 1

is t

rue.

Now

, we

will

sh

ow t

hat

Pk

+ 1

: (k

+ 1

)!

(k+

1)k

also

hol

ds. W

e kn

ow, b

y in

duct

ion

hyp

oth

esis

, th

at k

! kk

– 1 . M

ult

iply

ing

both

sid

es o

f th

is

ineq

ual

ity

by k

+ 1

yie

lds.

k! ·

(k+

1)

kk–

1· (

k+

1)

= (

k+

1)!

kk

+ k

k–

1(I

).

By

usi

ng

bin

omia

l exp

ansi

on

we

can

obt

ain

th

e fo

llow

ing

ineq

ual

ity

(k+

1)!

(k

+ 1

)k .

Th

us,

Pn

is t

rue

for

n=

k+

1. H

ence

, we

can

con

clu

de t

hat

nIN

+, n

! n

n–

1 .

kk

kk

kk

kk

kk

k1

2(

1)(

)(

)(

)...

1,0

12

So

luti

on

Th

eo

rem

If a

and

bar

e re

al n

um

bers

an

d n

is a

pos

itiv

e in

tege

r, th

en

wh

ere

is t

he

bin

omin

al c

oeff

icie

nt

nn k

kn

k!

()

.!(

)!n k(

)

nn

nn

nn

nn

nn

ab

ab

ab

abb

nn

12

21

()

()

()

()

...(

)(

)0

12

1

Bin

omia

l Th

eore

m

1.Fo

r n

= 1

, P1

: (a

+ b

)1=

S

ince

bot

h c

oeff

icie

nts

equ

al t

o 1,

th

e eq

uat

ion

redu

ces

to (

a+

b)1

= a

+ b

.

2.N

ext,

su

ppos

e th

at t

he

form

ula

hol

ds f

or n

= k

, i.e

.,

kk

kk

kk

kk

kk

Pa

ba

ab

abb

kk

11

:()

()

()

...(

)(

).

01

1

ab

11

11

()

()

.0

1S

olu

tio

n

Page 14: Mathematical Induction, Summation and Product Notation

104

Appl

ied

Mat

hem

atic

s 11

Now

we

use

th

e pr

oper

ty t

o sh

ow t

hat

is t

rue.

To

do

this

, mu

ltip

ly b

oth

sid

es o

f th

e fo

rmu

la f

or n

= k

by a

+ b

to o

btai

n

Add

ing

like

ter

ms,

su

ch a

s an

d ak

b ,

usi

ng

the

prop

erty

give

s

Hen

ce, P

nis

tru

e n

N+.

kk

kk

kk

ka

ba

ab

bk

11

11

11

()

)(

)(

)...

()

.0

11

kk

kr

rr

1(

)(

)(

)1

kk

ab

()

,0

kk

ab

k()

kk

kk

k

kk

kk

kk

kk

ab

aa

ba

bab

k

kk

kk

ab

ab

abb

kk

11

12

12

1

()

()

()

()

...(

)0

12

()

()

...(

)(

).

01

1

kk

kk

k

kk

kP

ab

aa

bb

k1

11

1

11

1:(

)(

)(

)...

()

.0

11

EX

AM

PLE17

Pro

ve t

hat

n

N+.

cos

· cos

2· c

os 4

· ...

· cos

2=

n

n

1

1

sin

2.

2si

n

1.Fo

r n

= 1

, P1

: co

s · c

os 2

a=

cos

· cos

2=

4 · s

in

· cos

· c

os 2

= s

in 4

,

2 · 2

· si

n

· cos

· c

os 2

= s

in 4

,

2 · s

in 2

· cos

2=

sin

4.

So,

P1

is t

rue.si

n2

sin

4,

4si

n

11

11

sin

2,

2si

nS

olu

tio

n

Page 15: Mathematical Induction, Summation and Product Notation

105

Mat

hem

atic

al In

duct

ion

2.A

ssu

me

that

Pk

: co

s co

s 2

... c

os 2

k=

is tr

ue, w

e w

ill p

rove

Pk

impl

ies

P k+

1. M

ultip

lyin

g bo

th s

ides

of t

he e

quat

ion

P kby

cos

2k

+ 1

yiel

ds.

Hen

ce, P

k+

1h

olds

; th

at is

, Pn

is t

rue

nIN

+.

kk

kk

k

k

k

k

k

11

11

1

1 (1)

1

(1)

1

sin

2co

s2co

sco

s2...

cos2

cos2

,2

sin

1si

n2

22

,2

sin

sin

2.

2si

n

k

k

1

1

sin

22

sin

EX

AM

PLE18

Pro

ve t

hat

for

all

nIN

+

n

n

times

12

22

...2

22

cos

.2

1.Fo

r n

= 1

, is

tru

e.

2.A

ssu

min

g fo

r n

= k

,

is t

rue,

we

will

sh

ow t

hat

Pk

+ 1

also

hol

ds. N

ow, b

y ad

din

g “2

” to

bot

h s

ides

of

the

equ

ali-

ty g

iven

abo

ve, w

e ge

t

Taki

ng

the

squ

are

root

of

the

both

sid

es y

ield

s

Sin

ce c

os 2

= 1

k1

2(c

os2

cos

).2

k

k

1tim

es

12

22

...2

2(1

cos

),2

k

k

times

12

22

2...

22

22

cos

.2

k

kk

Ptim

es

1:

22

2...

22

2co

s2

P 11

1

2:

22

cos

cos

24

2S

olu

tio

n

Page 16: Mathematical Induction, Summation and Product Notation

106

Appl

ied

Mat

hem

atic

s 11

Rec

all f

rom

“A

lgeb

ra 3

” th

at

By

usi

ng

this

con

vers

ion

for

mu

la, w

e ob

tain

Hen

ce,

is t

rue

nIN

+.

n

nn

Ptim

es

1:

22

2...

22

2co

s2

kk

k

kk

kk

kk

k

11

1

22

22

22

2

(1)

122

22

22

...2

22

cos(

)cos

()

22

22

cos(

)cos

()

22

2(

cos

)(co

s)

22

2co

s2

cos

22

2co

s.

2

xy

xy

xy

cos

cos

2co

s()

cos(

).2

2

EX

AM

PLE19

Pro

ve b

y us

ing

the

Gau

sian

met

hod

that

n li

nes

, no

two

are

para

llel,

inte

rsec

t at

mos

t C

(n, 2

)po

ints

in a

pla

ne.

Two

lines

d1

an d

2w

hic

h a

re n

ot p

aral

lel t

o ea

ch o

ther

in t

erse

ct a

t

mos

t on

e po

int,

say

A.

Th

e lin

e d 3

wh

ich

is

not

par

alle

l to

an

y on

e of

th

e lin

es d

1an

d d 2

inte

rsec

ts t

hes

e lin

es a

t m

ost

two

poin

ts, s

ay B

and

C.

Th

e lin

e d 4

wh

ich

is

not

par

alle

l to

an

y of

th

e lin

es d

1, d 2

and

d 3in

ters

ects

th

ese

lines

at

mos

t th

ree

poin

ts, s

ay D

, Ean

d F.

Con

tinui

ng i

n th

is w

ay,

for

ne

IN,

the

line

dn i

nter

sect

s th

e lin

es

d 1, d

2, ...

dn

– 1

at m

ost

(n–

1)po

ints

.

If w

e ad

d th

e n

um

ber

of a

ll th

e po

ints

for

med

by

the

inte

rsec

tion

of

the

lines

giv

en a

bove

, th

en w

e ob

tain

inte

rsec

tion

poi

nts

in a

pla

ne.

nn

nC

n(

1)1

23

...(

1)(

, 2)

2

So

luti

on

A

d 1

d 2

A

d 1

d 2

d 3

CB

A

d 1

d 2

d 3

C

B

FED

d 4

Page 17: Mathematical Induction, Summation and Product Notation

107

Mat

hem

atic

al In

duct

ion

EX

AM

PLE20

Pro

ve b

y m

ath

emat

ical

in

duct

ion

th

at b

y jo

inin

g n

poin

ts,

no

thre

e ar

e co

llin

ear,

we

can

fro

m C

(n,

2)

diff

eren

t lin

es.

1.Fo

r n

= 2

, C(2

, 2)

= 1

is t

rue,

sin

ce t

her

e is

on

ly o

ne

line

pass

ing

thro

ugh

tw

o po

ints

.

2.A

ssu

me

that

n=

kpo

ints

, no

thre

e ar

e co

llin

ear,

we

can

form

C(k

, 2)

diff

eren

t lin

es. N

ow

we

will

sh

ow t

hat

for

n=

k+

1 p

oin

ts C

(k+

1, 2

) di

ffer

ent

lines

can

be

form

ed.

Add

ing

one

mor

e po

int

form

s k

extr

a lin

es. S

o, w

e w

ill h

ave

diff

eren

t lin

es. H

ence

, we

can

for

m

diff

eren

t lin

es b

y jo

inin

g n

poin

ts, n

o th

ree

are

colli

nea

r.

nn

Cn

(1)

(,

2)2k

kk

kk

kk

Ck

kk

Ck

(1)

(1)

2(

1)(

2)(

1,2)

22

2

So

luti

on

1.Fo

r n

= 3

, C

(3,

3) =

1 i

s tr

ue

sin

ce o

nly

on

e tr

ian

gle

can

be

draw

n u

sin

g th

ree

poin

ts

2.A

ssu

me

that

C(k

, 3)

tria

ngl

es c

an b

e fo

rmed

usi

ng

k po

ints

lie

on a

cir

cle.

Yet

we

will

sh

ow,

C(k

+ 1

, 3)

tria

ngle

s ca

n be

dra

wn

usin

g k

+ 1

poi

nts

lyin

g on

a c

ircl

e. B

y pr

evio

us p

robl

em, w

e kn

ow th

at

C(n

, 2)

diff

eren

t lin

es c

an b

e fo

rmed

by

join

ing

npo

ints

, n

o th

ree

are

colli

nea

r. S

o ad

din

g on

e

mor

e po

int

form

s C

(k, 2

) ex

tra

tria

ngl

es. T

hat

is

C(k

, 3)

+ C

(k, 2

) =

C(k

+ 1

, 3)

tria

ngl

es c

an b

e fo

rmed

usi

ng

k+

1 p

oin

ts ly

ing

on a

cir

cle.

Hen

ce,

tria

ngl

es c

an b

e dr

awn

by

usi

ng

npo

ints

lie

on a

cir

cle.

In

vest

igat

e th

e F

igu

re 1

.2 d

raw

n

for

n=

9 p

oin

ts.n

nn

Cn

(1)

(2

(,

3)6

So

luti

on

EX

AM

PLE21

Pro

ve b

y m

ath

emat

ical

in

duct

ion

th

at C

(n,

3) t

rian

gles

can

be

draw

n b

y u

sin

g th

e ve

rtic

es c

hos

en f

rom

n p

oin

ts li

e on

a c

ircl

e.

