Math Prelim part 2

Embed Size (px)

Citation preview

  • 8/17/2019 Math Prelim part 2

    1/29

    Mathematical Methods:

    Calculus I

    (Sets, Functions, Diff erentiation, Integration)

    Godfrey Keller∗

    October 2012(minor revisions: 15-Apr-13, 27-Apr-15)

    [email protected]

  • 8/17/2019 Math Prelim part 2

    2/29

    The Greek alphabet

    α   A alpha

    β    B beta

    γ    Γ   gamma

    δ    ∆   delta

    ε   E epsilon

    ζ    Z zeta

    η   H eta

    θ   Θ   theta

    ι   I iota

    κ   K kappa

    λ   Λ   lambda

    µ   M mu

    ν    N nu

    ξ    Ξ   xi

    o O omicron

    π   Π   pi

    ρ   P rho

    σ   Σ   sigma

    τ    T tau

    υ   Υ   upsilon

    φ   Φ   phi

    χ   X chi

    ψ   Ψ   psi

    ω   Ω   omega

    Some mathematical symbols

    ⇒   implies   6⇒   does not imply   ⇐⇒   if and only if ∈   is an element of    6∈   is not an element of    ∀   for all≈   is approximately equal to   ≡   is identically equal to   ∃   there exists⊂   subset   ∪   union   ∩   intersection∅   empty set

  • 8/17/2019 Math Prelim part 2

    3/29

    1 Sets and Sequences

    1.1 Sets

    A  set   S  is a collection of  elements .

    x ∈ S  means:   x

    is a member of 

    is an  element   of 

    belongs to

    the set

     S .

    T   is a   subset  of  S  if every element of  T   is also in  S . In mathematical notation:

    T  ⊂ S   if   x ∈ T  ⇒ x ∈ S 

    Sometimes sets are defined simply by listing their elements:   S  =  {x1, x2, . . . , xn, . . .}.

    Some sets of numbers 

    •  Natural numbers (positive integers):   N =  {1, 2, 3, . . .}.

    •   Integers:   Z  =  {. . . , −2, −1, 0, 1, 2, . . .}.

    •  Real numbers:   R – all the numbers on the real line.

    •  Non-negative real numbers:   R+  – all the real numbers greater than or equal to 0.In mathematical notation:   R+ =  {x ∈ R :  x ≥ 0}.

    •  Strictly positive real numbers:   R++ =  {x ∈ R :  x > 0}.

    Sets can have a finite or infinite number of elements. When the elements can be listed,

    such as  N  and  Z above, the set is said to be  countable ; otherwise, such as  R and  R+, it

    is  uncountable .

    1

  • 8/17/2019 Math Prelim part 2

    4/29

    Intervals

    A subset of the real line containing all the numbers between a  and  b  is called an  interval .

    Some finite intervals 

    [a, b] =   {x ∈ R :  a ≤ x ≤ b}(a, b) =   {x ∈ R :  a < x < b}   – sometimes written ]a, b[[a, b) =   {x ∈ R :  a ≤ x < b}   – sometimes written [a, b[

    Some infinite intervals 

    [a, ∞) = {x ∈ R :  x ≥ a}   and (−∞, b) =  {x ∈ R :  x < b}Also (−∞, +∞) = R   and [0, ∞) = R+

    Set Operations

    For two sets  S  and T :

    ◦   The  union   of  S  and  T , written  S ∪ T , is the set of elements that are in  S  or in  T or in both:

    S ∪ T  = {x :  x ∈ S  or  x ∈ T }

    ◦   The intersection  of  S  and T , written S ∩ T , is the set of elements that are in both:

    S ∩ T   = {x :  x ∈ S  and x ∈ T }

    ◦   If  T  ⊂ S , then the  complement  of  T   in S , written T c, is the set of elements that arein S  but not in  T :

    c

    = {x ∈ S  :  x 6∈ T }   – other notation:   T c

    = T 

    0

    = S \T  = S − T 

    ◦   The  empty set  is the set with no elements, ∅ = {}.

    ◦   S  and T   are disjoint   if  S  ∩ T  = ∅

    2

  • 8/17/2019 Math Prelim part 2

    5/29

    Vectors

    Rn is the set of vectors  x = (x1, x2, x3, . . . , xn), where xk

     ∈R.

