36
Topics in Applied Mathematics: Introduction to the Mathematics of Climate Mondays and Wednesdays 2:30 – 3:45 http://www.math.umn.edu/~mcgehee/teaching/Math5490-2014-2Fall/ Streaming video is available at http://www.ima.umn.edu/videos/ Click on the link: "Live Streaming from 305 Lind Hall". Participation: https://umconnect.umn.edu/mathclimate Math 5490 November 5, 2014

Math 54902014/11/05  · but not smooth at 0. dw w dt 2221 21 22 22 1 1 (1 ) (1 ) iiiiii iiii i dz z dt w ww w w w iz i w w ... Microsoft PowerPoint - 20141105.pptx Author mcgehee

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Topics in Applied Mathematics:Introduction to the Mathematics of Climate

    Mondays and Wednesdays 2:30 – 3:45http://www.math.umn.edu/~mcgehee/teaching/Math5490-2014-2Fall/

    Streaming video is available athttp://www.ima.umn.edu/videos/

    Click on the link: "Live Streaming from 305 Lind Hall".Participation:

    https://umconnect.umn.edu/mathclimate

    Math 5490November 5, 2014

  • Dynamical Systems

    Math 5490 11/5/2014

    Classification

    Kaper & Engler, 2013

    determinant

    trace

  • Dynamical SystemsTopological Classification

    If neither eigenvalue has zero real part, then the system is called hyperbolic, in which case, there are only three classes:

    1. saddles:  One positive eigenvalue and one negative.  The determinant is negative.

    2. sources:  Both eigenvalues have positive real part.  The determinant is positive, and the trace is positive.

    3. sinks: Both eigenvalues have negative real part.  The determinant is positive, and the trace is negative.

    Every system in one of the three categories looks the same to a topologist (topological conjugacy).

    Math 5490 11/5/2014

  • Dynamical SystemsTopological Classification

    trace

    0

    0determinant

    saddle

    source

    sink

    Math 5490 11/5/2014

  • Dynamical SystemsTopological Classification

    trace

    0

    0determinant

    saddle

    source

    sink

    Math 5490 11/5/2014

    ‐2

    ‐1

    0

    1

    2

    ‐2 ‐1 0 1 2

    ‐2

    ‐1

    0

    1

    2

    ‐2 ‐1 0 1 2

    determinant

    trace/2

    Saddles : det

  • Dynamical SystemsTopological Classification

    Math 5490 11/5/2014

    trace

    0

    0determinant

    saddle

    source

    sink

    Saddles : det

  • Dynamical SystemsTopological Classification

    trace

    0

    0determinant

    saddle

    source

    sink

    Math 5490 11/5/2014

    determinant

    trace

    Sources det > 0,  trace >0

    ‐2

    ‐1

    0

    1

    2

    ‐2 ‐1 0 1 2

    ‐2

    ‐1

    0

    1

    2

    ‐2 ‐1 0 1 2

  • Dynamical SystemsTopological Classification

    Math 5490 11/5/2014

    trace

    0

    0determinant

    saddle

    source

    sink

    Sources det > 0,  trace >0

  • Dynamical SystemsTopological Classification

    trace

    0

    0determinant

    saddle

    source

    sink

    Math 5490 11/5/2014

    determinant

    trace

    Sinks det > 0,  trace 

  • Dynamical SystemsTopological Classification

    Math 5490 11/5/2014

    trace

    0

    0determinant

    saddle

    source

    sink

    Sinks det > 0,  trace 

  • Dynamical SystemsTopological Classification

    All sources look the same.Everything leaves.

    Math 5490 11/5/2014

  • Dynamical SystemsTopological Classification

    All sinks look the same.Everything approaches the 

    origin asymptotically.

    Math 5490 11/5/2014

  • Dynamical SystemsTopological Classification

    One Variable

    0dx xdt

    1x u u

    1dx duudt dt

    x u

    du udt

    1dx duudt dt

    x u

    du udt

    0u 0u

    0dx xdt

    1 0Let 0

    u ux u u

    u u

    du udt

    Continuous, but not smooth at  0.

    Math 5490 11/5/2014

  • Dynamical SystemsTopological Classification

    Two Variables

    1

    1

    x u u

    y v v

    0

    0

    dx xdtdy xdt

    du udtdv vdt

    Continuous, but not smooth at  (0,0).

    topologically conjugate

    Math 5490 11/5/2014

    Saddles

  • Dynamical SystemsTopological Classification

    Sinks

    1

    1

    x u u

    y v v

    0

    0

    dx xdtdy xdt

    du udtdv vdt

    Continuous, but not smooth at  (0,0).

    topologically conjugate

    Math 5490 11/5/2014

  • Dynamical SystemsTopological Classification

    What about spirals?

    Math 5490 11/5/2014

    ( 1 )dz i xdt

    logi i wz w w e w

    Continuous, but not smooth at  0. dw w

    dt

  • 2 1 2 12 22 2

    2 2

    1

    1

    (1 ) (1 )

    i ii ii i

    i ii i

    i

    dzz w ww w w wdt

    ww w w ww

    i z i w w

    Dynamical SystemsTopological Classification

    Computation

    Math 5490 11/5/2014

    ( 1 )dz i zdt

    2 12 2( )i ii iz w w ww w w w

    dw wdt

    2 2

    2 2

    1 (1 )

    1 (1 )

    2

    i i

    i i

    ww ww i ww

    ww ww i ww

    ww ww ww

    Multiply by iw w

    complex conjugate

    add

    2ww ww ww

    2 21 2 (1 )(1 )

    i iww ww ww i ww

    ww iww i ww

    ww ww

  • Dynamical SystemsTopological Classification

    What about spirals?

