Math 473 - Math Econs 1 2011

Embed Size (px)

Citation preview

  • 8/18/2019 Math 473 - Math Econs 1 2011

    1/83

     

    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND

    TECHNOLOGY, KUMASI

    INSTITUTE OF DISTANCE LEARNING

    MATH 473: MATHEMATICAL ECON0MICS 1

    [Credits 3]

    By

    F.T. ODURO & C. SEBILDEPARTMENT OF MATHEMATICS, KNUST

    OCTOBER, 2011

  • 8/18/2019 Math 473 - Math Econs 1 2011

    2/83

      ii

    Contact Address

    Dean

    Institute of Distance Learning

    New Library Building

    Kwame Nkrumah University of Science and Technology

    Kumasi, Ghana

    Phone: +233-51-60013+233-51-60014

    Fax: +233-51-60023

    +233-51-60014

    E-mail: [email protected] [email protected] [email protected] 

    Web: www.fdlknust.edu.gh 

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://www.fldknust.edu.gh/http://www.fldknust.edu.gh/http://www.fldknust.edu.gh/mailto:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Math 473 - Math Econs 1 2011

    3/83

    About the Authors

    F.T. ODURO is, currently, a senior lecturer at the Department of Mathematics of the Kwame

     Nkrumah University of Science and Technology, Kumasi. Dr. F.T. Oduro has almost twodecades experience in the teaching of application oriented mathematical courses such as

    engineering mathematics, classical fields, mathematical economics and graduate courses in

    control theory and stochastic processes.

    He has also supervised dozens of graduate research projects involving the mathematical

    modeling and control of environmental, health and economic systems. He has held a number

    of administrative positions at the university including Head of the Department of

    Mathematics, Coordinator of the Actuarial Science programme and Head of the Kumasi

    Virtual Center for Information Technology which is a department of the Faculty of Distance

    Learning.

    Dr. Oduro is a member of the Ghana Science Society, a member of the Mathematical

    Association of Ghana and executive member of the Ghana Chapter of the International

    Biometric Society

    Email:  [email protected]   

    C. SEBIL is currently a lecturer at the Department of mathematics of the Kwame Nkrumah

    University of Science and Technology, Kumasi. Mr. C. SEBIL teaches Optimisation,

    mathematical economics, Engineering mathematics, Algebra and statistical methods.

    Mr. C. SEBIL is a member of the Ghana Science Society, a member of the Mathematical

    Association of Ghana.

    Email:  [email protected] 

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/18/2019 Math 473 - Math Econs 1 2011

    4/83

      iv

    Course I ntroduction

    This course is designed to present fourth year students of mathematics, actuarial science and

    statistics students with the fundamental principles of mathematical economics. It focuses on

     basic concepts and uncovers the simplicity and directness of a mathematical approach to

    economics theory.

    At the end of the course, students are expected to be able to appreciate the constrained

    optimizing behaviour of consumers and producers as well as the key structures of the

    marketplace.They should also be able to formulate and solve a lot of economic problems in a

    mathematical context.

  • 8/18/2019 Math 473 - Math Econs 1 2011

    5/83

      v

    Table of Content

    Contact Address .........................................................................................................................iiAbout the Author ..................................................................................................................... iiiCourse Introduction .................................................................................................................. ivTable of Content ........................................................................................................................ vList of Figures ........................................................................................................................... vi

    UNIT 1 ....................................................................................................................................... 1GENERAL CONCEPTS ........................................................................................................... 1

    Session 1-1: Introductory Remarks ........................................................................................ 1Session 2-1: Special Processes............................................. Error! Bookmark not defined.  

    UNIT 2 .....................................................................................Error! Bookmark not defined.  GENERAL CONCEPTS .........................................................Error! Bookmark not defined.  

    Session 1-2: N-dimensional and Complex Processes .......... Error! Bookmark not defined.  Session 2-2: Stationary Processes ........................................Error! Bookmark not defined.  

    UNIT 3 .....................................................................................Error! Bookmark not defined.  CALCULUS OF STOCHASTIC PROCESSES ...................... Error! Bookmark not defined.  

    Session 1-3: Stochastic Continuity and Differentiability..... Error! Bookmark not defined.  Session 2-3: Stochastic Differential Equations ....................Error! Bookmark not defined.  

    UNIT 4 .....................................................................................Error! Bookmark not defined.  CALCULUS OF STOCHASTIC PROCESSES ...................... Error! Bookmark not defined.  

    Session 1-4: Stochastic Integrals and Time Averages ......... Error! Bookmark not defined.  Session 2-4: Ergodicity ........................................................Error! Bookmark not defined.  

  • 8/18/2019 Math 473 - Math Econs 1 2011

    6/83

      vi

    L ist of F igures

    Figure 1-1 ................................................................................. Error! Bookmark not defined.  Figure 1-2 ................................................................................. Error! Bookmark not defined.  Figure 1-3 ................................................................................. Error! Bookmark not defined.  Figure 1-4 ................................................................................. Error! Bookmark not defined.  Figure 1-5 ................................................................................. Error! Bookmark not defined.  Figure 1-6 ................................................................................. Error! Bookmark not defined.  Figure 1-7 ................................................................................. Error! Bookmark not defined.  Figure 1-8 ................................................................................. Error! Bookmark not defined.  Figure 1-9 ................................................................................. Error! Bookmark not defined.  Figure 1-10 ............................................................................... Error! Bookmark not defined.  Figure 1-11 ............................................................................... Error! Bookmark not defined.  Figure 1-12 ............................................................................... Error! Bookmark not defined.  Figure 1-13 ............................................................................... Error! Bookmark not defined.  Figure 2-1 ................................................................................. Error! Bookmark not defined.  Figure 2-2 ................................................................................. Error! Bookmark not defined.  Figure 2-3 ................................................................................. Error! Bookmark not defined.  Figure 2-4 ................................................................................. Error! Bookmark not defined.  Figure 3-1 ................................................................................. Error! Bookmark not defined.  Figure 3-2 ................................................................................. Error! Bookmark not defined.  Figure 3-3 ................................................................................. Error! Bookmark not defined.  

    Figure 4-1 ................................................................................. Error! Bookmark not defined.  Figure 4-2 ................................................................................. Error! Bookmark not defined.  

  • 8/18/2019 Math 473 - Math Econs 1 2011

    7/83

      vii

  • 8/18/2019 Math 473 - Math Econs 1 2011

    8/83

      1

    UNIT 1 

    PRELIMININARY MATHEMATICAL CONCEPTS

    Introduction to Unit 1

    In this introductory unit, we briefly review classical optimization which is the basis of

    consumer optimizing behaviour. Next we deal with the basic concept of axioms of choice and

    indifference curves. After the preliminary notions of probability theory, we present the main

    ideas and fundamental properties. We continue with definitions and discussions on the

    concepts of transformations, continuity, and differentiation. Finally we discuss simple

    differential equations, as well as stochastic integrals, time averages, and ergodicity.

    Session 1- 0: Review of Classical Optimization

    1.1 Local Extrema of Funct ions on R

    Consider a differentiable function   :  f   .  f  is said to have a local maximum at a point

    * x  if for some 0  , *)()*(   x  f  h x  f        h . * x is then called a local maximum point

    Similarly,   f  is said to have a local minimum at a point * x   if for some 0  ,

    *)()*(   x  f  h x  f        h . * x is then called a local minimum point.

    A local extremum refers to either a local maximum or a local minimum.

    Theorem (Necessary condition for a local extremum)

     If   f  has a local extremum point at * x then 0*)('    x  f    

    Note

    The converse of the above theorem is not true

  • 8/18/2019 Math 473 - Math Econs 1 2011

    9/83

      2

    Example

    Consider the function   3)(   x x f     , we note that although   0)0('     f    ,   0 x is neither a maximum

    nor a minimum point; in fact, it is a point of inflection.

    Theorem (Sufficient condition for a local extremum)

     If    0*)('    x  f   and    0*)(''    x  f    , then   f  has a local maximum point at * x .

     If    0*)('    x  f   and    0*)(''    x  f    , then   f  has a local minimum point at * x .

    1.2 Local Extrema of Funct ions on R n  

    Consider a differentiable function   n f    : .  f  is said to have a local maximum at a point

    n

     x   *   if for some 0  , *)()*(   x  f  h x  f          h , * x is then called a local maximum

     point

    Similarly,   f  is said to have a local minimum at a point n x   * , if, for some 0  ,

    *)()*(   x  f  h x  f         h , * x is then called a local minimum point.

    A local extremum refers to either a local maximum or a local minimum.

    Theorem (Necessary condition for a local extremum)

     If   f  has a local extremum point at   n

     x   *  , then   0*)(     x  f   ; i.e.

    0*)(

    ...*)(*)(

    21

    n x

     x f  

     x

     x f  

     x

     x f   

    Note

    The converse of the above theorem is not true

    Theorem (Sufficient condition for a local extremum)

     If   n

     x   * is a critical point of  f     and the Hessian   *)( x H  of  f  is negative definite, then   f  has a

    local maximum point at    * x .

     If    n x   *   is a critical point of   f  and the Hessian   *)( x H  of  f  is positive definite, then   f  has a

    local minimum point at * x .

     Note that the Hessian of f is the matrix of its second order derivatives and is given by

    ,ijh H   where, ji

    ij x x

     f  h

    2

     

  • 8/18/2019 Math 473 - Math Econs 1 2011

    10/83

      3

    Positive/Negative definiteness of the Hessian

    A Symmetric Matrix is positive definite if its principal minors are all positive. I.e.