    The   length  or  norm  of a vector is:   ||x|| =q 

    x21 + x22 + . . . + x

    2n

    Triangle Inequality: For any  x, y ∈ Rn:   ||x + y|| ≤ ||x|| + ||y||The distance between two points  x, y ∈ R is  |x − y|The (Euclidean) distance between two points in  Rn is:

    ||x − y|| =q 

    (x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2

    From the Triangle Inequality:   ||x−

    z||≤

    ||x−

    y|| + ||y−

    z||

    3

  • 8/17/2019 Math Prelim part 2

    6/29

    1.2 Sequences

    A  sequence   in  Rn is an ordered list of elements of  Rn:

    x1, x2, . . . , xk, . . .   or equivalently   {xk}∞

    k=1

    (It is a countable subset of  Rn, in which the order matters.)

    Some examples in   R

    •   xk  = k   •  xk  = 1/k   • xk  = (−1)k

    •   Geometric sequence:   a,ar,ar2, . . . , a rk−1, . . .

    A sequence {xk}  in  R is said to  converge   to a   limit   x  if for any  ε  >  0, there is an integer  K  such that  |xk − x| ≤ ε for all k > K .

    Similarly, a sequence  {xk} in  Rn converges to  x if 

    for any  ε  >  0, ∃ K  such that  ||xk − x|| ≤ ε ∀ k > K .Examples 

    •   xk  = k  does not converge   •  xk  = 1/k  converges to zero

    •   xk  =  2 − k2

    3k2

    + k

      •  xk  =  ark−1: convergence depends on  r.

    A  subsequence  of a sequence  {xk} is an infinite subset of the elements, in the same order.

    •   xk  = (−1)k does not converge, but has convergent subsequences.

    •   xk  = k  has no convergent subsequences.

    Series

    The sum of the terms of a sequence in  R is called a  series :   x1 + x2 + x3 + . . . =∞

    Xk=1

    xk.

    •  Geometric series: If  S n  is the sum of the first  n  terms of a geometric sequence:

    S n =nX

    k=1

    ark−1 = a(1 − rn)

    1 − r

    then {S n}∞

    n=1  is also a sequence. If  |r| <  1,  {S n} converges, so the  series   converges:

    limn→∞

    S n =  a

    1 − r   and we write∞X

    k=1

    ark−1 =  a

    1 − r

    4

  • 8/17/2019 Math Prelim part 2

    7/29

    1.3 Open, Closed, Bounded, Compact and Convex Sets

    An  open ball   Br(x) in  Rn is a set defined by

    Br(x) =  {y ∈ Rn : ||x − y|| < r}

    A set  S   in  Rn is  open   if for all  x ∈ S , there is some  r > 0 such that  Br(x) ⊂ S .A set is  closed  if and only if its complement is open. (A closed set contains its boundary.)

    • The interval (1, ∞) is an open set in  R, so (−∞, 1] is closed.Theorem: A set  S   in  Rn is closed if and only if, for any sequence  xk   such that  xk ∈  S for all  k  and  xk

     →x,  x

    ∈S .

    x  is an   interior point   of  S  if there is some  r > 0 such that  Br(x) ⊂ S .A set  S   in  Rn is  bounded   if there is some  r > 0 such that  S  ⊂ Br(0).A subset of  Rn is  compact   if and only if it is closed and bounded.

    Theorem: (Bolzano-Weierstrass) If  S  is a compact subset of  Rn, then every sequence of 

    points in S  has a subsequence that converges to a point in  S .

    A set  S   in  Rn is  convex   if, ∀ x, y ∈ S  and λ ∈ [0, 1], λx + (1 − λ)y ∈ S .

    Examples in   R

    •  The interval [a, b] is closed; (a, b) is open; (a, b] is neither.

    All these intervals are bounded, and convex.

    •  The interval [a, ∞) is closed and convex, but not bounded.

    •  The set [0, 1] ∪ [2, 3] is compact but not convex.

    5

  • 8/17/2019 Math Prelim part 2

    8/29

    1.4 Supremum, Infimum, Maximum and Minimum

    Let  S  be a subset of  R.

    •  If there is a real number  b  such that  x ≤ b ∀ x ∈ S , then b  is an upper bound for  S ,and the set is  bounded above .

    •   If  S   is bounded above, then there is an upper bound  b∗ such that if  b   is an upper

    bound for S , b∗ ≤ b. It is called the  supremum , or   least upper bound ,  b∗ = sup(S ).