I

II

III

IV

V

VI

VII

VIII

IX

Page 18: Mathematical Induction, Summation and Product Notation

108

Appl

ied

Mat

hem

atic

s 11

EX

ER

CIS

ES

3.1

1.U

se m

ath

emat

ical

in

duct

ion

to

prov

e th

e fo

llow

-

ing

equ

alit

ies

for

ever

y po

siti

ve in

tege

r n

.

a. b. c. d.1

+ 7

+ 1

3 +

19

+ ..

. + 6

n–

5 =

n(3

n–

2)

e. f.13

+ 3

3+

53

+ 7

3+

...+

(2n

– 1)

3=

n2 (2

n2

– 1)

g. h.21

2 +

22

3 +

23

4 +

...+

2n (n

+ 1

) =

n2n+

1

i. j. k. l. m.

n. o.n

nn

n1

11

1...

13

35

57

(21)

(21)

21

nn

23

11

11

1...

12

22

22

nn

nn

11

31

25

13...

(23

)2

12

nn

21

31

13

3...

32

kn

nn

k

nn

nn

kk

12.

.....

(1)

...(

1)

(1)

(2)

...(

)(

1)

nn

n

nn

nn

12

32

34

...(

1)(

2)

(1)

(2)

(3)

4

nn

nn

n(

1)(

2)1

22

3...

(1)

3

nn

nn

n2

22

21

21

(1)

12

34

...(

1)(

1)2

nn

n2

22

22

2(4

1)1

35

7...

(21)

3

nn

n(3

1)1

47

10...

32

2

nn

n3

(1)

36

9...

32

nn

n(3

1)2

58

11...

31

2

3.U

se m

ath

emat

ical

in

duct

ion

to

prov

e th

e fo

llow

-

ing

ineq

ual

itie

s fo

r th

e in

dica

ted

posi

tive

in

tege

r

valu

es o

f n

.

a.2n

1 +

n,

n+

b.2n

> 2

n+

1,

n+

c.3n

n2n

, n

+

d.4n

> n

2 , n

+

e.5n

1 +

4n

, n

+

f.(2

n)!

2n

(n!)

2 , n

+

g.n

! n

n–

1 , n

+

2.F

ind

the

tru

th s

et o

f th

e fo

llow

ing

prop

osit

ion

s,

and

use

mat

hem

atic

al in

duct

ion

to

prov

e th

em.

a.2n

n2

b.3n

1 +

4n

c.n

3>

n2

+ 3

d.n

n11

!2

o. p. r. s. t.1

1! +

2

2! +

3

3! +

nn!

= (

n+

1)!

– 1

u.n n

n1

23

11

01

2!3!

4!!

!nn

nn

nn

22

22

12

3(

1)...

13

35

57

(21)

(21)

2(2

1)

nn

nn

nn

nn

56

4...

12

32

34

()(

2

(37)

2(1)

(2)

nn

nn

11

1...

14

47

(32)

(31)

31

nn

nn

11

11

...1

33

55

7(2

1)(2

1)2

1

Page 19: Mathematical Induction, Summation and Product Notation

109

Mat

hem

atic

al In

duct

ion

10.

Pro

ve t

hat

n

+an

d a,

x, y

+

f(x

y) =

f(x

) f(

y)

f(an

) =

[ f

(a)]

n.

12.

Pro

ve t

hat

a p

olyg

on w

ith

n-s

ides

(n

> 3

) h

as

diag

onal

s.(

3)2

nn

11.

Pro

ve t

hat

n

+an

d a,

x, y

+

f(x

y) =

f(x

) +

f(y

) f(

an)

= n

f(a)

.

13.

If x

1>

0, x

2>

0, .

.., x

n>

0, t

hen

prov

e th

at

n+

In (

x 1x 2

x 3...

xn

) =

In

x1

+ I

n x

2+

... +

In

xn

.

5.P

rove

th

at

n+

nn

1co

sco

s()

22

sin

sin

2...

sin

()

.2

sin

2

6.P

rove

th

at

n+

nn

n

(1)

sin

cos(

)2

2co

sco

s2...

cos(

).

sin

2

7.P

rove

th

at

n+

sin

2co

sco

s3...

cos(

21)

.2

sinn

n

8.P

rove

th

at

n+

23

1(

1)lo

g()

2lo

g()

...lo

g()

log(

).1

2!

nn

nn

nn

9.P

rove

th

at

n+

()

...[

(1)

][2

(1)

].2n

xx

yx

ny

xn

y

4.U

se m

ath

emat

ical

in

duct

ion

to

prov

e th

e fo

llow

-

ing

expr

essi

ons

for

ever

y po

siti

ve in

eger

n.

a.5

| 6n

– 1

b.6

| 7n

– 1

c.2

| 22n

+ 2

d.3

| 22n

+ 2

e.3

| n

3–

nf.

7 |

132n

+ 6

g.11

| 2

4n–

5nh.

11 |

12n

+ 1

0

i.3

| 4n

– 1

j.5

| 5n

– 3n

k.(a

+ b

) |

a2n–

b2n

l.27

| (

25n+

1+

5n

+ 2)

m. 6

| (

5n3

+ 1

3n–

24)

n.5

| 17

4n+

1+

3 ·

92n

o.7

| 32n

+ 2

– 2n

+ 1

p.13

3 |

11n

+ 2

+ 1

22n+

1

r.(x

+ y

) |

x2n–

1 + y

2n–

1

s.6

| n

(2n

+ 1

) (7

n+

1)

h.Fo

r x 1

, x2,

x 3...

xn

and

n+

|x1

+ x

2+

... +

xn

| |x

1| +

|x 2

| +

... +

|x n

|

i.2!

4!

6!

... (

2n)!

[(

n+

1)!

]n,

n+

j. k.n

n1

11

1...

1,

39

273n

n1

11

1...

1,

24

82

Page 20: Mathematical Induction, Summation and Product Notation

110

Appl

ied

Mat

hem

atic

s 11

Add

itio

n i

s as

fu

nda

men

tal

in a

dvan

ced

mat

hem

atic

s as

it

is i

n a

rith

met

ic.

Th

ere

is a

sto

ry

ofte

n t

old

abou

t th

e G

erm

an m

ath

emat

icia

n K

arl

Frie

dric

h G

auss

. W

hen

he

was

in

th

ird

grad

e, h

is c

lass

mis

beh

aved

an

d th

e te

ach

er g

ave

the

follo

win

g pr

oble

m a

s pu

nis

hm

ent.

“Add

th

e in

tege

rs f

rom

1 t

o 10

0.”

It i

s sa

id t

hat

Gau

ss s

olve

d th

e pr

oble

m i

n a

lmos

t n

o ti

me

at a

ll. H

is m

eth

od w

as o

f co

urs

e

diff

eren

t. I

n t

his

sec

tion

we

will

stu

dy s

um

s of

ter

ms

of v

ario

us

sequ

ence

s, l

earn

a s

peci

al

not

atio

n f

or s

um

s an

d al

so f

or p

rodu

cts

of t

hei

r te

rms.

A.

SU

MM

ATIO

N N

OTA

TIO

N

A c

onve

nie

nt

not

atio

n f

or t

he

sum

of

the

term

s of

a g

iven

fu

nct

ion

def

ined

as

f:

Z, f

(k)

=a k

is s

um

mat

ion

not

atio

n o

r si

gma

not

atio

n, w

hic

h in

volv

es t

he

Gre

ek c

apit

al le

tter

sig

ma

().

Defi

nit

ion

Let

: Z

, f(k

) =

ak

and

r, n

Zpr

ovid

ed t

hat

rn

, th

en

is t

he

sum

of

(n–

r+

1)

term

s of

th

e fu

nct

ion

ffr

om r

to n

wh

ere

kis

th

e in

dex

of s

um

ma-

tion

, ris

th

e lo

wer

bou

nd

and

nis

th

e u

pper

bou

nd.

12

...n

kr

rr

nk

r

aa

aa

a

Not

e th

at,

can

als

o be

den

oted

by

and

is r

ead

as

“th

e su

m o

f a k

from

k=

rto

k=

n”.

Stu

dy t

he

exam

ples

giv

en b

elow

.18

56

718

57

32

17

3

22

22

1 110

3 1

...,

...,

12

32...

,

13

5...

21

(21)

,

(2)

68

1012

1416

1820

,

10

12

3...

.

kk

kk

n k n k

kn

kaa

aa

a

aa

aa

a

nk

nk

k

kn

[,

]

or

n

kk

rk

nk

rn

aa

n

kk

r

a

Page 21: Mathematical Induction, Summation and Product Notation

111

Mat

hem

atic

al In

duct

ion

1.

Su

mm

ati

on

Fo

rm

ula

s

a.b.

c.1

(2)

(1)

n k

kn

n2

1

(21)

n k

kn

1

(1)

2

n k

nn

k

FO

RM

UL

A

2

1

(1)

(21)

.6

n k

nn

nk

FO

RM

UL

A

We

will

pro

ve t

he

firs

t an

d th

e th

ird

form

ula

, you

may

wor

k ou

t fo

r th

e pr

oof

of s

econ

d ca

se

by y

ours

elf.

Pro

of

1.

Add

ing

n+

(n

– 1)

+ ..

. + 1

to

th

e ex

pres

sion

giv

en a

bove

, wh

ich

als

o eq

ual

to

P, g

ives

3.

By

subs

titu

tin

g th

e “F

orm

ula

1”

into

th

e ab

ove

expr

essi

on, w

e ge

t

1

(1)

22

(1)

2

n k

kk

Tk

kk

1

Let

2

24

6...

22(

12

3...

n k

Tk

nn

times

2(

1)(

1)...

(1)

(1)

2(

1),

(1)

.2

n

Pn

nn

n

Pn

n

nn

P

1

Let

1

2...

(1)

.n k

Pk

nn

Pro

of

In o

rder

to

deri

ve t

his

for

mu

la w

e w

ill u

se t

he

expa

nsi

on

(x+

y)3

= x

3+

3x2 y

+ 3

xy2

+ y

3

It is

cle

ar t

hat

(1 +

3)3

= 1

3+

3 ·

12· 1

+ 3

· 1

· 12

+ 1

3 ,

(2 +

1)3

= 2

3+

3 ·

22· 1

+ 3

· 2

· 12

+ 1

3 ,

(3 +

1)3

= 3

3+

3 ·

32· 1

+ 3

· 3

· 12

+ 1

3 ,

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

(n+

1)3

= n

3+

3 ·

n2

· 1 +

3 ·

n· 1

2+

13 .

Page 22: Mathematical Induction, Summation and Product Notation

112

Appl

ied

Mat

hem

atic

s 11

Add

ing

all o

f th

ese

equ

alit

ies

side

by

side

yie

lds

(n+

1)3

= 1

3+

3 ·

(12

+ 2

2+

32

+ ..