    011 h ,   0

    2221

    1211

    hh

    hh,   0

    333231

    232221

    131211

    hhh

    hhh

    hhh

    ,… 

    A Symmetric Matrix is negative definite if its principal minors alternate in sign as follows:

    011

    h ,   02221

    1211

    hh

    hh,   0

    333231

    232221

    131211

    hhh

    hhh

    hhh

    ,… 

    Summary

    Thus, for a multivariable function such as 2: f   with   2),(    y x ; for (x,y) to be a local

    minimum or maximum three conditions must be met

    1)  The first order partial derivatives must equal zero simultaneously. This indicates that

    at the given point (a, b) is a critical point at which the function is neither increasing

    nor decreasing with respect to the principal axes but is at a relative plateau

    2)  The second-order direct partial derivatives when evaluated at the critical point must

     both be positive for a minimum and negative for a maximum

    3)  The product of the second-order direct partials evaluated at the critical point should

    exceed the product of the cross partials evaluated at the critical point.

    Local Maximum Local Minimum

    1. f x = 0 and f x = 0

    2. f xx < 0 and f yy < 0

    3. f xx f yy > (f xy)2 

    1. f x = 0 and f x = 0

    2. f xx > 0 and f yy > 0

    3. f xx f yy > (f xx)2 

    1.3 Constrained Optim izat ion on R n  

    Consider a differentiable function   n f    : . Subject to a constraint 0),...,,( 21   n x x x g  is

    said to A local extremum point n x   *   can be found if the function f to be optimized (the

    objective function) is replaced by   1

    :  n

     L  called the Lagrangian and given by

  • 8/18/2019 Math 473 - Math Econs 1 2011

    11/83

      4

    ),...,,(),...,,(),,...,,( 212121   nnn   x x x g  x x x  f   x x x L         

      is called a Lagrange multiplier. Similar necessary and sufficient conditions for local

    extrema then apply 

    For a linear constraint on R 2

      the Hessian is said to be bordered and the sufficient (secondorder) conditions are given by

    011 h ,   0

    2221

    1211

    hh

    hh,   0

    021

    22221

    11211

     p p

     phh

     phh

     for a minimum

    and

    011

    h ,   02221

    1211

    hh

    hh,   0

    021

    22221

    11211

     p p

     phh

     phh

    for a maximum

    Again note that here the Hessian of L  is the matrix of its second order derivatives and is given

     by

    ,ijh H   where , 

    i

    i

     ji

    ij x

     L p ji

     x x

     Lh

    22

     and 2,1,for

    And the linear constraints are given by

    0),( 221121 

      C  x p x p x x g   

    Example

    1) Optimize the function z = 4x2  + 3yx + 6y 2 subject to the constraint x + y = 56

    Solution

    Set the constraint equal to zero: 56 + x –  y = 0

    Multiply it by λ  and add it to the objective to form the Lagrangian function Z

    Z = 4x2

    + 3xy + 16y2 + λ (56 –  x-y).

    Take the first-order partials, set them equal to zero and solve simultaneously

    )1....('.........38     

        y x

     x

     Z  Z  x  

    )2.........(.....'....0123       

      y x

     y

     Z  Z  x  

    056     y x Z 

     Z  x 

      

    From 1) and 2) y = 20 and x = 36

  • 8/18/2019 Math 473 - Math Econs 1 2011

    12/83

      5

     Now from 1) 8x + 3y = λ  

    8(36) + 3(20) = λ  

    Λ = 348  

    Substituting the critical value in Z:

    Z = 4(36)2  + 3(36)(20) + 6(20) 2  + 348(56  –  36  –  20) = 9744

    Since Zxx > 0, Z yy > 0 the optimal value is a minimum

  • 8/18/2019 Math 473 - Math Econs 1 2011

    13/83

      6

  • 8/18/2019 Math 473 - Math Econs 1 2011

    14/83

      7

    Session 1-1: Consumer Optimizing Behaviour .

    SOME AXIOMS OF CONSUMER BEHAVIOUR  

    The ranking of goods by the consumer is called his preference function

    1) The axiom of completeness or comparison. Given two commodities

    X and Y the consumer should be able to state one and only one of the following

    Y  X      : ( X is preferred to Y)

     X  Y     : ( Y is preferred to X)

    Y  X      : ( X, Y equally satisfying, the consumer is indifferent between X and Y)

    2) Axiom of Transitivity

     Z  X   Z Y Y  X       ,  

     Z  X  Z Y Y  X      ,  

    3) Axiom of non-saturation or non-satiety

    The consumer prefers more to less

    Indifference Curves  

    An indifference curve is the locus of points or particular combination of goods each of which

    gives the same satisfaction.

  • 8/18/2019 Math 473 - Math Econs 1 2011

    15/83

      8

    Utility, which is the measure of consumer satisfaction, is that function the level curves of

    which are the indifference curves. Along a particular indifference curve, utility is constant.

    Utility can thus be represented by a utility surface.

  • 8/18/2019 Math 473 - Math Econs 1 2011

    16/83

      9

    Properties of Indifference Curves

    Indifference curves

    1) 

    are everywhere dense i.e. an indifference curve passes through any point on in the

    commodity space

    2)  are negatively sloped

    3) 

    cannot intersect

    4) 

    are convex to the origin

    Marginal Rate of Substitution (MRSyx )

    The marginal rate of substitution of Y for X measures the number of units of Y that a

    consumer is willing to sacrifice for a unit of X so as to maintain a constant level of utility or

    satisfaction and it is given as the negative of the slope of an indifference curves

  • 8/18/2019 Math 473 - Math Econs 1 2011

    17/83

      10

    NB  It is always defined along a particular indifference curves

    The Constrained Maximization of Utility

    The rational consumer desires to purchase a combination of X and Y from which he derives

    the highest level of satisfaction. His problem is one of maximization. However, his income

    is limited and he is not able to purchase unlimited amounts of the commodities. The

    consumer’s budget constraint can thus be written as

    XPX + YP Y = I ……………………………………………………………….. (1)

    Where, I is his income and PX and P Y  are the respective prices of X and Y. The amount he

    spends on commodity X (X PX) plus that spent on Y (Y PY) equals his income I.

    The First Order and Second Order Conditions

    The consumer desires to maximize his utility U = U(X,Y) subject to XP X + YP Y = I

    We form the Lagrangian

    L (X,Y,λ ) = f(X,Y) - λ (XPX + YP Y - I )………………………………(2)  

    Where λ is the Lagrange multiplier

    The first-order conditions are obtained by setting the first partial derivatives of L with respect

    to X, Y and λ equal to zero.  We obtain

    0

    ()

    ()

     I YP  XP  L

     P Y 

     L

     P  X 

     X 

     L

     y x

     y

     x

     

     

     

    …………………………………………….(3) 

    From the first two equations of (3) we have

     

     x x

      P 

     X  L

     P 

     X  L   // 

    Marginal utility divided by price must be the same for all commodities. The ratios give the

    rate at which satisfaction would increase if an additional cedi were spent on a particular

    commodity. If more satisfaction could be gained by spending an additional cedi on X rather

    than Y, the consumer would not be maximizing utility. He could increase his satisfaction by

    shifting some of his expenditure from Y to X.

    The Lagrange multiplier λ is the marginal utility of income. The marginal utility of income is

     positive.

    Again, from (3), the first order condition for the optimization problem can also be written as

  • 8/18/2019 Math 473 - Math Econs 1 2011

    18/83

      11

     y

     x

     P 

     P 

    Y  L

     X  L

    /

    Thus, the ratio of the marginal utilities must equal the ratio of prices for maximum.

     Now U(X,Y) = constant along an indifference curve and hence

    0

    dY 

    U dX 

     X 

    U  

    0dY 

    dY  MU 

    dX 

    dX  MU   y x  

    dX 

    dY  MU  MU   y x    

     y

     x yx

     y

     x

     MU 

     MU 

    dX 

    dY  MRS 

     MU 

     MU 

    dX 

    dY   

    Graphical solution of the Consumer’s Optimization Problem

    As one moves from A to D the MRSyx  decreases. MRS tends to turn against the commodity

    that is abundant and in favour of the commodity that is scarce. The budget line equation with

    y as subject is given by y

     x

     P 

     I  X 

     Py

     P Y     

    The consumer attains equilibrium on the budget line. At point F, the slope of I2 and the slope

    of the budget line are the same i.e.

  • 8/18/2019 Math 473 - Math Econs 1 2011

    19/83

      12

     X 

    YX 

     P 

     P  MRS     

     X 

     X 

     X 

     X 

     P 

     MU 

     P 

     MU 

     P 

     P 

     MU 

     MU   

    Linear Indifference Curves  

    Suppose I is an Indifference curve MRS is constant the commoditiesare perfect substitutes. If the slope of budget is different from the indifferent curves then wehave specialization.

    Income Consumption Curve (ICC)  

    Consider a consumer who receives a permanent rise in his income. If income rises and

     prices remain constant, the budget line shifts line shifts parallel to the first one..

    All ICC start at the origin. This is because at the origin the individual’s income is zero and

    hence cannot purchase any one of Y and X.

    In most cases ICC are upward sloping if the commodities are normal or inferior. These are

    defined in terms of income elasticities. If income elasticity is negative, the commodity is

    inferior:

  • 8/18/2019 Math 473 - Math Econs 1 2011

    20/83

      13

        = income elasticity

    0   inferior goods

      102

      normal goods

    Second Order Conditions

    The second-order condition as well as the first-order condition must be satisfied to ensure that

    a maximum is actually reached.