    •   If  S  is not bounded above, sup(S ) = ∞.

    Similarly, S  may be  bounded below ; inf(S ) is the  infimum  or  greatest lower bound .

    •   If  S  = [a, b), S  is bounded above and below; inf(S ) =  a  and sup(S ) = b.

    Note that  a ∈ S , and min(S ) = inf(S ), but  b 6∈ S  and max(S ) does not exist.

    •   S  = [a, ∞) is bounded below but not above; sup(S ) = ∞.

    •   If  S  =  {1/n :  n ∈ N}, inf(S ) = 0 but min(S ) does not exist.

    6

  • 8/17/2019 Math Prelim part 2

    9/29

    2 Functions of one variable

    Let  S  and T  be subsets of  R.

    A   function   f   from S   to T  is a rule that associates with each element of  S , one and only

    one element of  T . We write:

    f   : S  → T S   is the  domain  of the function;  T   is the  range  of the function.

    If  x ∈ S , the corresponding element of  T   is written f (x).Examples 

    •   f (x) = 3x + 2   f   : R → R•   g(x) =  x2 g  :  R → R+

    •   h(x) = 1 +√ 

    x h :  R+ → R+

    When n ∈  N, the function  p  :  R → R given by p(x) = anxn + an−1xn−1 + . . . + a1x + a0is a  polynomial  of degree  n.

    In the examples above,  f   and g  are polynomials (of degree one and two, respectively).

    A function is  one-to-one  if for any y ∈ T , there is at most one  x ∈ S  such that f (x) = y.A function is  onto  if for any  y ∈ T , there is at least one  x ∈ S  such that  f (x) =  y.In the examples above,  f   and h  are one-to-one,  g  is not;  f   and g  are onto,  h  is not.

    7

  • 8/17/2019 Math Prelim part 2

    10/29

    Inverse functions

    If  f   : S 

     →T  is one-to-one and onto, then it has an  inverse   f −1 : T 

     →S , for which:

    f −1(f (x)) =  x

    Example:   If  f (x) = 3x + 2, then  f −1(y) = (y − 2)/3

    Monotonicity

    A function f   : S  → T   is

    increasingstrictly increasing if for any x, y ∈ S  with y > x, f (y)

    ≥f (x)

    f (y) > f (x)

    A decreasing  function is defined similarly, and monotonic  means increasing or decreasing.

    In the examples above,  f   and h  are monotonic,  g  is not. (More specifically,  f   and  h  are

    strictly increasing.)

    Any strictly monotonic function has an inverse.

    Composite functions

    If  f   : S  → T   and g  :  T  → U , we can define a function  h  :  S  → U   by h(x) = g(f (x)).h  is the   composition  of  f   and g , sometimes written g ◦ f .Example:   If  f (x) =  x + 3 and  g(y) = y2, then:

    (g ◦ f )(x) =  g(f (x)) =  g(x + 3) = (x + 3)2(f  ◦ g)(x) =  f (g(x)) =  f (x2) = x2 + 3

    8

  • 8/17/2019 Math Prelim part 2

    11/29

    2.1 Limits of functions; continuity

    Let f   : S 

     →R, where S 

     ⊂R, and x0

     ∈S . Then f  has a limit, y0, at x0  if and only if for

    any ε >  0, ∃ δ  >  0 such that  |x − x0| <  δ  ⇒ |f (x) − y0| <  ε. We write:

    limx→x0

    f (x) =  y0

    Some functions have infinite limits at finite values of  x, and/or finite limits as  x  goes to

    infinity. For example, if  k(x) = 3 + 1/x2, then

    limx→0

    k(x) = +∞,   limx→∞

    k(x) = 3

    Note that, strictly speaking, this function is not defined at  x  = 0.

    Sometimes the limit of a function at a point depends on whether you approach the point

    from below or from above. For example, if  f (x) = 1/x, then

    f (0+) = limx→0+

    x−1 = +∞, f (0−) = limx→0−

    x−1 = −∞

    9

  • 8/17/2019 Math Prelim part 2

    12/29

    Continuity

    The function f (x) is   continuous at   x0   if and only if limx→x0

    f (x) = f (x0).

    If a function is continuous at every point in its domain, it is a  continuous function .