. + n

2 ) +

3 ·

(1 +

2 +

3 +

... +

n)

+ n

· 13

....

(I)

Sin

ce

We

can

wri

te t

he

expr

essi

on (

I) a

s

If w

e re

arra

nge

th

is e

qual

ity,

we

will

obt

ain

Hen

ce,

2

1

(1)

(21)

.6

n k

nn

nk

23

22

32

1

2

62

64

33

23

(23

1)(

1)(2

1).

n k

kn

nn

nn

nn

n

nn

nn

nn

32

2

11

32

2

1

33

11

33

,

(1)

32

33

.2

nn

kk

n k

nn

nk

kn

nn

nn

nk

22

22

2

11

12

3...

an

d

12

3...

,n

n

kk

kn

kn

32

1

(1)

()

.2

n k

nn

k

FO

RM

UL

A

Pro

of

We

can

pro

ve F

orm

ula

1.3

by

calc

ula

tin

g th

e ar

ea o

f

the

squ

are

wit

h s

idel

ngt

h 1

+ 2

+ .

.. +

nu

nit

s. I

n

Fig

ure

1.1

, th

e le

tter

s A

1, A

2, A

3, ...

, A

nde

not

e th

e

area

s pa

inte

d by

th

e sa

me

colo

r.

A(K

LM

N)

= A

1+

A2

+ A

3+

... +

An

= (

1 +

2 +

3 +

... +

n)2

32

1

33

33

2

18

27...

() (

1)1

23

...(

).

2

n k

nk n

nn

NM L

1

n 23 1 K2

3n

A1

A2

A3

An

Page 23: Mathematical Induction, Summation and Product Notation

113

Mat

hem

atic

al In

duct

ion

1

1

1,

11

nn

k

k

rr

rr

FO

RM

UL

A

1

1(

1)1

n k

nk

kn

FO

RM

UL

A

Pro

of

... (

I)

Mu

ltip

lyin

g bo

th s

ides

of

this

equ

alit

y by

r, w

e ob

tain

r·T

= r

+ r

2+

r3

+ ..

. + r

n=

1

... (

II)

Now

, if

we

subt

ract

th

e eq

ual

ity

(II)

from

th

e eq

ual

ity

(I)

side

by

side

, we

will

get

T–

rT=

1 –

rn

T(1

– r

) =

1 –

rn

1,

(1)

.1

n rr

r

12

1

1

Let

1

...n

kn

k

Tr

rr

r

Pro

of

Sin

ce

we

obta

in

11

11

1(

)(

1)1

11

11

11

11

...1

22

33

41

11

.1

1

nn

kk

kk

kk

nn

nn

n

11

1,

(1)

1k

kk

k

1

11

11

1...

.(

1)1

22

33

4(

1)

n kk

kn

n

Pro

of

It is

obv

iou

s th

at

and

1(

1) ti

mes...

(1)

.n k

nr

cc

cc

cn

rc

1 ti

mes

...n k

n

cc

cc

cn

c

2.

Pro

perti

es o

f S

um

mati

on

No

tati

on

Pro

perti

es 1

Let

can

d r

,

1

an

d

(1)

.n

n

kk

r

cn

cc

nr

c

Page 24: Mathematical Induction, Summation and Product Notation

114

Appl

ied

Mat

hem

atic

s 11

EX

AM

PLE22

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

c.d.

13

7

1 ()

8n

12

4

5t

50

1

(2)

p

17

1

3k

Her

e, w

e w

ill s

olve

on

ly “

a” a

nd

“c”.

Oth

ers

are

left

as

an e

xerc

ise

to t

he

stu

den

t.

a.c.

12

4

55

(12

41)

45t

17

1

33

1751

k

So

luti

on

EX

AM

PLE23

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

c.6

3

1

(2

)p

p10

2

1

3k

k11

1

2k

k

a.

b.an

d c

.ar

e le

ft a

s an

exe

rcis

e fo

r th

e st

ude

nt.

1111

11

1112

22

213

2.2

kk

kk

So

luti

on

Pro

of

It is

obv

iou

s th

at

12

31

12

3

1

...

(...

)

.

n

kn

k

n

n

kk

ca

caca

caca

ca

aa

a

ca

Pro

perti

es 2

For

c,

11

.n

n

kk

kk

ca

ca

Pro

of

It is

obv

iou

s th

at

12

11

1

1 1

......

,

.

n

kp

pp

nk

pn

kk

kk

p

aa

aa

aa

a

aa

Pro

perti

es 3

For

1 <

p<

nan

d p

, 1

11

.p

nn

kk

kk

kk

p

aa

a

Page 25: Mathematical Induction, Summation and Product Notation

115

Mat

hem

atic

al In

duct

ion

Pro

of

It is

obv

iou

s th

at

11

22

1

12

12

11

()

()

()

...(

)

(...

)(

...)

.

n

kk

nn

k

nn

nn

kk

kk

ab

ab

ab

ab

aa

ab

bb

ab

Pro

perti

es 4

not

atio

n h

as d

istr

ibu

tive

pro

pert

y ov

er a

ddit

ion

an

d su

btra

ctio

n, i

.e.,

11

1

()

.n

nn

kk

kk

kk

k

ab

ab

EX

AM

PLE24

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

201

10

2k

k

47

24

1(

1)k

kk

a. b.20

209

11

1

1010

1

209

209

22

2

12

12

22

.1

21

2

kk

k

kk

k

4747

23

241

1

11

1(

1)(

1)(

1)

4723

4824

4746

1.

4848

48

kk

kk

kk

kk

kS

olu

tio

n

EX

AM

PLE25

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

62

1

(21)

k

k5

32

1

(2

)k

kk

a. b.It

left

as

an e

xerc

ise

for

the

stu

den

t.

55

53

23

2

11

1

55

32

2

11

(2

)2

56

56

112

()

233

5.2

6

kk

k

kk

kk

kk

kk

So

luti

on

Page 26: Mathematical Induction, Summation and Product Notation

116

Appl

ied

Mat

hem

atic

s 11

Note

not

atio

n d

oes

not

hav

e di

stri

buti

ve p

rope

rty

over

mu

ltip

licat

ion

an

d di

visi

on, i

.e.,

11

11

11

()

an

d

(:

):

.n

nn

nn

n

kk

kk

kk

kk

kk

kk

kk

ab

ab

ab

ab

Pro

perti

es 5

Let

r, p

then

You

may

wor

k ou

t fo

r th

e pr

oof

as a

n e

xerc

ise..

nn

rn

r

kk

rk

rk

pk

pr

kp

r

aa

a

EX

AM

PLE26

Eva

luat

e.

a.b.

c.3

2

0

(32)

k

k8

1(24)

k

k7

2

3

(1)

k

k

a. b. c.It

is le

ft a

s an

exe

rcis

e fo

r th

e st

ude

nt.

88

210

11

21

10

1

(24)

2(2)

4(2

44)

1011

22

110.

2

kk

k

k

kk

k

k

77

25

22

2

33

21

52

1

(1)

(2

1)(

1)

56

115

6(

21)

25

90.

62

kk

k

k

kk

k

kk

So

luti

on

Pro

of

12

31

11 11

121

2122

21

2

12

11

1

12

11

1

(...

)

(...

)(

...)

...(

...)

...

(...

)(

).

nm

n

krk

kk

kmk

rk

mm

nn

nm

mm

m

rr

nrr

rr

mm

n

rr

nrkr

rr

k

aa

aa

a

aa

aa

aa

aa

a

aa

a

aa

aa

Pro

perti

es 6

Com

mu

tati

vity

of

11

11

()

nm

mn

krkr

kr

rk

aa

Page 27: Mathematical Induction, Summation and Product Notation

117

Mat

hem

atic

al In

duct

ion

EX

AM

PLE27

Eva

luat

e th

e fo

llow

ing

expr

essi

ons.

a.b.

43

10

()

ab

ab

53

2

11

(2

)k

r

kr

a.

Als

o,

b.T

he

solu

tion

is le

ft a

s an

exe

rcis

e fo

r th

e st

ude

nt.

35

32

11

1

56

11(

2)

(5

2)

6

34

553

1016

560

105.

2

rk

r

kr

r

53

52

2

11

1

55

52

2

11

1

34

(2

)(3

2)

2

(312

)3

12

56

113

125

165

6010

5.6

kr

k kk

k

kr

k kk

So

luti

on

EX

AM

PLE28

Fin

d go

f (2

) if

2

13

11

10

1(

)(2

) a

nd

()

().

14

xx

xx

km

pr

fx

km

gx

pr

Sin

ce g

o f

(2)

= g

( f(

2)),

we

nee

d to

eva

luat

e g(

4).

57

10

58

11

5

1

5

1

(4)

()

(1)

89

(88)

2

56

(828

)8

285

2

260.

pr

pr

p p

gp

r

pr

p p

2

11

22

11

24

11

1(2

)(2

)14 1

45

1(8

)(8

10)

142

14

11

[8(

2)10

](8

6)14

14

14

51

(86

4)56

4.14

214

xx

km

kk

kk

fk

m

kk

kk

So

luti

on

Page 28: Mathematical Induction, Summation and Product Notation

118

Appl

ied

Mat

hem

atic

s 11

B.

MU

LTIP

LIC

ATIN

NO

TA

TIO

N

In t

he

prec

edin

g se

ctio

n, w

e h

ave

disc

uss

ed t

he

sum

of

the

term

s of

a f

un

ctio

n g

iven

as:

f:

Z, f

(k)

= a

k

Rem

embe

r th

at, w

e u

sed

(sig

ma

not

atio

n)

in o

rder

to

den

ote

the

sum

of t

he

term

s of

th

e

fun

ctio

n f.

Now

, we

will

intr

odu

ce a

new

not

atio

n,

(pi)

, use

d fo

r re

pres

enti

ng

the

prod

uct

of t

he

term

s of

th

e ab

ove

fun

ctio

n.

Defi

nit

ion

Let

f:

Z, f

(k)

= a

kan

d r,

nZ

prov

ided

th

at r

n, t

hen

is t

he

prod

uct

of

(n–

r+

1)

term

s of

th

e fu

nct

ion

ffr

om r

to n

wh

ere

kis

th

e in

dex

of

mu

ltip

licat

ion

, r is

th

e lo

wer

bou

nd

and

n is

th

e u

pper

bou

nd.

12

...n

kr

rn

kr

aa

aa

can

als

o be

den

oted

by

and

is r

ead

as “

prod

uct

of

a k’s

fro

m k

= r

to k

= n

Stu

dy t

he

follo

win

g ex

ampl

es.

40

34

540

3

0

98

70

9

1

203

33

33

1 1

100

12

310

0

1

...,

...,

12

3...

,

12

34

..., 1

12

3...