    Denoting the second direct partial derivatives of the utility function by Uxx  and U yy and the

    second cross partial derivatives by Uxy and U yx , the second order condition for a constrained

    maximum requires that the relevant bordered Hessian determinant be positive.

    0

    0

     y x

     y yy yx

     x xy xx

     P  P 

     P U U 

     P U U 

     

    Expanding, we get

    0 y x

     xy xx

     y

     y x

     yy yx

     x  P  P 

    U U  P 

     P  P 

    U U  P   

    0  xy x xx y y yy x yx y x   U  P U  P  P U  P U  P  P   

    022

     xy x y xx y yy x yx y x   U  P  P U  P U  P U  P  P   

    02  22

     xx y yy x xy y x   U  P U  P U  P  P   

    Substituting 

     X U  P  x

      /  and

     

    Y U  P  y

      / 

    we have

    0////

    2

    22

     

      

       

     

      

       

     

      

         

      

       

        

    Y U U 

     X U U 

    Y U  X U U   xx yy xy  

    02

    22

     

      

     

     

      

     

     

      

     

     

      

     

    U U 

     X 

    U U 

     X 

    U U   xx yy xy  

  • 8/18/2019 Math 473 - Math Econs 1 2011

    21/83

      14

    Demand Function

    Ordinary Demand Function 

    A Consumer’s ordinary function sometimes called a Marshallan demand function give the

    quantity of a commodity that he will buy as a function of commodity prices and his income.

    The demand function can be derived from the analysis of utility maximization. Using the

    first-order conditions of maximization the demand functions can be obtained.

    Example

    Let us assume that the utility function is U = XY and the budget constraint.

    I –  XP y  –  YP x  = 0. From the expression

    L = XY + λ(I - XPy  –  YP x) and its partial derivatives equal to zero

    0

     y P Y  X 

     L

       

    0

     x P  X 

     L   

    Solving for X and Y gives the demand functions

     x P 

     M  X 

    2   and

     y P 

     M Y 

    2  

    Properties of Demand Functions 

    1) 

    The demand for a commodity is a single-valued function of prices and

    income

    2)  Demand function is homogenous of degree zero in income. That is if all

     prices and income change in the same proportion, the quantities demanded

    remained unchanged. We now look at the proofs of these properties

    1a) The first property follows from the strict quasi-concavity of the utility function, a

    single maximum, and therefore a single commodity combination corresponds to a given set of prices and income

    NB 

    If the utility function were quasi-concave, the indifference curves would possess straight-line

     portions and maxima would not need to be unique. In this case more than one value of the

    quantity demanded may correspond to a given price, and the demand relationship is called a

    correspondence rather than a demand function.

    2b) To prove the second property, assume that all prices and income change in the

     proportion K. The budget constraint becomes

  • 8/18/2019 Math 473 - Math Econs 1 2011

    22/83

      15

    KI –  KXP x  - KYP y  = 0 where K is the factor of proportionality and

    L = U(X,Y) + λ (KI –  KXPx  –  KYP y) and the first-order conditions are

    0

     y x   KP U  X 

     L   

    0

     x y   KP U 

     L   

    0

    Y Y    KYP  KXP  KI 

     L

      

    KI - KXPX - KYP Y can be written as K(I  –  XP X - YP y) = 0 . Since K  0, I - XP x  –  YP y = 0

    Eliminating K from the first two equations of the first-order conditions for a maximum

    we have

     y

     x

     y

     x

     y

     x

     x

     y

     P 

     P 

     KP 

     KP 

     

      

    Hence we have I - XPx  –  YP y = 0 and y

     x

     y

     x

     P 

     P 

    U    which are like the original equations

    Therefore the demand function for the price-income set (KPx,KPy, KI)) is derived from the

    same equations as for the set (Px,Py, I)

    Compensated Demand Function

    Imagine a situation in which some public authority taxes or subsidies to a consumer in such a

    way as to leave his utility unchanged after a price change. Assume that this is done by

     providing a lump-sum payment that will give the consumer’s compensated demand function

    the quantities of the commodities. They are obtained by minimizing the consumer

    expenditure subject to the constraint that his utility is at the fixed level U (This is the dual

    optimization problem)Assume again that the utility function is U = XY. From the expression

    Z = XPy + YP y  + λ (U - XY) and setting its partial derivatives equal to zero, we get

    0

    UY  P 

     X 

     Z  x  

    02  

    UX  P 

     Z  

    0

     XY U 

     Z 

      

  • 8/18/2019 Math 473 - Math Econs 1 2011

    23/83

      16

     Now Px  = UY , P y  = UX

     X 

     P 

     P 

     x

     x   and Y =

     y

     x

     P 

     XP  

     y x   YP  XP  

     

     x

     x

     P 

    YP  X    

    Compensated demand for X

    0

     y

     x

     P 

     XP  X U   

    U  P 

     P  X 

     y

     y

    2

     

     y

     y

     y

     y

     P 

    UP Y 

     P 

    UP  X      ..  

    Demand Curves  

    In general the consumer’s ordinary demand function Qy  is written as q 1  = φ(P1, I) or

    assuming that P2 

    Given parameters, p2  and I as fixed, q 1  = D(P 1) is the demand curve for commodity 1. It is

    often assumed the function possesses an inverse such that price may be expressed as unique

    function of quantity.

    Generally demand curves are negatively sloped which implies that the lower the prices, the

    greater the quantity demanded.

    In exceptional cases the opposite may hold. An example is provided by ostentatious

    consumption. If the consumer derives utility from a high price, the demand function may

    have a positive slope.

    Price Elasticity of Demand  

    The quantity demand of a commodity depends upon its price. It is of interest to measure the

    relative change in quantity demanded as a result of given proportional change in price. This

    measure is called the price elasticity of demand.

    Definition 

  • 8/18/2019 Math 473 - Math Econs 1 2011

    24/83

      17

    The price elasticity of demand is the relative responsiveness of quantity demanded to change

    in commodity price in other words price elasticity is the proportional change to quantity

    demanded divided by the proportional change in price.

    Let e be own price elasticity of demand for the commodity X, then e

    Let the demand curve for commodity be q1   = f (P 1, P2 ,..., Pn, I) where q is the quantity

    demanded, p j   the price of the jth commodity, I is the income and we assume there are n

    commodities. By definition, the own price elasticity of demand is

    )(ln

    )(ln

    i

    i

    i

    i

    i

    i

    ii p

    q

    q

     p

     p

    qe

     

    A numerically large value for an elasticity implies that the quantity is proportionately very

    responsive to price changes. If e0  < -1, then the good is a luxury good. (A numerically high

    value). If e0  > -1, then the good is a necessity. (A numerically small value)

    Price Elasticity of Demand and Expenditure

    The rate of change of consumer expenditure on q1  wrt p 1  is given by

     

      

     

    1

    1

    1

    11

    1

    111

    1

    11 1)(

     p

    q

    q

     pq

     p

    q pq

     p

    q p 

    = q1  (1 + e 11)

    )1()(

    111

    1

    11 eq p

    q p

     

    Thus the consumer expenditure on q1  will

    i) 

    Increase with p1  if e 11 > -1 (necessity)

    ii)  Remain unchanged if e11  = -1

    iii)  Decrease if e11  < -1 (luxury)

    Cross-Price Elasticity of Demand

    DEFINITION   The price cross-elasticity of demand measures the relative

    responsiveness of quantity demanded of a given commodity to changes in the price of a

    related commodity. In other words, it is the proportional change in the price of a good)

    1

    1

    1

    1

    1

    1

    1

    111   ,

    q

     P 

     P 

    q

     P 

     p

    q

    qe

     

    OR

  • 8/18/2019 Math 473 - Math Econs 1 2011

    25/83

      18

     x

     y

     y

     x

     y

     x

     xyq

     p

     p

    q

     p

    qe

    )(ln

    )(ln 

    I) 

    If exy > 0 then X and Y are substitutes

    II) 

    If exy < 0 then X and Y are complements

    The Cournot Aggregation Condition

    Taking the total differential of the budget constraint XPy + YP x= I and letting

    dI = dpy = 0 and multiplying through by MXYdp

     NY  P  x  

     pxdX + Xdpx + p ydY = 0. Multiplying through by  IXYdp

     XY  P  x  we get

    0

     x

     y

     y x

     x

     x

     x

     x x

     IXYdp

     XY  P dY  p Xdp

     IXYdp

     XY  P 

     IXYdp

     XY  P dX  p  

    0

    2

     IX 

    Y  P 

     P 

    dp

    dY 

     IXY 

    Y  P  X 

     P 

    dp

     IY 

     XYp

     X 

     p

    dp

    dX    y y

     x

     x

     x

     x x x

     x

     

    0 I 

    Y  P e

     I 

     Xp

     I 

     Xpe   x x yx

     x x xx  

     x yx y xx x  ee           where

     I 

    YP 

     I 

     XP    y y

     x

     x          ,   are the proportions of total expenditures

    for the two goods. Given e11  (own price elasticity of demand) for q 1  the formula

    1212111           ee   can be used to calculate the cross-elasticity of demand.

    i) If e11 = -1, e 21  = 0 i.e.