    Example:   The function:   f (x) =

    x   if  x

  • 8/17/2019 Math Prelim part 2

    13/29

    2.2 Convex and concave functions

    A continuous function  f   : R

    →R is  convex   if and only if, for all  a, b

    ∈R:

    f (λa + (1 − λ)b) ≤ λf (a) + (1 − λ)f (b) for all λ ∈ (0, 1)

    As  λ  varies from 1 to 0, the left-hand side traces the curve of the function from  f (a) to

    f (b), while the right-hand side traces the straight line from  f (a) to  f (b). For a convex

    function, the curve lies below the straight line.

    The definition of a  strictly convex   function is the same, but with the inequality being

    strict.

    To define a  concave  or  strictly concave   function, use the inequalities ≥ or  >.Alternatively,  f   is concave  ⇐⇒ −f   is convex.For a function to be convex or concave, its domain must be a convex set.

    11

  • 8/17/2019 Math Prelim part 2

    14/29

    2.3 Some important theorems

    The Weierstrass Theorem: A continuous function  f   : S 

     → R, where  S   is a compact

    subset of  R, attains a maximum and minimum value on  S .

    The Intermediate Value Theorem: Suppose f   : [a, b] → R is continuous, and  f (a) <y0 < f (b). Then ∃ x0 ∈ (a, b) such that  f (x0) = y0.Brouwer’s Fixed Point Theorem: Suppose   S  ⊂   R   is a non-empty, compact andconvex set, and  f   :  S  →  S   is a continuous function. Then f   has a fixed point: that is∃  x0  such that  f (x0) = x0.(Note that a compact and convex set in  R  is a closed interval [a, b]; but written as above,

    Brouwer’s Fixed Point Theorem also applies when  S 

     ⊂Rn.)

    12

  • 8/17/2019 Math Prelim part 2

    15/29

    2.4 Exponential and logarithmic functions

    For any base a > 1 we can define exponential and logarithmic functions.

    f (x) =  ax

    is an  exponential function ;  f   : R → R++, and is continuous, increasing and convex.If  a > 1 and  x > 0, the  logarithm to base   a  of  x, loga x, is defined by:

    aloga x = x

    loga x is the answer to the question: “To what power must  a  be raised in order to get x?”

    e.g. log2 8 = 3 because 23

    = 8.g(x) = loga x

    is a   logarithmic function ;  g  :  R++ → R, and is continuous, increasing and concave.A logarithmic function loga x is the inverse of an exponential function  a

    x:

    y =  ax ⇐⇒   x = loga y

    •   The most important exponential and logarithmic functions are the ones with base

    e = 2.71828 . . .

    The  exponential function:   f (x) =  ex (sometimes written f (x) = exp(x)).

    The  natural   log function:   g(x) = loge(x) (often written  g(x) = ln x).

    Reminders:

    anam = an+m, a−n = 1/an,   (ab)n = anbn,   (am)n = amn, a1

    n =   n√ 

    a, a0 = 1

    loga(xy) = loga x + loga y,   loga xn = n loga x,   loga(1/x) = − loga x,   loga 1 = 0

    13

  • 8/17/2019 Math Prelim part 2

    16/29

    3 Diff erentiation

    All the functions in this section are assumed to have domain and range in  R  – they are

    real-valued functions of a single variable.

    3.1 Definition of a derivative

    The slope of a function  f  at a point  x  is approximately

    f (x + h) − f (x)h

    where h  is small. If this fraction has a limit as h→

    0 then we say that  f  is diff erentiable

    at  x, and the value of the limit is called the derivative of  f   at x.

    For a function to be diff erentiable at   x, its graph must be continuous (no jump) and

    smooth (no kink) at x. If a function is diff erentiable at all points in its domain (its graph

    is a continuous smooth line) then we say that it is a diff erentiable function.

    The derivative of  f   at x  is denoted by:   f 0(x) or  df 

    dx  or   Df (x)

    and we often write:

    y =  f (x)   ⇒   dydx

     = f 0(x)

    The Mean Value Theorem: Suppose f   : [a, b] → R, and f  is a diff erentiable function.Then there is a point  c ∈ (a, b) such that

    f (b) − f (a) =  f 0(c)(b − a)

    14

  • 8/17/2019 Math Prelim part 2

    17/29

    3.2 Basic rules for diff erentiating simple functions

    If  f   and g  are functions and  k  is a constant:

    y =  f (x) + g(x)   ⇒   dydx

     = f 0(x) + g0(x)

    y =  kf (x)   ⇒   dydx

     = kf 0(x)

    You should know the derivatives of common functions:

    f (x) = c   ⇒   f 0(x) = 0f (x) =  xn ⇒   f 0(x) =  nxn−1

    f (x) = ln x   ⇒   f 0

    (x) = 1/x =  x−1

    f (x) =  ex ⇒   f 0(x) =  ex

    What about:   f (x) =  |x|, the absolute value of  x?