,1

23

41

33

33

...3

.

kk

kk

n k

k n k

k

kaa

aa

a

aa

aa

a

nk

nk

n

kn

kn

[,

]

or

n

kk

rk

nk

rn

aa

n

kk

r

a

1.

Mu

ltip

licati

on

Fo

rm

ula

s

a.b.

!(

1)!

n

kp

nk

p1

!n k

kn

FO

RM

UL

A

Page 29: Mathematical Induction, Summation and Product Notation

119

Mat

hem

atic

al In

duct

ion

2.

Pro

perti

es o

f M

ult

ipli

cati

on

No

tati

on

Pro

of

1.B

y de

fin

itio

n,

2.O

bvio

usl

y, (

1)(

2)..

12

3...

(1)

(1)

...1

23

...(

1)

!.

(1)

!

n

kp

kp

pp

n

pp

pn

p

np

1

12

3...

,

!

n k

kn

n

log

(1)

log

(1)

.n

kp

kp

kn

FO

RM

UL

A

Pro

of

Her

e, w

e sh

all u

se t

he

prop

erti

es o

f lo

gari

thm

.

1lo

g(

1)lo

g(

1)lo

g(

2)...

(log

(1)

log(

1)lo

g(2)

log(

1)...

log

log(

1)lo

g

log(

1)lo

g(

1).

log

n

kp

pn

kp

p

kp

pn

pp

np

pn

nn

p

11 .

n

kp

kn

kp

FO

RM

UL

A

Pro

of

It is

obv

iou

s th

at,

11

21

1...

.1

n

kp

kn

pn

nk

pp

np

Pro

of

Obv

iou

sly,

1

1 ti

mes

(1)

tim

es

...=

c a

nd

...

=c

.n

nn

nr

kk

rn

nr

cc

cc

cc

cc

cc

Pro

perti

es 7

For

can

d r

¢,

1

1

an

d

.n

nn

nr

kk

r

cc

cc

Page 30: Mathematical Induction, Summation and Product Notation

120

Appl

ied

Mat

hem

atic

s 11

EX

AM

PLE29

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

c.d.

7

5

1 6k

6

3

2k

9

1

(3)

p

4

1

3k

a.c.

Th

e so

luti

ons

of b

. an

d d.

are

left

as

an e

xerc

ise

for

the

stu

den

t.

66

31

4

3

22

216

.k

44

1

33

81.

k

So

luti

on

Pro

of

Obv

iou

sly,

12

31

12

31

tim

es

...

......

.

n

kn

k

nn

nn

kk

n

ca

ca

ca

ca

ca

cc

cc

aa

ac

ca

EX

AM

PLE30

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

c.3 1

1(

)t

t

52

1

2p

p3

1

4k

k

a. b.an

d c.

are

left

as

an e

xerc

ise

for

the

stu

den

t.

33

33

11

44

4(1

23

384.

kk

kk

So

luti

on

Pro

perti

es 8

For

c,

11

.n

nn

kk

kk

ca

ca

Pro

of

1

12

11

1

......

.p

nn

kp

pn

kk

kk

kp

aa

aa

aa

aa

Pro

perti

es 9

For

1 <

p<

n, p

, 1

11

.p

nn

kk

kk

kk

p

aa

a

Page 31: Mathematical Induction, Summation and Product Notation

121

Mat

hem

atic

al In

duct

ion

EX

AM

PLE31

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

17

10

1(1

)p

p

7

4k

k

a.B

y pr

oper

ty, 3

, we

hav

e

Div

idin

g bo

th s

ides

of

this

equ

alit

y by

gi

ves

b.T

he

solu

tion

is le

ft a

s an

exe

rcis

e fo

r th

e st

ude

nt.

7

74

34

1

12

34

56

77!

.1

23

3!k

k

k

kk

k

3

1

,k

k

37

7

11

4

.k

kk

kk

kS

olu

tio

n

EX

AM

PLE32

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

3

1

()

2kk

k3

2

1

2k

k

k

a. b.T

his

par

t is

left

as

an e

xerc

ise

for

the

stu

den

t.

33

32

2

11

1

12

32

22

8

22

(22

2)

(12

3)

29.

kk

kk

k

kk

So

luti

on

Pro

of

1. 2.2

13

11

23

1

23

11

12

3

... ...:

,

0....

nk

n

kk

n

nn

nk

kk

kk

n

aa

aa

ab

bb

bb

aa

aa

ab

bb

bb

b

11

22

33

1

12

31

23

1

()

...

(...

)(

...)

.

n

kk

nn

k

nn

nn

kk

kk

ab

ab

ab

ab

ab

aa

aa

bb

bb

ab

Pro

perti

es 1

0

not

atio

n h

as d

istr

ibu

tive

pro

pert

y ov

er m

ult

iplic

atio

n a

nd

divi

son

.

1. 2.

11

1

(:

):

,

0.n

nn

kk

kk

kk

kk

ab

ab

b

11

()

,n

nn

kk

kk

kk

k

ab

ab

Page 32: Mathematical Induction, Summation and Product Notation

122

Appl

ied

Mat

hem

atic

s 11

Note

not

atio

n d

oes

not

hav

e di

stri

buti

ve p

rope

rty

over

add

itio

n a

nd

subt

ract

ion

i.e.

,

11

1

()

.n

nn

kk

kk

kk

k

ab

ab

Pro

perti

es 1

1R

ule

for

Ch

angi

ng

Bou

nda

ries

For

r, p

,

You

may

wor

k ou

t fo

r th

e pr

oof

by y

ours

elf.

2

.n

pn

pn

kk

pk

pk

kr

pk

rp

aa

a

Pro

perti

es 1

2C

omm

uta

tive

Pro

pert

y of

11

11

()

()

nm

mn

krkr

kr

rk

aa

EX

AM

PLE33

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

c.10

0t

p7

2

1(1

)k

k

10

13

log

.k

k

k

a. b. c.ar

e le

ft a

s an

exe

rcis

e fo

r th

e st

ude

nt.

77

16

22

11

11

(1)

(1) 1

1

1 2

kk

k

kk

kk

2 33 4

4 55 6

61

.7

7

1010

28

12

13

33

21

45

611

log

log

(2)

log

(2)

log

3lo

g4

log

5...

log

10

log

3lo

g4

kk

kk

kk

kk

k

log

4

log

5

log

5

log

6

log1

0...

11lo

g3.

log1

1

So

luti

on

Pro

of

12

31

11 11

121

2122

21

2

12

11

1

12

1 11

()

(...

)

(...

)(

...)

...(

...)

......

(...

)

().

nm

n

krk

kk

kmk

rk

mm

nn

nm

mm

m

rr

nrr

rr

m

rr

nrr m

n

krr

k

aa

aa

a

aa

aa

aa

aa

a

aa

a

aa

a

a

Page 33: Mathematical Induction, Summation and Product Notation

123

Mat

hem

atic

al In

duct

ion

EX

AM

PLE34

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

32

11

()

tp

pt

43

11

2(

)3r k

kr

a. b.T

he

solu

tion

is le

ft a

s an

exe

rcis

e fo

r th

e st

ude

nt.

23

64

34

4

33

11

11

46

24

36

912

30

22

22

2(

)3

33

22

.3

33

33

r kk

kk

rk

k

So

luti

on

EX

AM

PLE35

Eva

luat

e th

e gi

ven

exp

ress

ion

s.

a.b.

110

364

1

log

(2

)k

k

210

(2

)

0

3k

k

a. b.

101

11

1010

1010

33

164

6464

11

31

log

23

1lo

g(

2)

log

2(

3)l

og2

.2

6lo

g2

12

kk

kk

kk

1010

22

20

0

1011

2110

1110

(2

)(

44

)4

411

(2

)38

522

044

209

64

0

33

33

33

.k

k

kk

kk

k

So

luti

on

EX

AM

PLE36

If

then

fin

d th

e va

lue

of n

.5

11

2n k

k

kn

k

Th

e so

luti

on is

left

as

an e

xerc

ise

for

the

stu

den

t.

So

luti

on

Pro

of

Obv

iou

sly,

21

3

12

31

1

...

...

.

kn

n

kn

k

na

aa

aa

k

aa

aa

a

rr

rr

r

rr

Pro

perti

es 1

3

For

r,

1

1

n

kk

k

na

a

k

rr

Page 34: Mathematical Induction, Summation and Product Notation

124

Appl

ied

Mat

hem

atic

s 11

EX

AM

PLE37

Pro

ve t

hat

22

22

(1)

(21)

12

3...

.6

nn

nn

EX

AM

PLE38

Pro

ve t

hat

22

23

2(

1)1

23

...(

).

2n

nn

Rem

embe

r th

at w

e h

ave

prov

en

this

for

mu

la b

efor

e. B

ut

now

,

we

will

pro

ve i

t by

cal

cula

tin

g

the

area

of

the

rect

angl

e h

avin

g

the

side

s 1

+ 2

+ 3

+ .

.. +

n

and

2n+

1 u

nit

s. I

n F

igu

re 1

.2,

the

lett

ers

A1,

A2,

A3,

...,

An

den

ote

the

area

s pa

inte

d by

th

e

sam

e co

lor.

A(A

BC

D)

= A

1+

A2

+ A

3+

. . .

+ A

n

(1 +

2 +

3 +

. . .

+ n

) (2

n+

1)

= 3

+ 1

2 +

27

+ .

. . +

3n

2

Hen

ce

2

1

(1)

(21)

.6

n k

nn

nk

22

1

(1)

(21)

3(1

49

...3

2

n k

nn

nn

k

So

luti

on

nBC

AD

32

1

12222

A3

A2

A1

n � times

An

By

the

Bin

omia

l th

eore

m t

hat

(x+

)4

= x

4+

4x3 y

+ 6

x2 y2+

4xy

3+

y4 .

Usi

ng

this

exp

ress

ion

yie

lds

(1 +

1)4

= 1

4+

4 ·

13· 1

+ 6

· 12

· 12

+ 4

· 1

· 13

+ 1

4

(2 +

1)4

= 2

4+

4 ·

23· 1

+ 6

· 22

· 12

+ 4

· 2

· 13

+ 1

4

(3 +

1)4

= 3

4+

4 ·

33· 1

+

6 · 3

2· 1

2+

4 ·

3 · 1

3+

14

......

......

......

......

......

......

......

......

......

......

......

......

......

.....

......

......

......

......

......

......

......

......

......

......

......

......

......

.....

(n+

1)4

= n

4+

4 ·

n3

· 1 +

6 ·

n2

· 12

+ 4

· n

· 13

+ 1

4

So

luti

on

Page 35: Mathematical Induction, Summation and Product Notation

125

Mat

hem

atic

al In

duct

ion

EX

AM

PLE40

Pro

ve t

hat

by u

sin

g su

mm

atio

n n

otat

ion

.2

31

47

...3

22

nn

n

1 11

2 2

14

7...

