9
LOADS EVALUATION Permanent loads the load given by the roofing including battens and rafters: gp 500 N m 2 Snow load α 35 αr 35 π ( ) 180 0.611 rad Sok 2 kN m 2 ce 1 ct 0.95 μ 1 0.8 μ 2 0.8 0.8 α 30 1.733 Sk1 Sok μ 1 ce ct 1.52 10 3 Pa Sk2 0.5 Sok μ 1 ce ct 760 Pa Sk3 Sok μ 2 ce ct 3.293 10 3 Pa Sk Sk3 Wind load qref 0.5 kN m 2 Ix () 2.35 2.5 ln x 0.4 I 10 ( ) 0.292 cg 1 3.5 2 0.303 3.121 cr 0.22 2 ln 10.27 0.4 2 0.51 ctw 1

Mathcad - ROOF a4

Embed Size (px)

DESCRIPTION

Mathcad acoperis

Citation preview

  • LOADS EVALUATION

    Permanent loads

    the load given by the roofing including battens and rafters: gp 500N

    m2

    Snow load

    35 r 35 ( )180

    0.611 rad

    Sok 2kN

    m2

    ce 1ct 0.951 0.8

    2 0.8 0.8

    30 1.733

    Sk1 Sok 1 ce ct 1.52 103 PaSk2 0.5 Sok 1 ce ct 760PaSk3 Sok 2 ce ct 3.293 103 Pa Sk Sk3

    Wind load

    qref 0.5kN

    m2

    I x( )2.35

    2.5 lnx0.4

    I 10( ) 0.292cg 1 3.5 2 0.303 3.121

    cr 0.222 ln10.270.4

    2

    0.51

    ctw 1

  • ce cg cr ctw 1.591 The coefficient cp is negative so that on the roff side directly exposed to the wind action there is sucction having asdirect effect the derease of loads acting on the frame system.For heavy weight roofs this effect is not taken into account.