    When x > 0   f (x) = x,   so  f 0(x) = 1.

    When x

  • 8/17/2019 Math Prelim part 2

    18/29

    3.3 First derivatives and monotonicity

    The derivative of a function f (x) is a measure of how the function changes when x changes.

    If  f (x) is diff erentiable at the point x0, then:

    f 0(x0) ≥ 0  ⇐⇒   f  is increasing at  x0, f 0(x0) >  0 ⇒ f  is strictly increasing at  x0;f 0(x0) ≤ 0 ⇐⇒   f  is decreasing at  x0, f 0(x0) <  0 ⇒ f  is strictly decreasing at  x0.

    So for example, if  f 0(x) >  0 ∀ x, then f   is strictly monotonic, and an increasing function.Note, however, that a strictly increasing function  may  have a zero first derivative at some

    point. An example is  x3.

    3.4 Diff erentials

    If  y  =  f (x) we sometimes write

    dy =  f 0(x) dx

    where dx  is the  di  ff erential   of  x  and represents an infinitesimal change in  x.

    This equation tells us that when x  changes by an infinitesimal amount dx, the size of the

    corresponding change in  y , called the  di  ff erential   of  y , is given by f 0(x) dx.

    16

  • 8/17/2019 Math Prelim part 2

    19/29

    3.5 Rules for diff erentiating more complicated functions

    Product Rule:  d

    dx

     (f (x)g(x)) = f 0(x)g(x) + f (x)g0(x)

    e.g.   h(x) =  x2ex ⇒   h0(x) = 2xex + x2ex

    Quotient Rule:  d

    dx

    f (x)

    g(x)

    !=

     f 0(x)g(x) − f (x)g0(x)g2(x)

    e.g.   h(x) =  x2

    x

    −1

      ⇒   h0(x) = 2x(x − 1) − x2

    (x

    −1)2

      =  x2 − 2x(x

    −1)2

    (The quotient rule is derived from the product rule by writing  f (x)

    g(x)  as f (x) g(x)−1, then

    applying the chain rule below.)

    Chain Rule:  d

    dxf (g(x)) =  f 0(g(x))g0(x)

    Another way of expressing the chain rule is to say that if  z  =  f (y) and y  =  g(x), then we

    can think of  z  as a function of  x, with derivative:

    dz 

    dx =

     dz 

    dy

    dy

    dx

    e.g. (i)   f (x) = (3x + 2)4 ⇒   f 0(x) = 4(3x + 2)3 × 3 = 12(3x + 2)3

    (ii)   g(x) = exp(x2)   ⇒   g0(x) = 2x exp(x2)

    17

  • 8/17/2019 Math Prelim part 2

    20/29

    3.6 Diff erentiating an inverse function

    Suppose the function f (x) has an inverse. Then:

    y =  f (x)   ⇒   x =  f −1(y)

    Inverse Function Rule:  dx

    dy  = 1

    ,dy

    dx

    Alternatively we can express this as:

    (f −1)0(y) =  1

    f 0(x) =

      1

    f 0(f −1(y))

    For example, we can use the inverse function rule to work out the derivative of  ax:

    y  =  ax ⇒ ln y   =   x ln a⇒   x   =   ln y

    ln a

    ⇒   dxdy

      =  1

    y ln a

    Applying the rule:  dy

    dx  =   y ln a

    Writing the answer in terms of  x:  dy

    dx

      =   ax ln a

    3.7 Implicit diff erentiation

    If   y   is a function of   x   but is not expressed in the form   y   =   f (x), we can find the

    derivative by implicit diff erentiation. For example, ln x + 2 ln y   =   k   is an indiff erence

    curve. Diff erentiating w.r.t. x  gives:

    1

    x +

     2

    y

    dy

    dx = 0,

      2

    y

    dy

    dx = −1

    x,

      dy

    dx = −  y

    2x

    as the slope of the indiff erence curve.

    18

  • 8/17/2019 Math Prelim part 2

    21/29

    3.8 Higher order derivatives

    In most cases, the derivative of a function  f (x) is itself a function, and also diff erentiable.