    12121   )1(           e  

    11212         e  

    0021212

        ee   

    ii) If e11  < -1, e 21  > 0

    0,121111     ee   

    Then -1

       +1

       e 11  > 0 hence 00 21212     ee   

    Similarly,

    iii) If e11  > -1, e 21 < 0

    1   e 11  + 1212      

    e  

  • 8/18/2019 Math 473 - Math Econs 1 2011

    26/83

      19

    1111212  ee          

    )1()1(

    11

    1

    1

    2

    11121   e

    ee  

     

     

     

       

    021   e  

    Income Elasticity of Demand  

    Income elasticity of demand for an ordinary demand function is defined as the proportionate

    change in income with prices constant

    )(

    )(

     InI 

     InX  x

       

    Engel’s Aggregation Condition  Taking the total differential of the budget constraint, XPx + YP y  –  I, we have

    Px dX + Py dY = dI multiplying through by I 

     I   the first term on the left by

    ,

     X 

     X  the second by

    Y   and dividing by dI, we get

     I 

     I dI dY  P 

     I 

     I dX  P 

     X 

     X 

     I 

     I  y x    

     I 

     I 

    dI 

    dI 

    dI 

    dY  P 

     I 

     I 

    dI 

    dX  P 

     X 

     X 

     I 

     I    y x  

    1 I 

    YP 

     I 

    dI 

    dY 

     I 

     XP 

     X 

     I 

    dI 

    dX    y x  

    1Y 

     I 

    dI 

    dY 

     I 

    YP 

     X 

     I 

    dI 

    dX 

     I 

     XP    y x  

    12211

               where M 

    YP 

     M 

     XP    y x 21   ,    

    Is Engel’s aggregation condition  

  • 8/18/2019 Math 473 - Math Econs 1 2011

    27/83

      20

    Price Elasticity and Marginal Revenue  

    By definition, Total Revenue (TR) is TR = pq where p is the price of the good q is the

    commodity bought.

    TR = pq and MR dq

    dTR  

     

      

     

    dq

    dp

     p

    q P 

    dq

    dpq p

    dq

    dTR MR   1  

    Butedq

    dp

     p

    qe

    dp

    dq

    q

     p   1  

    where e is the price elasticity of demand of the commodity.

     

     

     

     

    e P  MR

      1

    1  

  • 8/18/2019 Math 473 - Math Econs 1 2011

    28/83

      21

    SOLVED PROBLEMS

    Example 1

    A consumer spends $360 per week on two goods    and X and Y and P x = $3 and P y =$2.

    His utility function is U = 2X2  Y. What quantities of X and Y does he buy each week in

    equilibrium. Check whether the second-order condition of maximum is satisfied

    Solution 

    We have: I = $360, U = 2X2Y, PX = $3, P Y = $2

    Thus  XY  x

    U  MU 

     x  4

    and   22 X 

     y

    U  MU  y  

     

     yx xy   U  x

     y X  y

     xU     

     

     

     

     

     

     

     

      4  

    0,4    

      

     

     

      

     

     y

     yU Y 

     x

     xU   yy xx  

    At equilibrium

     x y

    v

     x

     y

     x  XP YP  P 

     P 

     X 

     XY 

     MU 

     MU    2

    2

    42

     

    And since  I  XP YP   x y    

    We have  I YP  y   3  

    And therefore 603

     x

     P 

     I Y   

    Also  I  XP  XP  XP YP   x x x y   2

    1

    2

    803

    2

     x P 

     I  X   

    The second-order condition is given by

    02

    22

     

      

     

     

      

     

     

      

     

     

      

     

    U U 

     X 

    U U 

     X 

    U U   xx yy xy  

    Substituting values of the first and second order derivatives of U on the LHS, we get

        2222 4)4(4)0(24)4(2   X  Y  XY  X   XY  X      

    Which, simplifies to

    01664  22

      Y  X Y  X    00   Y   

  • 8/18/2019 Math 473 - Math Econs 1 2011

    29/83

      22

    Example 2

    A consumer spends $450 per week on two goods X and Y, with PX = $5 and P Y = $3.

    His utility function is U = 0.5XY2.

    i) 

    Find his demand functions for X and Y

    ii)  Find the optimal values of X and Y

    Solution 

    I = $450, PX = $3, P Y = $2, U = 0.5XY2  

    Thus,  XY  y

    U  MU Y 

     x

    U  MU   y x  

      ,5.0

      2  

    At equilibrium

     x

     x

     x

     x

     P 

     P 

     MU 

     MU     x y

     y

     x  XP YP  P 

     P 

     XY 

    Y    5.0

    5.0  2

     

    Thus,  I  XP YP   x y    becomes  I YP YP   y y     5.0  

    i) 

    Hence y P 

     I Y  3

    2   is his demand function for Y

    Also,  I  XP YP   x y    becomes  I  XP  XP   x x   2  

    Hence, x P 

     I  X 

    3   is his demand function for X

    ii) 

     Numerically, 3015

    450

    3

     x P 

     I  X    and 100

    9

    900

    3

    2

     y P 

     I Y   

    Example 3

    A rational utility-maximizing individual lives in a world with only two goods: X and Y.

    His utility function is given by U(X,Y) =  XY   . His money income is $256 per week and

    PY = $8

    a) 

    Derive the equation for his demand curve for Y

     b) 

    Find the equilibrium quantity of Y

  • 8/18/2019 Math 473 - Math Econs 1 2011

    30/83

      23

    Solution 

     XY U  P  I   y x       ,8$256$  

     X 

     X 

    U  MU  x    

    2

    1

     

     X 

    U  MU  y    

    2

    1

     

    At equilibrium

     y

     x

     y

     x

     P 

     P 

     MU 

     MU     x y

     y

     x  XP YP  P 

     P 

     X 

    Y   

    Thus,  I  XP YP   x y    becomes  I YP  y   2  

    And his demand curve for Y is given by y P 

     I Y 

    2  

    The equilibrium quantity of Y: 1616

    256

    2

     y P 

     I Y   

    Example 3

    Total Revenue from the sale of a commodity is given by the equation

    22100   QQTR    

    Calculate the point elasticity of demand when marginal revenue is 20.

    Solution

    Marginal revenue MR is given by

    Q

     P 

    Q

     P 

    dP 

    dQe

    2

     

    Where 20Q and 60)20(21002100     Q P   

    5.140

    60

    2

    Q

     P e  (demand is elastic)

    Example 4

    A rational utility-maximizing individual lives in a world with only two goods X and Y.

  • 8/18/2019 Math 473 - Math Econs 1 2011

    31/83

      24

    His utility function is  XY Y  X U     ),( . His money income is $256 per week and Px = $8

    a)  Derive the equation for his demand curve for Y

     b)  If the price of Y is $2

    i) 

    Calculate his cross-elasticity of demand for Y w.r.t the price of X

    ii) 

    Calculate his income elasticity of demand for X

    c)  He is given the option of joining a club, for dues of $176 per week which would

    give him one but only one, of the following rights concerning purchases for his

    own consumption:

    i) 

    he would buy X at 50% of the normal price

    ii) 

    He could buy Y at 50% of the normal price

    iii)  He could buy both X and Y at 75% of the normal prices. The normal prices

    are still Px = $8 and P y  = $2 and his income before payment of dues is still at

    $256 per week.

    Will he join the club, and if so, will he choose option (i), (ii) or (iii)?

    Solution 

     X 

     X 

    U  MU  x    

    2

    1

     

     X 

    U  MU  y    

    2

    1

     

    At equilibrium

     y

     x

     y

     x

     P 

     P 

     MU 

     MU   

     x y y

     x  XP YP  P 

     P 

     X 

    Y   

    Thus,  I  XP YP   x y    becomes  I YP  y  2  

    And his demand curve for Y is given by y P 

     I Y 

    2  

     b) i) From the demand equation y P 

     I Y 

    2   the demand for Y is independent of the price

    of

    X and hence the cross-elasticity is zero

  • 8/18/2019 Math 473 - Math Econs 1 2011

    32/83

      25

     Note also that  x y   XP YP     implies  I  XP  x   2  

     Now x x

      P dI 

    dX 

     P 

     I  X 

    2

    1

    2  

    Income elasticity for

    Therefore, Income elasticity of demand X 

     I 

    dI 

    dX e I   = 1

    2/2

    1

    2

    1

     x x x   P  I 

     I 

     P  X 

     I 

     P  

    Therefore, income elasticity of demand is unity

    c) Using the demand equations derived above with given income and prices we know

    that

    if he does not join the club his position is

    642

    256

    2

    1

    2

     y P  I Y   

    168

    256

    2

    1

    2

     x P 

     I  X   

         32)64)(16(   U   

    i) If joins and buys X at 50% of the normal price his position is:

    4$8100

    50   x P  x  

    I = 256 –  176 = 180

    5.224

    180

    2

    1

    2

     

      

     

     x P 

     I  X   

    452

    180

    2

    1

    2

     x P 

     I Y   

    )45)(5.22( U   =  25.22  

    iii) 

    If he joins and buys Y at 50% of the normal price, his position

    1$2100

    50   x P  y  

    901

    180

    2

    1

    2

     

      

     

     y P 

     I Y   

    25.11

    8

    180

    2

    1

    2

     x P 

     I  X   

  • 8/18/2019 Math 473 - Math Econs 1 2011

    33/83

      26

    )90)(25.11( U   =  25.22  

    iii) If he joins and buys both X and Y at 75% of normal price his position is

    6$8

    100

    75   x P  x   and 3$2

    100

    75   x P  y  

    156

    180

    2

    1

    2

     

      

     

     x P 

     I  X   

    303

    180

    2

    1

    2

     y P 

     I Y   

    )30)(15( U   =  215  

    Thus he will join and be indifferent to options (i) and (ii) because his utility in each case is

     25.22 which is greater than the utility before joining the club which is    32 .

