5
======================================================================= Unicamp - University of Campinas Author: Tiago Davi Curi Busarello Data: July 2013 Project: Controller Design for the project: "DC-Bus Voltage Control in Controlled DC-Voltage Power Port". ======================================================================= Parameters C dc 9625 10 6 - := DC-Bus Capacitor f s 3240 := Switching Frequency [Hz] VDC 1450 := DC-Bus voltage reference [V] Voltage Sensor Gain H v 1 1000 := Vt_pk 1 := Carrier Peak Voltage f c 6.2 := Cut-off Frequency in Hz MF d 55 := Desired Phase Margin [degree] DC-Bus Voltage Plant. According to Chapter 7 in "Voltage-Sourced Converters in Power Systems: Modeling, Control and Applications" by A. Yazdani and R. Iravani. Here, it is included the Sensor Gain and the PWM transfer Function T dc f () 2 - C dc 2 π f i H v 1 Vt_pk := Mod Tdc f () 20 log T dc f () ( ) := Fase Tdc f () arg T dc f () ( ) 180 π := PI Controller k pidc 125 := wzbdc 42 := C PIdc f () k pidc 2 π f i wzbdc + 2 π f i := Mod CPIdc f () 20 log C PIdc f () ( ) :=

Mathcad - DC-Link Control

Embed Size (px)

DESCRIPTION

matcad

Citation preview

Page 1: Mathcad - DC-Link Control

=======================================================================

Unicamp - University of Campinas

Author: Tiago Davi Curi Busarello

Data: July 2013

Project: Controller Design for the project: "DC-Bus Voltage Control in Controlled

DC-Voltage Power Port".

=======================================================================

Parameters

Cdc 9625 106−

⋅:= DC-Bus Capacitor

fs 3240:= Switching Frequency [Hz]

VDC 1450:= DC-Bus voltage reference [V]

Voltage Sensor GainHv

1

1000:=

Vt_pk 1:= Carrier Peak Voltage

fc 6.2:= Cut-off Frequency in Hz

MFd 55:= Desired Phase Margin [degree]

DC-Bus Voltage Plant. According to Chapter 7 in

"Voltage-Sourced Converters in Power Systems:

Modeling, Control and Applications" by A. Yazdani and R.

Iravani. Here, it is included the Sensor Gain and the PWM

transfer Function

Tdc f( )2−

Cdc 2⋅ π⋅ f⋅ i⋅Hv⋅

1

Vt_pk⋅:=

ModTdc f( ) 20 log Tdc f( )( )⋅:=

FaseTdc f( ) arg Tdc f( )( )180

π⋅:=

PI Controller

kpidc 125:=

wzbdc 42:=

CPIdc f( ) kpidc2 π⋅ f⋅ i⋅ wzbdc+

2 π⋅ f⋅ i⋅⋅:=

ModCPIdc f( ) 20 log CPIdc f( )( )⋅:=

Page 2: Mathcad - DC-Link Control

FaseCPIdc f( ) arg CPIdc f( )( )180

π⋅:=

Open-Loop Bode Diagrams (Voltage Plant, PI controller and Total open-loop)

MAdc f( ) Tdc f( ) CPIdc f( )⋅:=

ModMAdc f( ) ModTdc f( ) ModCPIdc f( )+:=

FaseMAdc f( ) FaseTdc f( ) FaseCPIdc f( )+:=

0.01 0.1 1 10 100 1 103

× 1 104

× 1 105

×

100−

50−

0

50

100

ModTdc f( )

ModCPIdc f( )

ModMAdc f( )

f

Page 3: Mathcad - DC-Link Control

0.01 0.1 1 10 100 1 103

× 1 104

× 1 105

×

200−

100−

0

100

FaseTdc f( )

FaseCPIdc f( )

FaseMAdc f( )

f

Phase Margin

FaseMAdc fc( ) 42.846=

Closed-Loop Bode Diagrams

MFdc f( )CPIdc f( ) Tdc f( )⋅

1 CPIdc f( ) Tdc f( )⋅+:=

ModMFdc f( ) 20 log MFdc f( )( )⋅:=

FaseMFdc f( ) arg MFdc f( )( )180

π⋅:=

Page 4: Mathcad - DC-Link Control

0.01 0.1 1 10 100 1 103

×

40−

20−

0

0

20

40

60

80

100

ModMFdc f( ) FaseMFdc f( )

f

PSIM Implementation

KPSIM kpidc 125=:=

TsPSIM1

wzbdc0.024=:=

Page 5: Mathcad - DC-Link Control