    Just as the first derivative tells us how the value of the function changes with   x, the

    second derivative tells us how the slope of the function changes with  x.

    Notation:   y =  f (x),  dy

    dx = f 0(x),

      d

    dx

    dy

    dx

    !=

      d2y

    dx2 = f 00(x),

      d3y

    dx3  = f 000(x) etc.

    Examples:

    f (x) = ax2 + bx + c f 0(x) = 2ax + b f 00(x) = 2a

    g(x) = ex g0(x) =  ex g00(x) =  ex

    h(x) = ln x h0(x) = x−1 h00(x) = −x−2

    When a function has continuous derivatives up to and including order  n, we say that itis of  class   C n.

    Polynomials, exp, and ln are examples of functions that are C ∞.

    3.9 Second derivatives and convexity, concavity

    We can check whether a function   f (x) is convex or concave by looking at the second

    derivative:

    f 00(x) ≥ 0 ∀ x  ⇐⇒   f   is convex, f 00(x) >  0 ∀ x ⇒ f   is strictly convex;f 00(x) ≤ 0 ∀ x  ⇐⇒   f   is concave, f 00(x) <  0 ∀ x ⇒ f   is strictly concave.

    Note, however, that a strictly convex function  may  have a zero second derivative at some

    point. An example is  x4.

    19

  • 8/17/2019 Math Prelim part 2

    22/29

    3.10 Taylor’s Theorem

    Notation: The k th derivative may be denoted by  f (k)(x).

    Taylor’s Theorem:1 Suppose  f   :  S  →  R, where  S   is a convex subset of   R, is a  C k+1function. Then for any  a, x ∈ S , there exists  z  ∈ (a, x) such that:

    f (x) =  f (a) + (x − a)f 0(a) + (x − a)2

    2  f 00(a) + . . . +

     (x − a)kk!

      f (k)(a) + (x − a)k+1

    (k + 1)!  f (k+1)(z )

    The remainder,  Rk(x, a) = (x − a)k+1

    (k + 1)!  f (k+1)(z ), converges to zero faster than (x − a)k.

    Taylor Approximations:

    First-order:   f (x)   ≈   f (a) + (x − a)f 0(a)Second-order:   f (x)   ≈   f (a) + (x − a)f 0(a) + (x − a)

    2

    2  f 00(a)

    kth-order:   f (x)   ≈   f (a) + (x − a)f 0(a) + (x − a)2

    2  f 00(a) + . . . +

     (x − a)kk!

      f (k)(a)

    Maclaurin’s Theorem:

    f (x) = f (0) + xf 0(0) + x2

    2 f 00(0) + . . . +

     xk

    k!f (k)(0) +

      xk+1

    (k + 1)!f (k+1)(z )

    Taylor Series: If  f   is C ∞ we have an infinite series, and if it converges we can write:

    f (x) = f (a) + (x − a)f 0(a) + (x − a)2

    2  f 00(a) + . . . +

     (x − a)kk!

      f (k)(a) + . . .

    When the Taylor series converges, it is the  Taylor expansion  of  f  about a.

    •   ex = 1 + x + x2

    2!  +

     x3

    3!  + . . . +

     xn

    n!  + . . .   (valid for any x)

    •  ln(1 + x) =  x − x22

      + x33

      + . . . + (−1)n+1 xnn

      + . . .   (valid for −1 < x ≤ 1)

    •   If  n  is a positive integer, we have the (finite) Binomial expansion of (1 +  x)n:

    (1 + x)n = 1 + nx + n(n − 1)

    2!  x2 + . . . + n C kx

    k + . . . + xn

    For other values of  n  we get an infinite series, valid only for  |x| <  1.

    1An English mathematician at last! However, the result had been discovered about 40 years earlierby Gregory – a Scot.

    20

  • 8/17/2019 Math Prelim part 2

    23/29

    3.11 L’Hôpital’s Rule

    L’Hôpital’s Rule is a method for evaluating limx→a

    f (x)

    g(x)

      (where a  can be finite or infinite),

    if either both functions are zero or both functions are   ± ∞ at  a:

    limx→a

    f (x)

    g(x) = lim

    x→a

    f 0(x)

    g0(x)

    If this limit cannot be evaluated, we look at second derivatives  . . .