    It is thus not worth joining in respect of option (iii).

    Example 5

    The relationship between a consumer’s income and the quantity of X he consumes is given

     by the equation

    21000Q I    

    Calculate his point income elasticity of demand for X when his income is 64,000.

    Solution 

    81000

    64000

    1000

    2   Q

     I Q  

    AndQdI 

    dQ

    2000

    1

    2

    1

    8

    64000

    )8)(2000(

    1

     

      

     

    Q

     I 

    dI 

    dQ   

    His point income elasticity of demand for X is 0.5.

    Example 6

    A town of 2,000 households constitutes a market for eggs. Current sales are 2,400 dozen

    eggs per week of $1.25 per dozen 1,200 households living on the west side of the river buy

    1,600 dozen and their elasticity of demand is 1.5. The remaining households live on the east

    of the river, buy the rest of the eggs, and have an elasticity of demand of -3 calculate the

    elasticity of the market demand curve for the town as a whole.

    Solution 

  • 8/18/2019 Math 473 - Math Econs 1 2011

    34/83

      27

    If two-thirds of eggs are subject to an elasticity of 1.5 and-third to -3 the combined elasticity

    is the weighted average.

    3

    2

    3

    13

    3

    25.1    

      

      

      

        x x  

    Therefore the elasticity of the market demand curve is -2.

    Example 7

    An individual spends his income on three goods. He buys 550 units of X at $1 per units,425

    units of Y at $2 per month units, and 200 units of Z at $3 per unit. He now buys 440 units of

    Y and 190 units of Z. Calculate his price elasticity of demand for X.

    Solution 

    Old expenditure on Z = 200 x 3 = $600

    Old expenditure on Y = 425 x 2 = $850

    Total expenditure on Y and Z = $1450

     New expenditure on Y = 440 x 2 = $880

     New expenditure on Z = 190 x 3 = $570

    Total expenditure of Y and Z = $1450

    Expenditure on Y and Z remains unchanged hence expenditure on X remains unchanged.

    Therefore the price elasticity of demand for X is -1.

    Example 8

    An individual lives in a world where there are only two goods X and Y. His utility function

     per period is:

    U = 50X –  0.5X 2  + 100Y  –  Y

    The price of X is 4 and his income per period is 672.

     b)  derive his demand function for Y

    c)  If the price of Y is 14, how much X does he buy?

    d) 

    At equilibrium. Calculate his income point elasticity of demand for X

  • 8/18/2019 Math 473 - Math Econs 1 2011

    35/83

      28

    e)  The individual is given the opportunity to join a society whose members can buy

    Y at z price of 5, this would be individuals only benefit from membership. What

    is the maximum amount that he would just be prepared to pay in membership dues

    each period to join the society?

    f) 

    Suppose the membership dues are 222 per period. Will he join? What then would

     be the marginal utility of money to him?

    Solution 

    a) 

    the equilibrium condition are  I YP  XP and  P 

     P 

     MU 

     MU 

     x x

     x

     x

     x

     x

      ..,..

     

     I YP  XP and  P 

     P 

     MU 

     MU  y x

     y

     x

     y

     x   ..,..  

    U = 50X –  0.5 X 2  + 100Y  –  Y 2 

    Y  X 

    U  MU  X 

     X 

    U  MU   y x   2100,50  

     

    Py (50  –  X) = P x (100  –  2Y)

    (50Py  –  X) =P y (100P x  –  2YP x)

    50Py  –  XP y = 100P x  –  2YP x 

    -XPx  = 100P x  –  2YP x  –  50P x 

    X = y

     y x x

     P 

     P YP  P 

      502100 

    X = y

     y x y

     P 

     P YP  P 

      50250 

    But XPx + YP y = I so P x    I YP  P 

     P YP  P  y

     y

     x x y

        100250 

    50PxPy + 2YP x  –  100P x = P y I

    22

    2

    2

    50100

     y x

     y x x y

     P  P 

     P  P  P  I  P Y 

     

     b) Given that Py = 14 P x = 4

  • 8/18/2019 Math 473 - Math Econs 1 2011

    36/83

      29

    22

    2

    2

    50100

     y x

     y x x y

     P  P 

     P  P  P  I  P Y 

     

    22

    2

    1442

    4450410067214

     x x

     x x x x    

    3619632

    280016009408

    Y   

     Now from MPx + YP y  = I, we have

    X(4) + 36 x 14 = 672

    4X + 504 –  672

    4X = 672 –  594 = 168

    X = 42

    There equilibrium quantity of X bought is 42

    e) We find the demand function for x

     y

     x

     y

     x

     y

     x

     P 

     P 

     X  so

     P 

     P 

     MU 

     MU 

    2100

    50.....  

    Hence

    50Py - XP y = 100P x  –  2YP x 

    2YPx = 100P x  –  50P y + XP y 

     x

     y y x

     P 

     XP  P  P Y 

    2

    50100    

    Substituting into the budget constraint we get

     I  P 

     P  P  P  XP 

     x

     y x

     y  

     

    2

    50100 

    2XPx + 100P x  –  50P x  –  2P x I

    222

    501002

     x x

     y x y x

     P  P 

     P  P  P  I  P  X 

     

    Hence the demand function for X is

    222

    501002

     x x

     y x y x

     P  P 

     P  P  P  I  P  X 

     

    Income elasticity  X 

     I 

    dI 

    dX 

      But 222

    2

     y x

     x

     P  P 

     P 

    dI 

    dX 

     

  • 8/18/2019 Math 473 - Math Econs 1 2011

    37/83

      30

    Therefore income elasticity = X 

     I 

     P  P 

     P 

     y x

     x

    222

    2

      substituting the values of

    Px, Py and X we have income elasticity

    ).4(561456103508.042

    672

    19632

    8

    42

    672,

    1442

    42

    2

    2   pd  x x x

       

    Income elasticity of demand for X=0.5614

    d)  If joins he would not like his utility to fall at least he would want t0 maintain his

    original utility. When X = 42 and Y = 36 his

    U = 50(42) –  0.5(42) 2  + 100(36)  –  36 2  = 3522

    The new equilibrium will be

    5

    4

    2100

    50

     X 

     P 

     P 

     MU 

     MU 

     y

     x

     y

     x  

    i.e. Px  = 4, P y = 5

     250  –  5X = 400  –  8Y

    8Y = 400 + 5X –  250

    150 + 5X

    But U = 3522

     

      85150

    851501005.0503522   2   X  X  X  X U   

    352264

    25)5)()150(2150

    8

    500

    8

    150005.050

    222

     

      

       

      X   X   X   X   X    

    64(50X) –  (0.5)(64)X -2  + (15000)(8) + 500X(8) + 22500  –  1500X 25 2  3522(64)

    57.X2   - 5700X + 127908 = 0

    X-2 –  100X + 2244 = 0

    (X-34)(X-66)=0

    X = 34 or 66

    From (b) X = 42, hence X = 34

    But = 408

    )5(34150

    8

    5150

      X  

    Therefore his new expenditure is

    XPx  + YP y  = 34(4) + 40(5) = 336

    To remain at the same level of utility he spends $336. Therefore he will be prepared to use

    the balance to pay his dues. Hence maximum membership dues = $672 - $336 = $3

  • 8/18/2019 Math 473 - Math Econs 1 2011

    38/83

      31

    e)  Since 222 is less than 336 he will join. His new remaining income is $672-$222 =

    $450

    The marginal utility of money is y

     y

     x

     y

     P 

     MU 

     P 

     MU   

    THEORY OF PRODUCTION  

    The two fundamental concepts behind supplies decision are:

  • 8/18/2019 Math 473 - Math Econs 1 2011

    39/83

      32

    i) Production ii) Cost

    All economic goods come to existence through the process of production. This includes

     production. This includes production of goods and services e.g. Legal service, medical etc.

    In the theory of the firm, the theory of consumer behaviour consumer maximize satisfaction

    and firms maximizing profits. In production we have Marginal rate of Technical Production

     between inputs. In the theory of consumer behaviour consumers maximize ordinal utility. In

    the theory of the firm, the firms maximize cardinal variables. The production process utilizes

    the production of inputs e.g. Capital goods i.e. intermediate products, all capital goods come

    into existence through an act of production.

    Assumption 

    1)  We have one variable input, one fixed input and they may be combined in

    various proportions. Fixed-an input whose quantity can’t be readily

    changed when market conditions indicates immediate change in output. In

    actual fact, no input is fixed. The cost of varying might be too high.

    Short Run is one in which one or more input is fixed. In the Short Run, change in product

    can’t be accomplished by varying the variable inputs.  

    In the Long Run all inputs are variable.

    Fixed proportion production: There is only one ratio of input that can be used to produce aninput.

    Production Function If a schedule showing the maximum output that can be produced from

    any specified set of inputs.

    Example 

    Q= f(K,L),

    K is fixed capital; L, labour is assumed variable

    The figure below depicts total output at alternative units of variable inputs. At L=0, Q = 0

    since capital alone can’t produce an output: we need L to combine.

    The Average product of L:

    APP = Q/L

    The Marginal product of L:

    MPP = dQ/d/L

    As the variable input remaining is increased a point is reached where maximum product is

    achieved and after that point it reduces or diminishes. As we increase the input from the

  • 8/18/2019 Math 473 - Math Econs 1 2011

    40/83

      33

    origin, MP rises to a maximum at L0   and then it begins to fall. L 0   is called a point of

    inflexion: a point where the curve changes its concavity. At L2, MP is zero. The Average

     product is increasing from the origin and MP remains greater than AP before the point of

    intersection L1  where AP achieves a maximum.