32

(32)

32

(1)

32

2

33

42

3.

2

n k nn

kk

nk k nn

n

nn

n

nn

So

luti

on

Add

ing

thes

e eq

ual

itie

s si

de b

y si

de g

ives

(n+

1)4

= 1

4+

4(1

3+

23

+ ..

. + n

3 ) +

6(1

2+

22

+ ..

. + n

2 ) +

4(1

+ 2

+ ..

. +n

) +

n.

Sin

ce

we

get

By

rear

ran

gin

g th

is e

qual

ity,

we

will

hav

e

Hen

ce,

22

3

1

2

(1)

4

(1)

()

.2

n k

nn

k

nn

34

32

22

1

22

42

(2

1)

(1)

.

n k

kn

nn

nn

n

nn

43

23

1

(1)

(21)

(1)

46

44

64

62

n k

nn

nn

nn

nn

nk

n

2

11

(1)

(21)

(1)

an

d

62

nn

kk

nn

nn

nk

k

43

23

2

11

1

46

41

14

64

nn

n

kk

k

nn

nn

kk

kn

EX

AM

PLE39

Fin

d th

e su

m –

11 –

7 –

3 +

1 +

5 +

... +

63.

Th

e so

luti

on is

left

as

an e

xerc

ise

for

the

stu

den

t.

So

luti

on

Page 36: Mathematical Induction, Summation and Product Notation

126

Appl

ied

Mat

hem

atic

s 11

EX

AM

PLE41

Fin

d th

e su

m3

2

1

(46

2).

n k

kk

k

= n

2 (n+

1)2

– n

(n+

1)(

2n+

1)

+ n

(n+

1)

= n

(n+

1)[

n(n

+ 1

) –

(2n

+ 1

) +

1]

= n

(n+

1)(

n2

+ n

– 2n

– 1

+ 1

)

= n

(n+

1)(

n2

– n

)

= n

4–

n2 .

32

2

1

(1)

(1)

(21)

(1)

(46

2)

4(

)6

22

62

n k

nn

nn

nn

nk

kk

So

luti

on

EX

AM

PLE42

Pro

ve t

hat

(1)

(2)

12

23

34

...(

1).

3n

nn

nn

2

11

12

23

34

...(

1)(

1)(

)

(1)

(21)

(1)

62

(1)

21

()

(1)

23

(1)

24

23

(1)

(2)

.3

nn

kk

nn

kk

kk

nn

nn

n

nn

n

nn

n

nn

n

So

luti

on

EX

AM

PLE43

Eva

luat

e10

119

13

2

(2

(3)

):6.

kk

k

Sin

ce

wh

ere

n–

p+

1 is

th

e n

um

ber

of t

erm

s, k

[p, n

], w

e ge

t

1011

9

13

2

(2

(3)

):6

((2

10)

(3

9)):

(612

)

2027

15.

722

kk

k

()

(1)

n

kp

cc

np

So

luti

on

Page 37: Mathematical Induction, Summation and Product Notation

127

Mat

hem

atic

al In

duct

ion

EX

AM

PLE44

Pro

ve th

at

by u

sin

g su

mm

atio

n n

otat

ion

.2

44

44

(1)

(21)

(33

1)1

23

...30

nn

nn

nn

Th

e so

luti

on is

left

as

an e

xerc

ise

for

the

stu

den

t.S

olu

tio

n

EX

AM

PLE45

Fin

d th

e su

m

102

3

(4

).k

kk

1010

22

2

33

2

2

(4

)((

2)4(

2))

(4

kk

kk

kk

kk

44k

88

2

11

8)(

4)

89

174

86

2032

172.

kk

k

So

luti

on

EX

AM

PLE46

Eva

luat

e 4

2

0

(23

7).

k

kk

44

12

2

00

1

52

1

(23

7)[2

(1)

3(1)

7]

(28)

56

115

62

58

62

110

1540

55.

kK K

kk

KK

kk

So

luti

on

EX

AM

PLE47

Eva

luat

e 15

2

4

2.k

k

1515

153

122

31

4

44

43

1

1216

432

84

24

44

4

14

44

22

4.

14

33

kk

kk

kk

kk

So

luti

on

Page 38: Mathematical Induction, Summation and Product Notation

128

Appl

ied

Mat

hem

atic

s 11

EX

AM

PLE48

Eva

luat

e 20

1

1

1(

1)(

).

2n

n

k

Th

e so

luti

on is

left

as

an e

xerc

ise

for

the

stu

den

t.

So

luti

on

EX

AM

PLE50

Eva

luat

e 40

1

(2

12

1).

k

kk

40

1

(2

12

1)3

15

37

5...

8179

811

91

8.

k

kk

So

luti

on

EX

AM

PLE51

Eva

luat

e k

p

kp

44

11

((2

35)

).

kp

kk

kp

kk

44

44

11

11

45

((2

35)

)(2

43

54)

(810

)2

45

810

480

4012

0.2

So

luti

on

EX

AM

PLE49

Fin

d th

e su

m

71

6

1.

(1)

kk

k

Fir

st w

ay:

Usi

ng

the

“For

mu

la 1

.5”,

we

get

Sec

ond

way

:

Sin

ce

we

obta

in

7171

66

11

1(

)(

1)1

11

11

11

...6

77

871

72

11

11.

672

72

kk

kk

kk

11

1,

(1)

1k

kk

k

7171

5

61

1

11

1(

1)(

1)(

1)

715

11.

726

72

kk

kk

kk

kk

k

So

luti

on

Page 39: Mathematical Induction, Summation and Product Notation

129

Mat

hem

atic

al In

duct

ion

EX

AM

PLE52

Eva

luat

e k

k

30

21

2.

41

Sin

ce

we

get

kk

kk

k

3030

21

1

21

1(

)2

122

14

1

11

11

1(1

...)

33

559

61

160

(1)

.61

61

kk

k221

1(

),2

12

14

1S

olu

tio

n

EX

AM

PLE53

Eva

luat

e k

kk

20

20

2.

32

kk

kk

kk

kk

k

2020

20

20

00

21

11

22

()

(1)

(2)

12

32

11

11

11

12

(1...

)2

23

34

2122

121

2(1

).

2211

So

luti

on

EX

AM

PLE54

Eva

luat

e a

b

ba

34

00

(3)

.

ab

a a

ba

a a

34

3

00

0 3 0

45

(3)

((4

1)3

(41)

)2

(25

5)

34

25(3

1)5

2

100

3070

.

So

luti

on

EX

AM

PLE55

Let

x1

and

x 2be

th

e ro

ots

of t

he

quad

rati

c eq

uat

ion

x2

– 6x

+ 8

= 0

pro

vide

d th

at x

1<

x2.

If f

(x)

= 4

x–

1 fi

nd

the

sum

i

ii

xf

x2 1

().

Sin

ce t

he

root

s of

th

e eq

uat

ion

x2

– 6x

+ 8

are

x1

= 2

an

d x 2

= 4

, we

hav

e

= x

1f(

x 1)

+ x

2f(

x 2)

= f

(2)

+ 4

· f(

4)

=

2 · (

4 · 2

– 1

) +

4 ·

(4 ·

4 –

1) =

14

+ 6

0 =

74.

ii

i

xf

x2 1

()

So

luti

on

Page 40: Mathematical Induction, Summation and Product Notation

130

Appl

ied

Mat

hem

atic

s 11

EX

AM

PLE56

If

fin

t th

e su

m

a t

t3

1

.k

kk

a5

2

0

(23

5)5

,

Th

at is

, 5a

= 3

5

a=

7. H

ence

,

t

t7

32

2

1

78

()

2878

4.2

k

kk

52

0

56

115

6(2

35)

23

56

62

110

4530

35.

So

luti

on

EX

AM

PLE57

If

and

then

fin

d f

o g(

5)x p

gx

p2

1

()

,k

kk

52

0

(23

Sin

ce f

o g(

5) =

f(g

(5))

, we

obat

ain

pk

fg

fp

ff

k5

552

11

56

1155

56(

(5))

()

()

(55)

1540

.6

2

So

luti

on

EX

AM

PLE58

Pro

ve t

hat

n p

pp

n1

!(

1)!

1.

= 2

! –

1!+

3!

– 2!

+ 4

! –

3! +

... +

(n

+ 1

)! –

n!

= (

n+

1)!

– 1

.

nn

pp n

n

pp

pp

pp

pp

pp

p

11 1

1

!(

11)

!

((1)

!!)

((1)

!!)

So

luti

on

EX

AM

PLE59

Pro

ve t

hat

n k

kk

n1

11

.(

1)!

(1)

!

nn

kk n k n k

kk

kk k k

k

kk

nn

n

11 1 1

11

(1)

!(

1)! 1

1(

)(

1)!

(1)

!

11

()

!(

1)!

11

11

11

1...

1!2!

2!3!

4!!

(1)

!

11

(1)

!

So

luti

on

Page 41: Mathematical Induction, Summation and Product Notation

131

Mat

hem

atic

al In

duct

ion

EX

AM

PLE60

Eva

luat

e k

k

99

1

1(1

). 1

kk

kk

k

9999

11

1(1

) 11

99!

99!

1.

100!

99!

100

100

So

luti

on

EX

AM

PLE61

Eva

luat

e k

k

k62

4 5

log

(1)

.

= lo

g 56

log 6

7 lo

g 78

... lo

g 624

625

= lo

g 562

5 =

log 5

54=

4.

kk

k62

4 5

log

(1)

So

luti

on

EX

AM

PLE62

Pro

ve t

hat

n

k

nn

k22

11

(1)

.2

nn

kk

nn

n

kk

k

kk

k kk

kk

kk

kk

nn

nn

nn

nn

2

22

22 2

22

11

(1)

(1)

(1)

11

()

()

12

31

34

51

(...

)(

...)

23

42

34

11

1.

22

So

luti

on

EX

AM

PLE63

Fin

d th

e va

lue

of x

, if

tx

t92

25

1

316

()

()

.4

9

By

usi

ng

“Pro

pert

y 7”

, we

get

Th

is g

ives

x=

–25

.

t

tt

xx

x

t

xx

9 1

92

22

52

59

104

10

1

904

10

316

316

34

()

()

()

()

()

()

49

49

43

33

()

()

904

10.

44

So

luti

on

Page 42: Mathematical Induction, Summation and Product Notation

132

Appl

ied

Mat

hem

atic

s 11

EX

AM

PLE66

Eva

luat

e k

p

kp

43

11

().

kp

k kk

kp

k

kk

43

43

11

1

44

34

34

313

7

11

()

(3!

)

66

6(4

!)2

3.