    Justification: replacing  f   and g  by their Taylor expansions about  a:

    f (x)

    g(x)  =

     f (a) + (x − a)f 0(a) +   12(x − a)2f 00(a) + . . .g(a) + (x

    −a)g0(a) +   1

    2(x

    −a)2g00(a) + . . .

    •   limx→0

    ex − 1x

    •  CRRA utility function with parameter  r   is:   u(y) = y1−r − 1

    1 − r   if  r 6= 1.But what if  r  = 1?

    limr→1

    y1−r − 11 − r   = limr→1

    −y1−r ln y−1   = ln y

    Using L’Hôpital’s Rule we can prove two important results. For any  k > 0:

    •   limx→∞

    xk

    ln x = ∞

    •   limx→∞

    xk

    ex  = 0

    (Also true for other bases  a > 1.)

    21

  • 8/17/2019 Math Prelim part 2

    24/29

    4 Integration

    Integration is the reverse of the process of diff erentiation.

    •  Suppose we start with a function f (x).

    •  If we can find another function  F (x) for which  F 0(x) = f (x),

    then we also know that  d

    dx (F (x) + c) = f (x) for any constant c,

    and we can write:Z 

      f (x) dx =  F (x) + c.

    Z   f (x) dx  is called  the integral of  f   with respect to  x; f (x) is called the  integrand .

    4.1 Basic rules for integration

    If  f   and g  are functions and  k  is a constant:

    Z  (f (x) + g(x)) dx =

    Z   f (x) dx +

    Z   g(x) dx   and

    Z   kf (x) dx =  k

    Z   f (x) dx

    The integrals of common functions:

    Z   xn dx   =   1n+1 x

    n+1 + c   (∀ n ∈ R, n 6= −1)Z   x−1 dx   = ln x + cZ   eax dx   =   1a e

    ax + c   where a  is a constant

    22

  • 8/17/2019 Math Prelim part 2

    25/29

    4.2 Definite and Indefinite Integrals

    The integrals above are  indefinite integrals .

    •  If we know that the indefinite integral of  f (x) is F (x) + c,

    then we also have the  definite integral :Z   b

    af (x) dx =

    hF (x)

    iba

    = F (b) − F (a),where a  and  b  are constants, called the limits of integration.

    a bx

    f (x)   So to evaluate a definite integral, integrate,

    evaluate the answer at the limits, and then

    take the diff erence.

    Interpretation :

    The definite integralZ   b

    af (x) dx   is the area

    under the graph of  f (x), between  x  =  a  and

    x =  b.

    It follows that:

    Z   ab

    f (x) dx = −Z   b

    af (x) dx   and

    Z   ba

    f (x) dx =Z   q

    af (x) dx +

    Z   bq

    f (x) dx

    The Mean Value Theorem for Integrals: If  f   : [a, b] → R  is continuous, ∃ c ∈ [a, b]such that: Z   b

    af (x) dx =  f (c)(b − a)

    23

  • 8/17/2019 Math Prelim part 2

    26/29

    4.3 Methods for integrating more complicated functions

    There are few  rules  for integration.

    •  Either you recognise (or guess) that the integrand is the derivative of a particular

    function (this takes practice).

    •  Or you try one of the methods in this section to see if it works.

    •  Or it may be that there is  no analytical solution  i.e. you can’t write the answer as

    a function, so the only possible method is to find a numerical approximation.

    Integration by parts:

    The Product Rule, for diff erentiating the product of two functions  u  and  v , is:

    d

    dx

    u(x)v(x)

    = u(x)v0(x) + v(x)u0(x)

    Integrating this we get:

    u(x)v(x) =Z 

      u(x)v0(x) dx +Z 

      v(x)u0(x) dx

    and rearranging gives the formula:

    Z   u(x)v0(x) dx =  u(x)v(x) −

    Z   v(x)u0(x) dx

    For definite integrals:

    Z   ba

    u(x)v0(x) dx =hu(x)v(x)

    iba−Z   b

    av(x)u0(x)dx

    Hence, if we start with an integral that can be written in the form R 

     u(x)v0(x) dx, then

    we can evaluate it using this rule provided that we know how to evaluate

     R  v(x)u0(x) dx.

    Example 

    To evaluateZ   10

    xe2x dx, put  u(x) = x  and  v0(x) = e2x. Then  u 0(x) = 1 and  v(x) =   12e2x.