    Stage I : APPL is rising (L is between 0 and L 0 )

    Stage II: MPPL is falling but it is positive (L is between L 0  and L 2 )

    Stage III: MPPL is falling and it is negative (L is greater than L 2 )

     No rational producer produces in stage III because MPPL is negative. Also no rational

     producer produces in stage I because in stage I we have too few labourers on a large plant

    (and in stage III we have too many labourers the plant).

    ISOQUANTS 

  • 8/18/2019 Math 473 - Math Econs 1 2011

    41/83

      34

    Isoquants are curves input space showing all positive combinations (bundles) of inputs that

    are capable of producing a given output. Isoquants are downward sloping. They don’t

    intersect. Isoquants are convex to the origin. A higher isoquant is preferred to a lower one.

    The downward slope implies that if one increases one input one has to reduce the other and if

    one decreases the one, one should increase the other. The further away from the origin an

    isoquant is, the higher the associated level of output. MR of Technical

    Substitution

    , KL  MRTS KL =dL

    dK    measures the number of units of K that replaces a unit of L at a point

    so as to produce a given level of output. Along an isoquant the level of output is constant and

    therefore

    Q = F(K,L)

    dQ = Fk dk  + FdL

    Along the isoquant Q = constant

     dQ = 0

    0 = Fk dK F1dL

    1k 

     L MRTS 

     F 

     F 

    dL

    dK   

    As L is substituted for K along an isoqunt the MRTSKL declines law of diminishing

    MRTSKL 

    L

    ISOCOST CURVE:

    R –  rental rate of capital

    W –  wage rate of labourOptimal way in which the firm combines various input is given below

    We assume that the firm purchases from a P.C input market (prices are given) The T.C of

     purchasing K and L is C = Pk K + PLL i.e C = rK + wL

    C = rK + wL

    C  L

    w K    isocost curve (or equation

    It is a line showing all

  • 8/18/2019 Math 473 - Math Econs 1 2011

    42/83

      35

    wSlope   combination of the various

    inputs that the firm can

    isocost curve purchase at the given costs

    The totality of all the isocost curves is the isocost map. We first consider profit maximization

    -  Profit = Revenue-Cost

    -  = PQ –  (rK + wL)

    If firm is a Perfect Competitor in the input market and in the output markets and in this

    case P is given, then when C is minimum    would be maximum output for given cost or

    minimum cost for a given output. Implies we are moving along a given isoquant. An

    isocost curve further away form the origin corresponds to a higher TC. It is not possible

    to produce at C. The cost minimization point is E where the isocost curve is tangential to

    the isoquant. At E therefore

    w

     MPP 

     MPP  MRTS 

     K 

     L  

    If the above question is not satisfied, the producer will substitute one of the inputs for the

    other. From the equation

     L

     L

     L

     L

     K    MP 

     MP 

     MP 

     MP 

     MP 

    r ,   marginal cost of labour per unit of output

    W is the unit cost of labour. MPL is how much output increases if we increase the number of

    labour by 1.

     L

     MP 

    r  marginal cost of capital per unit of output

    MC of output is the increase in output due to an increase MP w

     MP r  K  x

     

    We substitute L for K because MC of output due to L is cheaper and this is same as

    w

     MP 

     MP 

     L

     L  

    w

     MP 

     MP 

    w

     MP  L K  L

      output per units of labour

     MP  K   output per unit of K

  • 8/18/2019 Math 473 - Math Econs 1 2011

    43/83

      36

    Instead of minimizing cost we can maximize output in the dual optimization problem. Now

    output varies and cost is

    Qx  is not attainable Q 1  is attainable but not the right equilibrium position

    At E, MRTS = ratio of prices. Equilibrium is the same in both cases.

    DEFINITION OF SOME CONCEPTS  

    Isocline is the locus of points along which MRTS is constant. It connects points along which

    MRTS is the same.

    K

    Expansion path

    L

    Suppose inputs prices are given and the firm wants to expand output. When all the

    equilibrium points are joined together we have Expansion Path. An Expansion

    Path is an isocline along which output will expand if factor prices remain constant. An

    Expansion Path has a positive slope so that if we want to increase output then employment of

     both inputs should be increased.

    ‘RETURNS TO SCALE’  refers to a relationship between the proportionate change in all

    inputs and the resultant proportionate change in output. If output changes by the same

     proportion we have constant return to scale (CRS). If output changes by more than the

     proportionate change in input, we have increasing Returns to scale (IRS). If output changes

     by less than proportionate change in inputs we have decreasing Returns to Scale (DRS)

    There is a presumption that production functions exhibit CRS

    Reasons 

    1) 

    The production process can be duplicated

    2) 

    IRS implies indivisibility (efficiency)

    3)  Division of labour (efficiency)

    Reasons for DRS  

  • 8/18/2019 Math 473 - Math Econs 1 2011

    44/83

      37

    1  There are certain cases where inputs can be doubled example extractive

    industries-mining

    2  Difficult in supervision e.g as scale of operations increase management becomes

    less efficient

    THEORY OF COST 

  • 8/18/2019 Math 473 - Math Econs 1 2011

    45/83

      38

    Social cost of production, when resources are used to produce a commodity it implies the

    society in curs a loss of production of another commodity

    Opportunity cost  the opportunity cost of producing one units of X is the amount Y that must

     be sacrificed for producing X

    Explicit Cost. Are payments made by firms for purchase or hired factors of production

    Implicit Cost: Are the imputed cost of self-owned factors of production

    Total Cost Explicit: Implicit Costs

    Implicit and Explicit costs are private costs of production.

    In economics, cost means opportunity cost unless otherwise stated.

    LONG-RUN COST CURVES  

    The least cost of producing a given a quantity of output is summarized in the long-run total

    cost curve. And it shows how total cost varies as the level of output varies. It is cost-output

    equivalent of the expansion path.

    L

    TC is concave to the origin at low levels of output and becomes convex. It starts from the

    origin. The shape of the curve reflects the characteristics of the production function. It

    reflects return to scale.

    1st  – TRS, 2nd   –  CRS  –  3 rd  –  DRS

    SHORT-RUN TOTAL COST CURVE 

    In the long-run the firm operates along the expansion path but in the short-run some of the

    factors are fixed. Once the tangency condition is violated in the short-run, it implies that it

    costs more to produce a given quantity of output in the short-run than in the long-run

    In the long-run all costs are variable

    SRTC = SRFC + SRVC

  • 8/18/2019 Math 473 - Math Econs 1 2011

    46/83

      39

    Corresponding to TC’s we have Average costs and marginal costs  

    SAC = AFC + AVC

    Q

    TFC  AFC 

    dQ

    dQd 

    dQ

    STC d SMC      ,

    ()('  

  • 8/18/2019 Math 473 - Math Econs 1 2011

    47/83

      40

    The AFC is U-shaped Assume labour is the only variable factor

    TFC = w,L where w is the wage rate

    Q

     Lw

    Q

     Lw

    Q

    TVC  AVC    .

    .  

     L MPP 

    w

    dL

    dQ

    dL

    TVC d 

    dQ

    dL

    dL

    TVC d SMC   

    (,

    )( 

    dL

    dQ Marginal product of labour

    SRMC and thedL

    dQ  are inversely related

    Both the SRVC , STC start from the origin is asymptotic to the cost axis. The gradient of the

    ray from the origin to the STC gives the ATC at that point

    LONG-RUN COST CURVES  

    In the long run, all inputs are variable. It is the planning of the firm. The long-run cost

    curves are always below the short-run cost curves. If a firm wants to take a decision it

    happens in the long-run. LCRC ≤ SRC> 

    All production take place in the short-run. As we move towards the LR, the fixed factor

     becomes variable. We have a series of SRC curves. The LTC is the envelope of the possible

    short-run TC curves. The long-run LTC is also the envelope of all the possible short-run, ACcurves.

  • 8/18/2019 Math 473 - Math Econs 1 2011

    48/83

      41

    FUNCTION COEFFICENT 

    It shows the proportionate change in output when all inputs are changed by the same

     proportion. If λ is the change in input then function coefficient

        

    Q

    If є > 1 implies increasing return to scale. IRS or economics of scale  

    Є < 1, constant returns to scale (CRS)  

    Є = 1 , decrease returns to scale or diseconomies of scale (DR S)

    Q

    Q

     LMC 

     LAC   

           ,  

     LMC 

     LAC 

    Q LAC 

    Q

    Q

      ,   

  • 8/18/2019 Math 473 - Math Econs 1 2011

    49/83

      42

    Q

    C  Average cost

     LMC 

     LAC     

     LMC  LAC  1    

     LMC  LAC  1    

     LMC  LAC 1    

    If the production function exhibits CRS then the expression path is linear i.e. through origin.

    If the production function is linear, it implies CRS

    If expansion path is linear then it belongs to homothetic production functions.

  • 8/18/2019 Math 473 - Math Econs 1 2011

    50/83

      43

    THEORY OF THE FIRM MARKET STRUCTURES  

    How do we classify market structure? We consider two criteria:

    1) 

     Number of firms in the industry

    2) 

    The nature of the product produced by the firms in the industry:

    1. The basis of the first criteria

    We classify industry whether there are many firms, few or one firm in the industry

    2. We categorize the industries by whether the products of the firms are homogeneous or

    different

    Number 0f Firms

     Number of product Many Few One

    Homogeneous PC Pure Oligopoly

    Differentiated MC Differentiated Monopoly

    Oligopoly

    PC Perfect competition

    MC Monopolistic competition

    We use the world competition to imply many firms in the industry

    Oligopoly implies few firms in the industry.