So

luti

on

EX

AM

PLE65

Fin

d th

e va

lue

of x

, if

xt

x

t

13

3

2

48

.

x2+

3x

= 9

x–

9

x2+

3x

– 9x

+ 9

= 0

x2–

6x+

9 =

0

(x–

3)2

= 0

Hen

ce, w

e co

ncl

ude

th

at x

= 3

.

x t

xx

tt

xt

xx

tt

xx

xx

xx

xx

1

1(

1)3

31

33

33

21 (

1)3

3(

1)2

99

2

48

48

48

48

22

So

luti

on

EX

AM

PLE67

Eva

luat

e i

j

i j

34

11

().

ij

ii

ii

ij

44

34

33

11

11

4 3

()

()

4!24

(3!)

3.

3224

So

luti

on

EX

AM

PLE68

Eva

luat

e a

b

ab

102

11

().

aa

ba

ab

aa

aa

102

1010

2

11

11

((

))(

1)(

2)(

32)

1011

2110

113

210

62

385

165

2057

0.

So

luti

on

EX

AM

PLE64

Eva

luat

e k

kk

kk

25

21

32

.4

kk

kk

kk

kk

kk

kk

kk

kk

25

55

5

21

11

1

32

(1)

(2)

12

(4)

44

23

45

63

46

71

()

()

6(

)1.

12

34

55

68

96

So

luti

on

Page 43: Mathematical Induction, Summation and Product Notation

133

Mat

hem

atic

al In

duct

ion

EX

AM

PLE69

Eva

luat

e n

nk

n2

100 1

1

((

1)).

n

nk

k kk

n2

210

0 11

11

11

1

22

2

11

50 ti

mes

((

1))

(1

23

45

6...

9910

0)

(11

1...

1)50

5025

00.

So

luti

on

EX

AM

PLE70

Eva

luat

e n

nk

n

kk

15

12

1(l

og).

n

nn

nn

nk

nn

nn

nn

kn

kn

nn

n

1515

12

2

15

2

15

2

23

415

2

12

34

1(

(log

)(l

oglo

glo

g...

log

)1

23

23

41

(log

...)

12

3

log

(1)

log

3lo

g4

log

5...

log

16

log

16

4.

So

luti

on

EX

AM

PLE71

If

fin

d f

o g(

4)x

xx

x

mt

kn

mf

xg

xn

21

11

11

1(

) a

nd

(

),

612

Sin

ce f

og (

4) =

f(g

(4)

), w

e ob

tain

mk k

kmf

42

11

44

11

4

(2)

6

31

62

11

()

.2

16tn

t

fog

fn

f ff3

4 11

4 1

1(4

)(

)12 1

(6)

12 24 ()

(2)

12

So

luti

on

Page 44: Mathematical Induction, Summation and Product Notation

134

Appl

ied

Mat

hem

atic

s 11

EX

ER

CIS

ES

3.2

3.E

valu

ate

the

indi

cate

d su

ms

belo

w.

a.b.

c.d.

e.f.

k

k26

7 87

sin

(3)

k

k35

9 180

cos

n

k

n30

1

(1)

sin

2p

p

p7

0

(1)

(21)

k

k

k3

12

2

(1)

k

k

a21

2

1

(1)

2.E

valu

ate

the

indi

cate

d su

ms

belo

w.

a.b.

c.d.

e.f.

g.h.

i.j.

k.l.

k

k

a11

3

log

k

kk

3

0

(1)

!

mk

kk

2010

10

(3)

(21)

n

kn

k2

(21)

p

p7

3

(31)

p

p1

2

7

(216

)

t

t9

2

1

(32)

k

kk

122

0

(1)

k

k7

2

0a

a17

0

(21)

k

k40

3

(2)

k

k50

1

1.E

valu

ate

the

indi

cate

d su

ms

belo

w.

a.b.

c.

d.e.

f.

g.h.

i.n

k2

2

(1)

k

n4

1

(1)

k

2

0

r

e5

1t

3

2

10m

8

2

(6)

p22

3

7k10

0

(2)

k12

1

3

gh.

i.j.

k.l.

m.

n.

o.p.

q.r.

s.t.

u.v.

w.

x.8

82

2

22

(3

)(3

1)k

k

kk

k

77

2

11

(2

)(2

4)k

k

kk

k

1313

1

11

22

xx

xx

133

2

13

(23

)k

kk

k

52

5

()

r

kk

43

4k

k

50

1(

1)!

k

kk

100 1

!k

kk

79

32

1lo

g(1

) 1p

p

100 1

1lo

g1

kk

89

1

(si

nco

sk

kk

2

(1

1n

k

kk

22

42

32

23

nn

ki

ki

ki

50

32

2k

kk

k

50

23

1 32

pp

p

9

21

23

3k

kk

k

k

ii

1000

2

1

()

(1)

k

k90

2

1

sin

4.E

valu

ate

the

indi

cate

d su

ms

belo

w.

a.b.

c.d.

e.f.

2

11

1

kr

pr

t

p3

11

12

kn

kn

m

t

15

12

(3)

ab

aab

4

01

(22)

km

km

54

2

10

(3)

kn

nkn

75

10

(2)

3m

n

nm

A.

Su

mm

ati

on

No

tati

on

Page 45: Mathematical Induction, Summation and Product Notation

135

Mat

hem

atic

al In

duct

ion

6.P

rove

th

e fo

llow

ing

expr

essi

ons.

a.b.

c.d.

0

1n

k

rk

rn

kn

2

0

2n

k

nn

kn

1

0

(1)

(2)

2n

n

k

nk

nk

1

1

2n

n

k

nk

nk

5.P

rove

th

at

0

1co

tco

t2.

2si

n2

nn

nk

aa

a

8.If

fi

nd

the

sum

6

1

3.

kk

a6

1

(23)

58,

kk

a

9.If

fi

nd

n.

0

(23)

63,

n

k

k

10.

If

fin

d n

.(

1)

1

log

39

log

27,

nk

k

19.

If

fin

d a 6

.6

7

21

3

(23)

2,

kk

kk

aa

20.

If

fin

d th

e va

lue

of

a+

b+

c.

2

1

(62)

2

n k

anbn

ck

12.

If

fin

d n

.2

92

2,1

nn

kk

17.

If

fin

d a 4

+ a

5.2

1

1

22

,n

nk

k

a

18.

If a

1=

1 a

nd

a n=

an

–1+

2, f

ind

the

sum

30

1

.k

k

a

13.

If

fin

d f(

i) w

her

e i2

= –

1.

4

0

()

,n

k

k

fx

x

15.

If f(

x) =

x+

1, x

1=

1, x

2=

2 an

d

fin

d f(

i) w

her

e i2

= –

1.

32

1

()

50,

ii

i

xf

x

16.

Let

x1an

d x 2

are

the

root

s of

the

quad

ratic

equ

atio

n

x2+

2x

– 3

= 0

. If f

: +

+, f

(x)

=2x

+ 3

then

eval

uate

2

11

().

ii

xf

x

11.

If

fin

d a.

204

1

1

12

2,

ka

k

14.

Let

f :

+

+,

Fin

d th

e va

lue

of f

–1(8

)1

()

21.

x k

fx

k

7.E

valu

ate

the

indi

cate

d su

ms

belo

w.

a.b.

c.d.

e.f.

64

21

64lo

g(

)k

kk

210

0

10

kk

10

5

102k

kk

0

nk

k

nx

k

60

0

5

k

k

k

6

0

7

kk

Page 46: Mathematical Induction, Summation and Product Notation

136

Appl

ied

Mat

hem

atic

s 11

26.

If f

(x)

= 2

x+

3 a

nd

g(x)

= 3

x–

2 fi

nd

the

sum

51

1

()

().

x

fog

x

29.

If

fin

d x.

33

1

()

30,

x

km

x

mk

30.

If

fin

d a.

33 3

(24)

168,

aa

ka

k

k

32.

If

and

fin

d f(

2).

1 11

()

2,p

x pt

gx

2

11

()

((

))

xk

km

fx

gm

m

31.

If x

1=

2, x

n=

x2 n

– 1

–1 a

nd

f(x)

= x

+ 1

th

en fi

nd

the

sum

3

3

11

()

().

ji

ij

i

xx

fx

27.

If x

1=

2, x

2=

4 an

d f(

x) =

2x , g(

y) =

2lo

g 4y

then

fin

d th

e su

m

2 1

()(

). ii

gof

x

28.

Let

f:

+, f

(x)

= lo

gan

d

g:

N+

, g(

x) =

log

then

fin

d th

e su

m

50

3

[(

)(

1)].

k

fk

gk

1(1

)x

1(1

)x

21.

If

fin

d th

e

valu

e of

x–

2y.

23

11

(3

)12

an

d

()

3,k

p

kxy

pxy

23.

If

fin

d th

e su

m 2

5

+ 4

7

+ .

..

+ 3

0 33

. in

ter

ms

of A

.

152

1

(42

)k

Ak

k

25.

If f

(x)

= x

– 3

and

g(x)

= x

2 , th

en f

ind

the

sum

5

1

()(

).x

gof

x

24.

If

and

then

fin

d

in t

erm

s of

Aan

d B

.

1

12

1

n kk

2

1

1,

n

kn

Bk

1

124

n kk

22.

Let

x1an

d x 2

be th

e ro

ots

of th

e qu

adra

tic e

quat

ion

x2+

(2a

+ b

)x+

a–

b=

0.

Fin

d th

e va

lue

of a

(ab)

, if

22

2

11

22

an

d

5k

kk

k

xx

Page 47: Mathematical Induction, Summation and Product Notation

137

Mat

hem

atic

al In

duct

ion

36.

If

then

fin

d th

e va

lue

of x

.1

1

381

,x

kx

k

37.

If

then

fin

d th

e va

lue

of x

.4

12

1lo

g(1

) 1

1

32

,6

xp

p

38.

If

fin

d x.

22

log

(1)

log

(25)

,x

kk

kx

39.

If

fin

d n

.3

(1)

1

212

8,n

k

k

41.

Eva

luat

e if

f(x

) =

3x

+ 2

.6

1

1

((

)1)

,k

fk

42.

If f

(x)

= x

, th

en f

ind

wh

ere

i2=

–1.

100 1

[(

)]k

k

fi

40.

Let

F

ind

the

smal

lest

val

ue

of n

wh

ich

mak

es A

zero

.

32

1

(7

12).

n k

kk

k

B.

Mu

ltip

licati

on

No

tati

on

33.

Eva

luat

e th

e gi

ven

exp

ress

ion

s be

low

.

a.b.

c.

d.e.

f.

g.h.

i.7

3

(21)

n

k5

1

(2)

k

n7

2p

e

4

0

3(

)2

k

3

1

2r

4

2

3 ()

4k

7 3

1 ()

3t

5

0

(1)

k

4

1

5k

34.

Eva

luat

e th

e gi

ven

exp

ress

ion

s be

low

.

a.b.

c.d.

e.f.

g.h.

i.j.

k.l.

m.

n.

o.p.

q.r.

s.t.

u. x. w.