    So: Z   10

    xe2x dx =h12

    xe2xi10−Z   10

    12

    e2x dx =   12e2 −

    h14

    e2xi10

    =   14

    e2 + 1

    24

  • 8/17/2019 Math Prelim part 2

    27/29

    Integration by substitution:

    (Compare the Chain Rule for diff erentiation.)

    Consider f (y) where  y  =  g(x). Then  dy  =  g 0(x) dx, and so

    f (y) dy  =  f (y)g0(x) dx

    Integrating this we get:

    Z   f (y)g0(x) dx =

    Z   f (y) dy   or

    Z   f (y)

    dy

    dx dx  =

    Z   f (y) dy

    For definite integrals the formula is:

    Z   b

    af (y) dy

    dx dx  =

    Z   g(b)

    g(a)f (y) dy

    So, if we can find a function   y   =   g(x) so that an integral can be written in the formZ   f (y)

    dy

    dx dx, then we can integrate it using this formula –

    that is, by a change of variable or “substituting  y   for x”.

    (This method is easier to use in practice than to describe in general.)

    Example 

    To evaluateZ   k0

    2x

    x2 + 3 dx  where k  is a constant, try the substitution y  =  x2 + 3.

    In this case,  dy  = 2x dx  and so:

    Z   k0

    2x

    x2 + 3 dx  =

    Z   k2+33

    1

    y dy  =

    hln y

    ik2+33

    = ln

    k2 + 3

    − ln 3 = ln

    1 +   13k2

    A Useful Rule 

    The integral above is an example of a more general case that is worth remembering. If the

    integrand can be written in the form g 0(x)/g(x) for some function g, then the substitution

    y  =  g(x) gives us: Z   g0(x)g(x)

     dx = ln g(x) + c

    25

  • 8/17/2019 Math Prelim part 2

    28/29

    4.4 Improper Integrals

    If one (or both) of the limits of integration is infinite, then it is an improper integral .

    Z   ∞

    af (x) dx   means lim

    b→∞

    Z   ba

    f (x) dx

    If this limit exists (is not infinite), then we say that the integral converges. If not, we say

    that the integral does not exist.

    Examples 

    • Z   b

    1

    x−2 dx = h−x−1i

    b

    1

    =

    −b−1 + 1, so Z 

      ∞

    1

    x−2 dx = 1.

    •Z   b1

    x−1 dx =h

    ln xib1

    = ln b, soZ   ∞

    1x−1 dx does not exist.

    We also have an improper integral if the integrand has an infinite discontinuity at the

    upper or lower limit of integration, or between them. For example:

    •Z   1

    ax−1 dx =

    hln x

    i1a

    = − ln a, soZ   10

    x−1 dx does not exist.

    • Z   1

    a

    x−1/2 dx = h2x1/2i1

    a

    = 2(1

    √ a), so Z 

      1

    0

    x−1/2 dx = 2.

    If the infinite discontinuity is at  q  ∈ (a, b), then we considerZ   pa

    f (x) dx  andZ   b

    rf (x) dx  as  p → q − and  r → q +.

    Only when  both  limits exist can we say that the integral from  a  to  b  exists.

    26

  • 8/17/2019 Math Prelim part 2

    29/29

    4.5 Repeated Integrals

    If  f   is a function of two variables x  and  y , we can integrate with respect to each in turn.

    If  f   is continuous, the order of integration doesn’t matter:

    Z   dc

    Z   ba

    f (x, y) dx

    !dy  =

    Z   ba

    Z   dc

    f (x, y) dy

    !dx

    This is the volume under the surface  f (x, y) for  a ≤ x ≤ b  and  c ≤ y ≤ d.The repeated integral may be written:

    Z   dc

    Z   ba

    f (x, y) dxdy   (though some authors use the opposite convention . . . )

    4.6 Diff erentiating under the integral sign

    Let f  be a continuous function of two variables  x  and  y , and let  p  and  q  be diff erentiable

    functions of  y .

    Consider the integral  I (y) =Z   q(y)

     p(y)f (x, y) dx. Then

    dI dy

     =Z 

      q(y)

     p(y)

    ∂ 

    ∂ yf (x, y) dx + f (q (y), y)

    dq dy

     − f ( p(y), y) dpdy

    Example 

    I (y) =Z   y2

    y2xy dx ⇒ I 0(y) =

    Z   y2y

    2x dx + 2y3.2y − 2y2.1 =hx2iy2

    y+ 4y4 − 2y2 = 5y4 − 3y2

    27