    Math 5490 11/5/2014

    ( 1 )dz i xdt

    logi i wz w w e w

    Continuous, but not smooth at  0. dw w

    dt

  • Dynamical SystemsTopological Classification

    All sinks are topologically conjugate, as are all sources 

    and all saddles.

    Math 5490 11/5/2014

  • Dynamical SystemsTopological Classification

    trace

    0

    0determinant

    saddle

    source

    sink

    Math 5490 11/5/2014

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear SystemsOne Variable

    0 ( ) 0dx f xdt

    Rest points:

    3dx x xdt

    If ( ) 0, then ( ) (constant) is a solution.f p x t p

    ( )dx f xdt

    Example

    3 0 1 1 01, 0, and 1

    x x x x x

    Rest points:

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear SystemsOne Variable

    3dx x xdt

    Example

    Rest points

    ‐2

    ‐1

    0

    1

    2

    ‐2 ‐1 0 1 2

    f(x)

    x

    What about the stability of the rest points?

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear SystemsOne Variable

    3dx x xdt

    Example

    Rest points

    ‐2

    ‐1

    0

    1

    2

    ‐2 ‐1 0 1 2

    f(x)

    x

    What about the stability of the rest points?

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems

    If is small, i.e., if is close to ,

    then solutions of ( )

    are close to solutions of ( ) .

    x pd f pdt

    d f pdt

    Rest point : ( ) 0p f p ( )dx f xdt

    Introduce .Then ( ) ( ) ( )

    ( ) ( ) ( )

    x pf x f p f p

    d dx f x f p f pdt dt

    Basic Idea

    Linear approximation:( ) ( ) ( )( ) ( )( )f x f p f p x p f p x p

    In particular, the rest point is asymptotically stable for ( )

    if the origin is asymptotically stable for ( ) .

    dxp f xdt

    d f pdt

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems

    Rest point : ( ) 0p f p ( )dx f xdt

    Criteria

    The rest point is asymptotically stable for ( ) if ( ) 0.

    It is unstable if ( ) 0.

    dxp f x f pdt

    f p

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear SystemsExample

    3( )dx f x x xdt

    stable

    ‐2

    ‐1

    0

    1

    2

    ‐2 ‐1 0 1 2

    f(x)

    x

    Rest points: 1, 0, and 12( ) 1 3

    ( 1) (1) 2, (0) 1f x x

    f f f

    Rest points 1 and 1 are stable,rest point 0 is unstable.

    unstable

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear SystemsTwo Variables

    0 ( ) 0dx f xdt

    If ( ) 0, then ( ) (constant) is a solution (rest point)f p x t p

    2 2 2( ), , :dx f x x fdt

    11 1 2

    22 1 2

    ( , )

    ( , )

    dx f x xdtdx f x xdt

    1 1 2

    1 1 2

    ( , ) 0( ) 0

    ( , ) 0f p p

    f pf p p

    1 1

    1 1

    ( )( )

    x t px t p

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems

    3dx x x ydtdy ydt

    Example

    3 3 1 1 00 000 0

    ( 1,0), (0,0), and (1,0)

    x x xx x y x xyy y

    Rest points:

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems

    3dx x x ydtdy ydt

    Example

    How do we analyze the full system?

    x

    yrest points

    “invariant line”:x‐axis

    If (0) 0, then ( ) 0, for all .y y t t

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems3dx x x y

    dtdy ydt

    Preview

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems

    Jacobian Matrix

    2 2 2( ), , :dx f x x fdt

    1 11 2 1 2

    1 2

    2 21 2 1 2

    1 2

    ( , ) ( , )( )

    ( , ) ( , )

    f fx x x xx x

    Df xf fx x x xx x

    11 1 2

    22 1 2

    ( , )

    ( , )

    dx f x xdtdx f x xdt

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems

    Example

    21 3 1( , )0 1

    xDf x y

    3dx x x ydtdy ydt

    2 1 1 1 2 1( 1,0) (0,0) (1,0)

    0 1 0 1 0 1Df Df Df

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems

    If is small, i.e., if is close to ,

    then solutions of ( )

    are close to solutions of ( ) .

    x pd f pdt

    d Df pdt

    Rest point : ( ) 0p f p ( )dx f xdt

    Introduce .Then ( ) ( ) ( )

    ( ) ( ) ( )

    x pf x f p Df p

    d dx f x f p Df pdt dt

    Basic Idea

    Linear approximation:( ) ( ) ( )( ) ( )( )f x f p Df p x p Df p x p

    In particular, the rest point is asymptotically stable for ( )

    if the origin is asymptotically stable for ( ) .

    dxp f xdt

    d Df pdt

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems

    Rest point : ( ) 0p f p ( )dx f xdt

    Criteria

    The rest point is saddle for ( ) if det D ( ) 0.

    It is a source if det D ( ) 0 and trace D ( ) 0.

    It is a source if det D ( ) 0 and trace D ( ) 0.

    dxp f x f pdt

    f p f p

    f p f p

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems

    3dx x x ydtdy ydt

    Example

    Rest points: ( 1,0), (0,0), and (1,0)

    2 1 1 1 2 1( 1,0) (0,0) (1,0)

    0 1 0 1 0 1Df Df Df

    det D (0,0) 1 0f

    det D ( 1,0) 2 0

    trace D ( 1,0) 3 0

    f

    f

    2discriminant D ( 1,0) ( 3) 4 2 1 0f

    saddlesink

    stable node

  • Dynamical Systems

    Math 5490 11/5/2014

    Nonlinear Systems

    3dx x x ydtdy ydt

    Example

    x

    yrest points

    “invariant line”:x‐axis

    If (0) 0, then ( ) 0, for all .y y t t

    saddlestable node