5050

22

01

(3

2):

(2

)k

k

kk

kk

2020

11

11

log

(1)

log

(1)

aa

aa

33

2

10

(1)

(1)

xx

xx

x

89

1

tan

k

k3

72

8

3kk

k

10

22

44

(1)

k

k k

275

11

k

k k

250

2

1

(4

12)

k

kk

26

()

2

2k

k

k

k

25

21

log

4k

k

26

()

2

2k

k

k

k

50!

1

log

3kk

k

21

3

1(1

)2

rr

154

log(

1) 1

3

2p

p

503

1

9k

kk

28

2

log

(1)

kk

k3

2

1

log

2m

am

14

13k

k

k5

1

2k

k

k

62

1

2

3t

k

7 0

2t

t

7

3

(36)

r

r41

1k

k

35.

Eva

luat

e th

e gi

ven

exp

ress

ion

s be

low

.

a.b.

c.d.

24

3

11

ji

i j

180

180

sin

cos

10

(2)

kk

kk

45

21

()

rn

nr3

31

(1)

k

kn

Page 48: Mathematical Induction, Summation and Product Notation

138

Appl

ied

Mat

hem

atic

s 11

46.

If

then

fin

d n

.3

8

11

39

2,

k

kk

kn

48.

If

and

fin

d g(

63).

() 1

1(

)(1

)f

x

p

gx

p1

1(

)1

x k

fx

kk

50.

If

and

fin

d

go

f(3

).

2

11

()

(1)

,x

xk

kk

gx

k2

1

11

()

2x

xk

kk

fx

49.

If

then

fin

d 2

log

(1)

.a

kk

a

k

7

2

(2)

(3)

(4)

k

ak

kk

51.

If

and

x 1=

2, x

2=

4, f

ind

the

sum

2 1

().

ii

i

xf

x

1

1

()

2x

k

k

fx

52.

Let

x1an

d x 2

be th

e ro

ots

of th

e qu

adra

tic e

quat

ion

x2+

(a

+ b

)x+

b–

2a=

0.

If

and

then

fin

d th

e va

lue

of t

he

pair

(a,

b).

2 1

6i

i

x

2 1

5i

i

x

53.

Eva

luat

e if

f

: +

,

and

g :

++, g

(x)

= x

.1

()

fx

x

11

11

()

(),

kn

k

kr

gk

fr

54.

Let

x 1

and

x 2be

th

e ro

ots

of

the

equ

atio

n

x2–

5x–

n=

0. I

f fi

nd

the

sum

of

the

valu

es w

hic

h n

can

tak

e.

22

1

11

(())

0k

ki

ik

i

xx

47.

If

then

fin

d 4

2

1k

k

x1

21,

n

kk

xn

45.

Eva

luat

e th

e gi

ven

exp

ress

ion

s be

low

.

a.b.

c.d.

e.f.

5

3

2(2

4)

1

2k

xk

k

710

11

(1)

(2)

kk

kp

57

11

1(1

)k

kk

510

11

rk

r k

107

11

2k

p

k3

5

11

2r

k

44.

If

and

fin

d (g

o f)

(3).

1 1

()

,x k

gx

k1

()

2x

k

k

fx

43.

If x

1=

1,

x 2=

2,

x 3=

3 an

d f(

x) =

2x

– 1

then

eval

uat

e 3

21

.[

()]

i

iix

fx

Page 49: Mathematical Induction, Summation and Product Notation

139

Cha

pter

Rev

iew

Tes

t 3A

CH

AP

TE

R R

EV

IE

W T

ES

T 3

A

5.If

th

en w

hat

is t

he

valu

e of

th

e su

m

2n+

(2n

+ 1

) +

(2n

+ 2

) +

... +

3n

in te

rms

of M

?

A)

M2

+M

B)

M+

1 C

)3M

D)

4ME

)5M

1

n k

kM

2.T

he

sum

of

the

cube

s of

th

e n

um

bers

fro

m 1

to

n

is K

= 1

3 +

23

+ 3

3 +

... +

n3 . H

ow m

uch

will

K

incr

ease

if

each

of

the

nu

mbe

rs 1

, 2,

3,

...,

nis

incr

ease

d by

1?

A)

nB

)n

3C

)n

(n2

+3n

)

D)

n(n

2+

3n

+ 3

)

E

)2

(1)

()

2n

n

3.W

hat

is t

he

valu

e of

th

e su

m

m2

+ (

m+

1)2

+ (

m+

2)2

+ ..

. + (

2m)2

wh

ere

m

is a

nat

ura

l nu

mbe

r?

A)

B)

C)

D)

E)

(1)

(14

3)3

mm

m

2(

1)(1

21)

3m

mm

(1)

(21)

12m

mm

(1)

(18

1)6

mm

m(

1)(1

41)

6m

mm

6.If

th

en w

hat

is

the

valu

e of

n?

A)

9 B

)10

C

)11

D)

12

E)

13

33

33

33

33

13

5...

(21)

199

242

24

6...

(2)

nn

7.If

th

en t

he

valu

e of

xis

A)

28

B)

25

C)

23D

)20

E

)19

14

1515x

kk

kk

8.W

hat

is t

he

valu

e of

th

e su

m

A)

233B

)234

C)

235D

)236

E)

237

32

1

32!

wh

ere

?(

)!!

k

nn

kk

kn

kk

10.

Wh

at is

th

e va

lue

of t

he

sum

A)

B)

C)

D)

E)

11 99 22

11 139 11

7 9

120 4

1?

1(

1)k

kk

kk

9.T

he

con

secu

tive

od

d in

tege

rs

are

grou

ped

as

follo

ws

1; (

3, 5

); (

7, 9

, 11)

; (13

, 15,

17,

19)

; ...

Wha

t

is t

he

sum

of

the

nu

mbe

rs in

th

e 10

’th g

rou

p?

A)

760

B)

897

C)

981

D)

1000

E

)10

21

4.Tr

ian

gula

r n

um

bers

can

be

repr

esen

ted

by d

ots

that

are

arr

ange

d in

th

e sh

ape

of a

n e

quila

tera

l

tria

ngl

e, a

s sh

own

bel

ow. T

he

firs

t fo

ur

tria

ngu

lar

nu

mbe

rs a

re g

iven

.

Wh

at is

th

e 15

’the

tria

ngu

lar

nu

mbe

r?

A)

3B

)5

C)

–5

D)

10

E)

2

t 1 =

1t 4

= 1

0t 2

= 3

t 3 =

6

1.If

th

e su

m o

f th

e fi

rst

3npo

siti

ve i

nte

gers

is

150

mor

e th

an t

he

sum

of t

he

firs

t n

pos

itiv

e in

tege

rs,

then

wha

t is

the

sum

of t

he fi

rst 4

n po

sitiv

e in

tege

rs.

A)

270

B)

300

C)

330

D)

360

E)

390

Page 50: Mathematical Induction, Summation and Product Notation

140

Appl

ied

Mat

hem

atic

s 11

13.

If

then

the

valu

e of

A–

Bis

A)

0 B

)C

)D

)E

)14

313

212

610

711

110

126 41

120

20

111

(1)

1 a

nd

n

nn

AB

nn

17.

If

then

th

e va

lue

of x

is

A)

3 B

)4

C)

5D

)6

E)

7

1 1

3x n

xn

x

18.

Wh

at is

th

e va

lue

of t

he

sum

A)

328B

)329

C)

330D

)331

E)

332

27

1

(21)

3?

n

n

n

20.

Def

ine

(na)

! fo

r n

and

a po

siti

ve t

o be

wh

ere

mis

th

e gr

eate

st i

nte

-

ger

for

wh

ich

n>

ma.

Th

en t

he

quot

ien

t

is e

qual

to

A)

210B

)212

C)

216D

)218

E)

220

8 2

(72

)!(1

8)!

0

()!

()

m

ak

nn

ka

19.

Wh

at is

th

e va

lue

of t

he

sum

26 +

37

+ 5

0 +

65

+ ..

. + 4

01?

A)

2796

B

)28

18

C)

2848

D)

2856

E

)28

72

15.

Wh

at is

th

e va

lue

of t

he

prod

uct

A)

B)

C)

D)

E)

37 2531 29

27 2523 25

17 1544

44

(1)(

1)(

1).

..(1

)?4

925

625

14.

Wh

at is

th

e va

lue

of t

he

prod

uct

A)

B)

C)

D)

E)

2047

2047

a10

2410

23a

2047

2048

a10

2310

24a

511

512

a

1024

48

...?

aa

aa

12.

Con

side

r th

e tr

ian

gula

r ar

ray

form

ed b

y ro

tati

ng

the

prod

uct

in

a s

tan

dard

mu

ltip

licat

ion

tab

le,

that

is,

Wh

at i

s th

e su

m o

f th

e el

emen

ts i

n t

he

18› th

row

?

A)

1020

B)

1060

C

)11

00

D)

1140

E

)11

80

1

22

34

3

46

64

58

98

5

......

......

......

......

......

......

......

......

11.

Wh

at is

th

e va

lue

of t

he

sum

A)

B)

C)

D)

E)

18 9

18 8

18 7

17 8

17 6

10

0

71

wh

ere

?

11

n

nn

nn

nr

rr

16.

Wh

at is

th

e va

lue

of t

he

sum

A)

B)

C)

D)

E)

1516

15

(41)

(41)

303

4

1516

15

(21)

(21)

303

2

1516

15

(41)

(41)

303

4

1516

15

(41)

(41)

303

4

1516

15

(21)

(21)

303

2

15

21

1(2

?2

)n

nn

Page 51: Mathematical Induction, Summation and Product Notation

141

Cha

pter

Rev

iew

Tes

t 3A

21.

If i

= ò

–1,

then

th

e su

m

equ

als

A)

B)

–10iñ

2 C

)

D)

E)

2(2

120

)2

i2

(21

20)

2i

212

22 2

40

0

cos(

4590

)n

n

in

23.

If

for

k=

1, 2

, ...,

n–

1 an

d

x 1=

1 t

he

valu

e of

th

e su

m

equ

als

A)

B)

C)

D)

E)

23

4n

n2

4n

n

21

2n

32

n1

2n

1

n

kk

x

1

1 2k

kx

x

28.

Wh

at is

th

e va

lue

of t

he

sum

A)

1075

log

2B

)13

75 lo

g 2

C)

1825

log

2D

)20

25 lo

g 2

E)

2175

log

2

452

1

1

log(

2ta

n(2

1))?

n

n

n

30.

If

then

wh

at is

th

e va

lue

of a

+ b

+ c

?

A)

189

B)

200

C)

216

D)

225

E)

256

53

43

2

3n

kn

kan

bncn

26.

Th

e gr

aph

of

the

fun

ctio

n f

(x)

is g

iven

bel

ow.

Wh

at is

th

e va

lue

of t

he

sum

A)

–11

B)

–10

C)

–8

D)

–6

E)

–4

3 2 11

2

�2

�1

0

�2y

x

f(x

)

2

2

()?

x

xf

x

22.