    cp 0.86w qref ce cp 684.188 Pa

    Live load

    P 1000Nm

    RAFTERS DESIGN

    Permanent loads

    d1 0.8mbr 15 cm

    l2 4.25m hr 15 cmd2 3.5mcos r( ) 0.819sin r( ) 0.574n 1g_pc gp n d1 400 kg

    s2

    g_pcn g_pc cos r( ) 327.661 kgs2

    Snow load

    gzc Sk3 d1 2.635 103 kgs2

    qzn gzc cos r( )2 1.768 103 kgs2

    Wind load is not taken into account since is suction

    Live load

    Pnc P n 1 103 kgs2

    Pncc Pnc cos r( ) 819.152 kg

    s2

    Loading hypothesis

  • q1 1.35 g_pcn 1.5 qzn 3.094 103 kgs2

    q2 1.35 g_pcn 1.05 qzn 2.299 103 kgs2

    q3 1.35 g_pcn 1.5 Pncc 1.05 qzn 3.527 103 kgs2

    q4 1.35 g_pcn 1.5 qzn 1.05 Pncc 3.954 103 kgs2

    Bending moments computation

    M1q1 l228

    6.986 103 J

    M2q2 l228

    5.19 103 J

    M3q3 l228

    7.964 103 J

    M4q4 l228

    8.928 103 J Mmax M4 8.928 103 J

    Strengt check

    W brhr( )2

    6 0.563L

    0.55 gp 0.65 Sk3

    gp Sk3( ) 0.64

    Ric 21.68N

    mm2 obtained by interpolation between 2 values of

    mti 0.9 surgace treated and fireproofed wood

    Mr Ric W mti 1.098 104 J Mmax Mr OK

    Deflection check

  • fadml2200

    0.0213m

    permanent load

    gpn gp d1 cos r( ) 327.661 kgs2

    snow load

    gzn Sk cos r( )( )2 d1 1.768 103 kgs2

    live load

    Pcn P cos r( ) 819.152 kgs2

    deformations due to permanent loads

    Ibr hr( )3

    124.219 10 5 m4

    E 11300N

    mm2

    Kdef_p 0.5

    fp_inst5384

    gpn l24E I 2.92 10

    3 m

    fp_c fp_inst 1 Kdef_p( ) 4.38 10 3 m

    deformations due to snow load

    Kdef_z 0.25

    fz_inst5384

    gzn l24E I 0.016m

    fz_c fz_inst 1 Kdef_z( ) 0.02m

  • deformations due to live load

    Kdef_l 0

    fl_inst5384

    Pcn l23 1 mE I 1.718 10

    3 m

    fl_c fl_inst 1 Kdef_l( ) 1.718 10 3 m

    f1 fp_c fz_c 0.024mfl fp_c fl_c 6.097 10 3 m fmax f1 0.024m

    fmax fadm

    CENTRAL PURLIN DESIGN

    Permanent load

    bp 25 cmlc 2.55mhp 25 cm

    d2 3.5mn 1n1 1.1cos r( ) 0.819 8400

    N

    m3 acacia( )

    qpp gp n d2 1cos r( )

    bp hp n1 2.714 103 kgs2

    the element is not subjected to biaxial bending as it should be , because wind is in suction and it isnot considered in computation

    Snow load

    qzp_p Sk d2 1.153 104 kgs2

  • Live load

    Pp P n 1 103 kgs2

    Loading hypothesis

    q1p 1.35 qpp 1.5 qzp_p 2.095 104 kgs2

    q2p 1.35 qpp 1.05 qzp_p 1.577 104 kgs2

    q3p 1.35qpp 1.05 Pp 4.714 103 kgs2

    q4p 1.35 qpp 1.5 qzp_p 1.05 Pp 2.2 104 kgs2

    Bending moments computation

    M1p q1p lc( )2 1.363 105 J

    M2p q2p lc( )2 1.025 105 J

    M3p q3p lc( )2 3.065 104 J

    M4p q4p lc( )2 1.431 105 J Mmaxp M4p 1.431 105 J

    Strengt check

    Wpbp hp( )2

    27.813L

    0.55 gp 0.65 Sk3

    gp Sk3( ) 0.64

    Ric 21.68N

    mm2 obtained by interpolation between 2 values of

    mti 0.9 surgace treated and fireproofed wood

  • Mrp Ric Wp mti 1.524 105 J Mmax Mr OK

    Deflection check

    fadmplc200

    0.0128m

    deformations due to permanent loads

    Ipbp hp( )3

    123.255 10 4 m4

    E 11300N

    mm2

    Kdef_p 0.5

    fp_instp5384

    gpn lc4E I 3.784 10

    4 m

    fp_cp fp_instp 1 Kdef_p( ) 5.676 10 4 m

    deformations due to snow load

    Kdef_z 0.25

    fz_instp5384

    gzn lc4E I 2.042 10

    3 m

    fz_cp fz_instp 1 Kdef_z( ) 2.552 10 3 m

    f1 fp_cp fz_cp 3.12 10 3 mfmax f1 3.12 10 3 mfmax fadm

  • CENTRAL PURLINDESIGN

    ' Permanent load

    15

    dp 15 cmhp 2.25mt 2.55 m

    Npopgp n

    cos r( )d2 t bp hp n1 t dp

    24

    n1 hp 1.907 10

    4 N

    Snow load

    Nzp Sk d2 t 2.939 104 N

    Wind load is not taken into account since it is suction

    Live load is not significant compared to the snow load in the case of post design

    Loading hypothesis

    N1 1.35 Npop 1.5 Nzp 6.983 104 NN2 1.35 Npop 1.05 Nzp 5.661 104 N

    Post checking

    gperm gp bp hp 1t

    dp2

    4hp 1

    t 1

    d2 2.39 103 Pa

    p0.8 gperm 0.85 Sk

    gperm Sk 0.829

    Rcp 11.80N

    mm2

    Ac dp24

    0.018m2

    mtc 0.9 surface treted and fire proofed woodi 0.25 dp 0.038m

  • lf hp 0.75m 1.5m

    lfi

    40 75

    1 0.8

    100

    2

    0.872

    Cr Ac Rcp mtc 1.636 105 N N Cr OK