    Perfect and Pure implies homogeneity of product

    Competition does not mean competition in the real sense of the word. Here rivalry is absent.

    All other market structures other than perfect are classified as imperfect competition. We are

    talking about the sellers side of the product. We have the counterpart of this that is those who

    do the buying.

    If the buyers are many implies perfective competitive buyer

    If there is one buyer, then the market is monopsonistic

    If a monopolist faces a single buyer, we have a bilateral monopoly

  • 8/18/2019 Math 473 - Math Econs 1 2011

    51/83

  • 8/18/2019 Math 473 - Math Econs 1 2011

    52/83

      45

    Π = 0

    At A and B, the tangents to the STC is parallel to TR,BT

  • 8/18/2019 Math 473 - Math Econs 1 2011

    53/83

      46

    At the min point of the SAC the firm is indifferent about production i.e. it can continue to

     produce or shut down. That is at this point the firms covers its variables costs.

    SUPPLY CURVE OF THE FIRM  

    The industry supply curve can be the summation of the individual supply curves of the firms

    of the expansion does not affect the cost curves of the firms.

    If resource prices do not change the supply curve of the industry will be the horizontal

    summation of the supply curves of the individual firm. But if the prices changes then this

    cannot be done.

    LONG-RUN EQUILIBRIUM OF PC  

    The long-run adjustment of a single firm

    In the long-run the firm will operate at point E. At q, the firm will be making profits hence

    new firms will enter into the industry.

    LONG-RUN EQUILIBRIUM THE INDUSTRY  

    At qi, the firm will be making profits hence new firms will enter hence the curve will shifts to

    right that is 21   S S    .

  • 8/18/2019 Math 473 - Math Econs 1 2011

    54/83

      47

    At q, firm will be making losses firms will be leaving the industry. At q, supply to S1. As

    firms leave the industry the long-run supply will be S2  .

    MONOPOLY

    If there is only one producer in the market then we have monopoly. Monopoly and PC are

    extreme cases.

    1} PC has many rivals. We have competition in technical sense

    2} In the case of monopoly rivalry does not exist. There is only firm in the in the market.

    However there are indirect forms of competition that the monopolist faces.

    i) 

    That is competition for the consumer income. That is he has to secure a

    market for his products.

    ii) 

    The existence of substitutes for his products. His power depends on the

    exact goods. Reasons why monopolists exist

    1) Control of the basic input. That is the Aluminum Company of USA owns the Bauxite

    in the production of A1 in USA.

    2) A firm can obtain the property right to produce a commodity. They cannot prevent

    other firms from producing close substitute example Pata and Club, IBM and the rest

    3. The Average Cost of producing a product reaches its minimum at an output rate that

    is ideal for one firm

    If more than one firm does the production they produce a higher AC. There will be a price

    warfare and some of them will be driven out of production, hence leaving only one firm in

    the market, this termed as natural monopoly which means the emergence of one firm as the

    sole producer of a commodity due to the price warfare

    4) Demand curve facing the monopoly. The dd curve facing the monopolist is the same

    as the market dd curve.

    5) Under monopoly the firm chooses the price. The MR is not the supply curve as is the

    case.

    SHORT-RUN EQUILIBRIUM OF THE MONOPOLIST 

    A firm may be a monopolist in the product market and may be a PC in the input market. If itis a PC in the input market then the cost curves will be the same as the PC.

  • 8/18/2019 Math 473 - Math Econs 1 2011

    55/83

      48

    Let us consider a monopolist who owns two plants. Each of the plants has its own cost

    curves. He decides on output and price. The allocation of optimal output in each plant are as

    follows:

    Total Market

      MC  MC  MC  MC  21  

    P

    P MC = MR

    D

    Q

    At the optimal level MC1 = MC 2,

    When MC1 < MC2 then there will be a shift of production from MC1  to MC 2,

    21

    21

    )()(

    qqQ

    Q FR pqq F  P   

    )( 21   qqqF  pq R       

    )()( 1q  f  Q R       

    C=fq1),C2=g(q2)

    )()( 1121   qC qq R      

    = R(q1  + q 1) –  g(q 2)

    1..)(')(2

    1

    1

    21

    1

    q

    Qeiq f  

    q

    Qqq R

    q     

      

      

      

      

      

     Mc MR  f   R  f   Rq P 

    q

    Q

    Q

     R   ''0'')(, 1

     

     

      

    0')('1

    21

    2

      g q

    Qqq R

    q     

      

      

      

     MC  MR R R     ,0''  

    321  MC  MC  MC     

    These are first order conditions. The second order conditions

  • 8/18/2019 Math 473 - Math Econs 1 2011

    56/83

      49

    2

    2

    12

    2

    21

    2

    2

    1

    2

    qqq

    qqq

      

       

        

       

        

       

      

       

     Second order conditions

    0.0,2221

    1211

    11

    2221

    1211

      

       

      

       

    The second order condition implies MC must be rising.

    LONG-RUN EQUILIBRIUM 

    Since entry is blocked in the LR profit is not reduced to zero. If the monopolist incurs a SR

    loss and there is a revenue for expanding output then in the LR it will close down. If the

    monopolist makes profits in the SR, he can expand output. The maximum-maximum plant is

    the plant which gives the maximum of the maxima profit.

    That is LMC = MR

    SAC is the optimal plant of the LR. The maximum-mximum plant is the plant which gives

    the maximum of all profits. In the LR, monopolist need not operate at the minimum point of

    the LAC, so reso@ e perfectly utilized in PC. To the monopolist. P < MC price

    or dd represents the marginal social evaluation of a product LM MC shows the marginal

    social cost i.e. society wants more of product but the monopolist will not increase output. PC

     promotes social welfare more than monopoly. That is P = MC in PC and P > MC in

    monopoly.

    LONG-RUN EQUILIBRIUM OF A TWO PLANT MONOPOLIST  In the long-run, the monopolist can alter the plant size.

    Cost curve for one plant

    q

  • 8/18/2019 Math 473 - Math Econs 1 2011

    57/83

      50

    LONG-RUN EQUILIBRIUM OF A MULTIPLANT MONOPOLIST  

    P C

    P

    P LMC = LAC

    A B

    D

     Number of firms in a PC market will beq

    Q p 

     Number of firms in a monopoly market will beq

    q

    Q

    q

    Q p . And the monopolist will change a higher price.

  • 8/18/2019 Math 473 - Math Econs 1 2011

    58/83

      51

    QUESTIONS

    Construct a short-run supply function for an entrepreneur  whose short-run cost function

    is TC = 0.04q3   –  0.8q 2  + 5 + 10q

    1)  Solution 

    TC = 0.04q3   –  0.8q 2 + 5 + 10q

    TVC = 0.04q3   –  0.8q 2  + 10q

    108.006.0  2

      qqq

    TVC  AVC   

    For Min AVC set 0

    dq

    dAVC  

    08.008.0     qdq

    dAVC  

    108

    80q  

    When q = 10, AVC = 0.04 x 100 –  0.8(10) + 10 = 6

    MC = 0.12q2   –  1.6q + 10

     pqq     106.112.0   3  

    Multiply through by 12.5

    5q2   –  20 + 125  –  12.5p = 0

    3

    5.12125(640020   pq

     

    3

    143520  

      pq  

    The positive branch gives output at which MC is increasing, hence dS/dp >0 and

    S =3

    143520     p.if..p ≥ 6  

    I,e. minimum AVC = 6, below 6, S = 0)  min P = 6

    2) The long-run cost function for each firm that supplies Q is C = q3   –  4q + 5q.

  • 8/18/2019 Math 473 - Math Econs 1 2011

    59/83

      52

    Firms will enter the industry if profits are positive and leave the industry if profits are

    negative. Describe the industry’s long-run supply function. Assume that the corresponding

    demand function is D = 2000 –  100p.

    Determine equilibrium price of industry and number of firms

    OTHER QUESTIONS 

    1) A firm has the following long-run production function

    X = 25.05.05.0 C  B A    where X is weakly output,

       is positive constant A, B and C are the weekly outputs of the three factors used.

    The price of A is $1, the price of B is $ and the price of C is $8

    a) Derive the following:

    i) the firms long-run total cost function

    ii) the firms short-run average cost function

    iii) the firm’s short-run average variable cost function

     b) if the short-run factor C is fixed, while factors A and B are variable, derive the

    following

    i)  the firm’s short-run average function

    ii)  the firm’s short-run average cost function

    iii)  the firm’s short-run average cost function

    iv)  the short-run average marginal cost function

    c) Derive an equilibrium in the form C = f(x) showing the optimum quantity of the fixed

    factor

    C for the firm to acquire as a function of the intended output of X

    Solution 

    The equilibrium or cost-minimum conditions are

    b

    a

    b

    a

    b

    a

    b

    a

     P 

     P 

     MPP 

     MPP 

     P 

     P 

     MPP 

     MPP    ,  

    From th given data

  • 8/18/2019 Math 473 - Math Econs 1 2011

    60/83

      53

    MPPa  = o.5 αA-0.5  B0.3 C 0.25  

    MPPb = 0.5 α A-0.5  B0.3 C 0.25  

    MPP = o.25 αA0.5  B 0.5 C 0.25 

    25.05.05.0

    25.05.05.0

    25.0

    5.0

    C  B A

    C  B A

     P 

     P 

     MPP 

     MPP 

    b

    a

    b

    a

     

      =

    9

    So )...(..........168

    12ii

     AC 

     A

    e  

    Substituting (i) and (ii) into production function we get

    25.05.0

    5.0

    169  

     

     

     

     

     

     

     

      A A A X       

    2

    )(

    3

    )(   25.05.05.0   A A A   

    ).......(..........6

    6

    .0

    8.0.