Wh

at is

th

e va

lue

of t

he

sum

1 +

(1

+ 2

) +

(1

+ 2

+ 3

) +

... +

(1

+ 2

+ 3

+

... +

20)

?

A)

1750

B)

1540

C

)11

90

D)

970

E)

875

24.

Th

e sm

alle

st v

alu

e of

n s

uch

th

at t

he

proc

ut

exce

eds

100,

000

is

A)

7 B

)8

C)

9D

)10

E

)11

11

1

10k

n k29

.If

x1

= –

3, x

2=

1 a

nd

f(x)

= x

2–

4 th

en w

hat

is

the

valu

e of

th

e su

m

A)

–15

B)

–10

C)

–5D

)0

E)

5

2

1

(4)

()?

nn

n

xf

x

25.

Th

e ro

ots

of th

e eq

uat

ion

x3 +

4ax2 +

bx+

2 –

3a=

0

are

x 1,

x 2an

d x 3

. If

th

en t

he

valu

e of

a is

A)

B)

C)

D)

E)

5 44 5

4 72 5

4 5

33

11

(2)

nn

nn

xx

27.

Wh

at is

th

e va

lue

of t

he

sum

A)

2B

)3

C)

4 D

)5

E)

6

24

1

1?

21

21

nn

n

Page 52: Mathematical Induction, Summation and Product Notation

142

Appl

ied

Mat

hem

atic

s 11

CH

AP

TE

R R

EV

IE

W T

ES

T 3

B

7.W

hic

h o

ne

of t

he

follo

win

g is

equ

al t

o

A)

4n·

(n3 )!

B)

((4n

)!)3

C)

64(n

!)3

D)

22n(n

!)3

E)

4 · (

n!)

3

3

1

(4)?

n k

k

4.W

hic

h o

ne

of t

he

follo

win

g ex

pres

s th

e su

m

2 +

7 +

12

+ ..

. + 1

02?

A)

B)

C)

D)

E)

21

1

(31)

n

n10

2 1

(53)

n

n

102 1

(2)

n

n21

1

(53)

n

n21

1

(52)

n

n

8.W

hic

h o

ne

of t

he

follo

win

g is

equ

al

A)

42n

2+

8n

– 1

B)

12n

2–

11n

– 1

C)

42n

2–

3nD

)42

n2

– 3n

– 1

E)

42n

2+

11n

– 1

5

2

(41)

?n

kn

k

5.W

hic

h o

ne

of t

he

follo

win

g ex

pres

s th

e su

m

1 · 3

+ 3

· 7

+ 5

· 11

+ ..

. + 2

1 · 4

3?

A)

B)

C)

D)

E)

112

1

(2)

n

nn

112

1

(87

2)n

nn

432

1

(32

2)n

nn

212

1

(46

5)n

nn

112

1

(86

1)n

nn

2.W

hat

is th

e re

sult

of t

he

prod

uct

A)

0 B

)1

C)

log

(tan

87°)

D)

E)

1lo

g(ta

n3

)27

29!

log(

tan

)2

3

29

2

log(

tan

3)?

k

k

1.a

= 1

+ 2

+ 3

+ ..

. + 2

3

b=

12

+ 2

2 +

32

+ ..

. + 2

32

c=

13

+ 2

3 +

33

+ ..

. + 2

33

is g

iven

.

wh

at is

th

e va

lue

of t

he

sum

1 · 2

· 3

+ 2

· 3

· 4 +

3 ·

4 · 5

+ ..

. + 2

3 · 2

4 · 2

5

in t

erm

s of

a, b

, an

d c?

A)

a+

3b

+ 2

cB

)a

+ 2

b+

3c

C)

3a+

2b

+ c

D)

2a+

3b

+ c

E)

3a+

b+

2c

9.f

: +

+, g

: +

+

are

give

n.

Wh

at is

th

e va

lue

of f

og (

4)

A)

3501

B)

3511

C)

3526

D)

3541

E)

3561

11

()

3 a

nd

(

)!

xx

k

kk

fx

gx

k

6.

is g

iven

.

Th

e va

lue

of B

– A

is

A)

390

B)

410

C)

420

D)

430

E)

450

1111

1111

11

11

23

4...

11k

kk

k

B

23

411

11

11

...k

kk

k

Ak

kk

k

3.

(n

N+)

is g

iven

.

Wh

ich

on

e of

th

e fo

llow

ing

is e

qual

to

the

sum

(m+

1)

(m+

2)

+ (

m+

3)

+ ..

. (2m

– 1)

(2m

)?

A)

B)

C)

D)

E)

(1)

(2)

3m

mm

(1)

(1)

3m

mm

(1)

(1)

(23)

3m

mm

(1)

(74)

3m

mm

(1)

(74)

3m

mm

(1)

(2)

12

23

34

...(

1)3

nn

nn

n

Page 53: Mathematical Induction, Summation and Product Notation

143

Cha

pter

Rev

iew

Tes

t 3B

11.

If

then

th

e va

lue

of n

is

A)

5B

)7

C)

8 D

)9

E)

10

22

46

...2

1024

13

5...

(21)

nn

nn

12.

If

then

wh

ich

on

e of

the

follo

win

g is

equ

al t

o 4a

– 2b

+ c

?

A)

476

B)

493

C)

507

D)

521

E)

546

132

2

1

()

,k

xk

axbx

c

15.

Wh

at is

th

e re

sult

of

sum

A)

7B

)8

C)

9 D

)10

E

)11

48

4

(1)

?1

n

nn

n

21.

Wh

at is

th

e va

lue

of t

he

prod

uct

A)

[(p

–1)

! ]2B

)[(

p–

1)!

]3C

)(p

!)3

D)

(p!)

2E

)(p

!)3

– [(

p–

1)!]

3

12

3

1

()?

p k

pkk

13.

Wh

at is

the

valu

e of

the

prod

uct

A)

B)

C)

D)

E)

191

2917

629

168

2516

324

156

24

25

25

7(1

)?16

kk

17.

If f

: +

+,

and

g:

+

then

wh

at is

the

valu

e of

g(17

)?

A)

B)

C)

D)

E)

17

18!

218

18!

217

17!

218

17!

217

18!

32

2

()

()

()

(1)

x

k

fk

gx

fk

fk

1

x k

k

19.

Wh

at is

th

e re

sult

of

the

sum

A)

3136

B)

3442

C)

3558

D)

3726

E

)38

29

103

2

10

(25

41)

?k

kk

k

18.

Wh

at is

th

e va

lue

of t

he

prod

uct

A)

31024

–1

B)

31024

+1

C)

D)

E)

1024

31

4

1024

31

2

1024

31

2

9(2

)

0

(31)

?k

k

16.

Wh

at is

th

e va

lue

of t

he

sum

w

her

e

i=

ò–1

?

A)

2+

2ni

B)

2n+

1C

)n

+2i

D)

2n+

1 –

2n

iE

)2n

2+

1 –

2n

i

4

0

((1)

)n

k

k

ki

14.

If

then

wh

at i

s th

e su

m o

f th

e

coef

ficie

nts

of th

e te

rms

of P

(x)

with

eve

n po

wer

s?

A)

53·

14!

B)

–53

·13

!C

)–5

13!

D)

56 ·

13!

E)

–56

·14!

14

2

()

()

k

Px

xk

20.

then

wh

at is

th

e

nu

mer

ical

val

ue

of a

– b

+ c

?

A)

8B

)14

C

)21

D

)29

E

)34

92

8

(52)

n k

kan

bnc

10.

Wh

at is

th

e va

lue

of t

he

sum

A)

188

B)

202

C)

249

D)

286

E)

304

12

2

?2

n

n

Page 54: Mathematical Induction, Summation and Product Notation

144

Appl

ied

Mat

hem

atic

s 11

24.

Wh

at is

th

e va

lue

of t

he

prod

uct

A)

1B

)1,

1 C

)1,

01

D)

1,11

E

)1,

101

110

0 1

(1)

(1)?

k

kk

30.

Wh

ich

on

e of

th

e fo

llow

ing

is e

qual

to

prod

uct

wh

ere

A)

B)

C)

D)

E)

1

nk

k

k1

nk

k

n

1

!n k

k1

(1)

nk

k

k1

nn

k

k

!(

, )

?(

)!n

Pn

rn

r1

(,

)n r

Pn

r

28.

Wh

at is

th

e va

lue

of t

he

sum

1 +

(1

+ 2

) +

(1

+ 2

+ 2

2 ) +

...

+ (

1 +

2 +

22

+ ..

. + 2

n–

1 )?

A)

2nB

)2n

–n

C)

2n+

1–

n

D)

2n+

1 –

n–

2E

)n

· 2n

27.

If

then

wh

at is

the

valu

e of

the

sum

in

ter

ms

of m

?

A)

B)

C)

D)

E)

224

54

m19

25

2m

144

32

m28

83

2m

176

32

m

211

0

46

52

2k

kk

k

11

11

11

...2

34

1112

m

26.

then

wh

at is

th

e va

lue

of f

(5)?

A)

27B

)54

C

)81

D

)16

2 E

)24

3

1

()

3n

n

x

fx

29.

If n

cor

ds o

f a

circ

le a

re d

raw

n, t

hen

let

t nbe

th

e

max

imu

m n

um

ber

of n

on-o

verl

apin

g re

gion

s th

at

can

be

form

ed w

ith

in t

he

circ

le il

lust

rate

d be

low

.

Wh

at is

th

e va

lue

of t

10?

A)

52B

)54

C

)56

D

)58

E

)60

1 c

hord

t 2 =

2 r

egi

on

s

2 c

hord

s

t 2 =

4 r

egi

on

s

3 c

hord

s

t 3 =

7 r

egi

on

s

25.

If t

he

sum

1 +

2 +

3+

...

+ n

= M

then

wh

at i

s

the

valu

e of

th

e su

m

n+

(n

+ 3

) +

(n

+ 6

) +

(n

+ 9

) +

...

+ 4

nin

term

s of

M?

A)

3MB

)4M

C

)5M

D

)6M

E

)7M

23.

Pen

tago

nal

nu

mbe

rs c

an b

e re

pres

ente

d by

dot

s

that

are

arr

ange

d in

th

e sh

ape

of a

pen

tago

n,

as

show

n b

elow

. T

he

firs

t fo

ur

pen

tago

nal

nu

mbe

rs

are

give

n. W

hat

is t

he

ten

th p

enta

gon

al n

um

ber?

A)

128

B)

130

C)

145

D)

164

E)

182

t 1 =

1t 2

= 5

t 3 =

12

t 4 =

22

22.

Wh

at is

th

e va

lue

of t

he

sum

A)

B)

C)

D)

E)

35 9

18 8

34 8

34 8

33 9

25

0

8?

8k

k