    25.0iii X  A A X 

      x

     

      

     

     

     

     

    CP  BP  AP  LTC ba

      c 

    = )8($16

    )9($9

    )1  A A

     AS     

    2

    5

    2

     A A A A    

    But 8.08.0

    6 X  A  

     

      

     

      

    Hence LTC =

    8.0

    8.06

    2

    5

     X  

     

     

     

       

    (i) LTC = 8.08.0

    6

    2

    5 X 

     

      

     

      

    (ii) 

    LAC =  X 

     LTC   18.0

    8.0

    6

    2

    5    

      

      X 

      

    = 8.08.0

    6

    2

    5 X 

     

     

     

     

     

     

  • 8/18/2019 Math 473 - Math Econs 1 2011

    61/83

      54

    (iii) 

    LMC = 2.08.0

    2.0

    8.0

    2.0

    8.06

    26

    2

    46)8.0(

    2

    5 X  X  X 

    dX 

    dTC  

      

     

     

      

     

     

      

     

       

     

     b)  From a) we have X =3

    .....5.05.025.0   A

     Band  A BC       

    39

    25.05.0

    5.0

    25.0   AC  A

     AC  X        

     

      

       

    25.0

    25.0 3

    3   C 

     X  A

     AC  X 

     

       

    SFC = AP + BP + CP

    But (i) STC = d($1) + C  A A A

    8)8$)9($9

     

    STC = 2A + 8C

    But25.0

    3

     X  A

     

     

    Hence STC = C C 

     X C 

     X 8

    68

    32

    25.025.0 

      

     

    (ii) X C 

    C  X 

     X STC SAC    86

    25.0 

     

     

    = X 

    8625.0 

      

    (iii) 

    SAVC =25.0

    6...,

     X TVC but 

     X 

    TVC 

       

    Hence SAVC 25.025.06

    /6

    C  X 

    C  X 

         

        

    v)  SMC =25.025.0

    68

    6

    C C 

     X 

    dX 

    dX 

    dSTC 

      

     

    SMC =25.0

    6

    C   

     b) From part C  BC  A9

    16,16    

    X = 25.05.05.0 C  B A    substituting A and B we have

  • 8/18/2019 Math 473 - Math Econs 1 2011

    62/83

      55

    25.0

    5.0

    9

    16)16(   C C C  X   

     

      

        

    25.125.05.05.0

    316

    34 C C C  AC  X          

    8.0

    8.0

    16

    3 X C   

     

      

     

      

    2) A firm uses a number of factors to produce a single product. X. In the short-run plant

    is fixed, while all other factors are variable. We are concerned with two of the possible

     plants. In the long long-run of course all factors are variable. The cost functions are

    LTC = 0.005 X3   –  1.4X 3  + 280X

    Plant 1 : STC1 = 0.006X2 -1.33X2   + 6860

    Plant II STC2   = 0.0057 X 2  -1.424 X-2 + 205.6X + 10240

    a)  Derive equation for the following LAC, LMC, SAC, SATC,..SMC,,SMC

     b)  At what output does the firm achieve minimum LAC?

    c) 

    Does either plant permit achievement of minimum LAC?

    d) 

    At what output is SAC, minimized?

    e)  What is the level of SAR at 160?

    f)  What is the level of SAC at X = 160?

    g) 

    At what is the SAC minimized?

    h) 

    Which of these two plants will the firm use if it intends to produce the

    output in (g)

    i) 

    For what output would plant 2 be the best of all possible plants

     j) 

    Would plant 1 operate in the short- run if the product price were 120?

    k)  Would plant 2 operate in the short-run if the product price were 120?

    l)  Which plant would be more profitable if product price were 120?

    m) 

    At what product price would the firm produce the same positive output inthe short-run which ever of these two plants it had?

  • 8/18/2019 Math 473 - Math Econs 1 2011

    63/83

      56

    Solution 

    LTC = 0.005X3  -1.4X 2  + 280X

    a) 

    LAC = 2804.1005.0  2

      X  X  X 

     LTC 

     

    LAC = 0.005X2 –  1.4X + 280

    LAC = 2802815.0   2   X  X  X 

     LTC  

    STC1  = 0.006X3  -1.33X 2  + 201.6X + 6860

     X 

    STC SAC 

      1  

    SAC1   = 0.006X2   –  1.33X + 201.6 + 6860X -1  

    SAVC = X 

    STC 1  

    SAC = 0.006X3   –  1.33X 2  + 201.6X

    SAC = 0.006X2 –  1.33X + 201.6

    SAFC1  = X 

    STC 1   but SFC = 6860

    SAFC1   = 6860X-1

     

    SMFC1  = 6.20166.2018.0  21

      x xdX 

    dSTC  

    SMC = 0.018.X2   –  2.66x + 201.6

    SAC = X 

    STC 1  = 0.0057X -1.424X + 205.6 + 10240X -1  

    SAC = 0.0057X2 -1.424X + 205.6 + 10240X -1  

    SALC2   = 6.205848.20171.0  2

      x xdX 

    dSTC 

     

    Either set the derivative of LAC - or set LAC = LAFC

    LAC = 0.005X2  - 1.4X + 280

    4.101.0     X dX 

    dLAC   Set 140,4.101.00     X  X 

    dX 

    dLAC  

    For min 02

    2

    dX 

     LAC d  

      01.02

    2

    dX  LAC d   minimum, hence X = 140

  • 8/18/2019 Math 473 - Math Econs 1 2011

    64/83

      57

    or

    LAC = LMC

    LAC = 0.005X2   –  1.4 + 280

    LMC = 0.015X2   –  2.8X + 280

    0.005X2   –  1.4X + 280 = 0.015X 2   –  2.8X + 280

    (0.005 –  0.015) X 2   –  1.4X + 2.8X = 0

    -0.01X2  + 1.4X = 0

    X(-0.01X + 1.4) = 0

    X = 0 or X = 140

    X = 140

    C) SAC1   at X = 140 is

    SAC1 = 0.003(140)2 - 1.33(140) + 201 + 182140

    6860

     

      

      

    SAC at X = 140 is

    SAC = 0.0057(140)2 –  1.424(140) + 205.6 + 1.191140

    10240

     

      

      

    LAC at X = 140 is

    LAC = 0.005 (1402) –  1.4 (140) + 28 = 182

    Hence plant 1 achieves minimum LAC

    d) Find the minimum of SAC. Thus we find the derivative of SAC , and set it equal to zero

    and check whether it is a minimum

    SAC1 = 0.006X2  -1.33X + 201.6 + 6860X -1  

    06860

    33.1012.00...686033.1,912.02

    121

     X  x

    dX 

    dSAC Set  x x

    dX 

    dSAC  

    0.012 X3 –  1.33X2

      –  6860 = 0

    Solving we get

    X1 = 140,X2, = -14.58 + 62.21, X, = -14.58 –  62.21

    For minimum, 02

    1

    1

    2

    dX 

    SAC d  

    332

    1

    1

    213750

    012.0)6860(2

    012.0

     X  X dX 

    SAC d  

  • 8/18/2019 Math 473 - Math Econs 1 2011

    65/83

      58

    0005.0012.0

    140

    1

    2

     x

    dX 

    SAC d  

      X = 140 gives a minimum

    0)21.6258.14(.0   3

    ,

    2

    1

    1

    2

    12

     E  I dX 

    SAC d 

     X  X  X 

     

    X = 140 minimizes SAC1 

    SMC2 = 0.0171X2 –  2.848X + 205.6

    = 0.0171 (1602) –  2.848 (160)

    = 437.76 –  455.68 + 205.6

    = 187.68

    SMC2   = 187.68 at = 160

    g) From theory SMC cuts SAC at its minimum point. But at

    X = 160, SAC2  = SAC 2  = 187.68 hence SAC2 is minimized at the

    output level of X = 160

    SMC2  = 0.0171X 2  -2.848.X + 205.6

    02

    dX 

    dSMC  

    848.20342.02

      X dX 

    dSMC  

    624.2848.2472.5848.2)160(0342.0160

    2

     xdX 

    dSMC  

    Hence SMC2   is rising

    X = 160 is the output level at which SAC is minimised

    h) That SAC2 is minimized at X = 160 does not mean that SAC < SAC1  at X = 160At X = 160

    SAC = 0.006X2  = 1.33X + 201.6 + 6860X -1 

    i.e. SAC1   = 0.006 (1602) –  1.33 (160) + 201.6 +

    160

    6860 

    SAC1   = 185.275 and SAC 2  = 187.68

    Thus plant 1 has a lower average cost than 2 therefore plant 1 will be used to produce the

    output of X = 160

  • 8/18/2019 Math 473 - Math Econs 1 2011

    66/83

      59

    i)  It is necessary that SAC1  = LAC at tangency and therefore SMC 2  = LMC setting

    the average cost equal yields a cubic equation i.e.

    SAC2 = 0.0057X2 -1.424X + 205.6 + X 

    10240 

    LAC = 0.005X2   1.4X + 280