Math 360 Notes

  • Upload
    dscsdxc

  • View
    250

  • Download
    11

Embed Size (px)

DESCRIPTION

lml;

Citation preview

  • 1 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Additional Maths Notes (20 Oct 2014)

    Visit sleightofmath.com for latest notes, solutions and math tuition.

    Authors: Daniel and Samuel from Sleight of Math

    Table of Contents

    Ex 1.1 Simultaneous Equations ................................................. 5

    Solve a Pair of Linear & Non-linear Eqns .............................. 5

    Form Relation ................................................................................... 5

    Ex 1.2 Sum and Product of Roots .............................................. 5

    Sum & Product of Roots ................................................................ 5

    Form a Quadratic Equation from its Roots ........................... 5

    Useful Formulae ............................................................................... 5

    Prove Identities involving Roots ............................................... 5

    Ex 1.3 Discriminant ........................................................................ 5

    Complete the Square ...................................................................... 5

    Sketch Quadratic graphs .............................................................. 6

    Discriminant & Nature of Roots/Number of x-intercepts/Number of Intersections ....................................... 6

    Conditions for ax2 + bx + c to be always positive or negative ............................................................................................... 6

    Ex 1.4 Quadratic Inequalities ..................................................... 6

    Solve Quadratic Inequality .......................................................... 6

    Solve Simultaneous Inequalities ............................................... 6

    Form Quadratic Inequality from Solution ............................. 6

    Ex 2.1 Surds ...................................................................................... 6

    Surds Properties .............................................................................. 6

    Simplify Surds ................................................................................... 7

    Rationalize Denominator ............................................................. 7

    Solve Surds Equation ..................................................................... 7

    Method of Difference ..................................................................... 7

    Ex 2.2 Indices ................................................................................... 7

    Law of Indices ................................................................................... 7

    Ex 2.3 Index equations .................................................................. 7

    Equality of Indices .......................................................................... 7

    Different Types of Manipulation ............................................... 8

    Ex 2.4 Exponential Functions ..................................................... 8

    Sketch Exponential Functions .................................................... 8

    Ex 3.1 Polynomials and Identities ............................................. 8

    Definition of Polynomials ............................................................ 8

    Multiply Polynomials .................................................................... 8

    Find Unknown(s) in an Identity ............................................... 8

    Ex 3.2 Division of Polynomials ................................................... 8

    Long Division .................................................................................... 8

    Division Algorithm ......................................................................... 9

    Ex 3.3 Remainder Theorem ......................................................... 9

    Remainder Theorem ..................................................................... 9

    Ex 3.4 Factor Theorem .................................................................. 9

    Factor Theorem ............................................................................... 9

    Sum/Difference of Cubes ............................................................. 9

    Ex 3.5 Cubic Polynomials and Equations ............................... 9

    Factorize Cubic Expressions ...................................................... 9

    Form Cubic Polynomial ................................................................ 9

    Ex 3.6 Partial Fractions ................................................................. 9

    Break into Partial Fractions ....................................................... 9

    Cover-up Rule ................................................................................. 10

    Compare Coefficients .................................................................. 10

    Juggling ............................................................................................. 10

    Proper & Improper fraction ..................................................... 10

    Ex 4.1 Modulus Functions and their Graphs ...................... 10

    Modulus Definition ...................................................................... 10

    Modulus Properties ..................................................................... 10

    Solve Modulus Equations .......................................................... 10

    Sketch y = f(|x|) ............................................................................ 10

    Ex 4.2 Power Graphs ................................................................... 11

    Sketch Power Graphs .................................................................. 11

    Ex 5.1 Binomial Expansion of ( + ) ............................... 11

    Factorial ............................................................................................ 11

    Combination ................................................................................... 11

    Use Pascals Triangle ................................................................... 11

    Expand (1 + b)n ............................................................................ 11

  • 2 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Binomial Theorem Cross-applications ................................ 12

    Ex 5.2 Binomial Expansion of ( + ) ................................12

    Expand (a + b)n ............................................................................ 12

    Use Tr+1 ............................................................................................ 12

    Ex 6.1 Mid-point of a Line Segment .......................................12

    Distance Formula ......................................................................... 12

    Gradient ........................................................................................... 12

    Find line ........................................................................................... 12

    Use point on line/curve ............................................................. 13

    Ratio of Diagonal Segments ..................................................... 13

    Use Vectors ..................................................................................... 13

    Find Intersection .......................................................................... 14

    Mid-point Formula ...................................................................... 14

    Ex 6.2 Parallel Lines .....................................................................14

    Angle of Inclination ..................................................................... 14

    Parallel Lines .................................................................................. 14

    Collinearity ..................................................................................... 15

    Find Parallel Line ......................................................................... 15

    Ex 6.3 Perpendicular Lines .......................................................15

    Perpendicular Lines .................................................................... 15

    Find Perpendicular Line ............................................................ 15

    Find Perpendicular Bisector .................................................... 15

    Ex 6.4 Areas of Triangles and Quadrilaterals .....................15

    Shoelace Formula ......................................................................... 15

    Ex 7.1 Introduction to Logarithms .........................................15

    Logarithm Definition .................................................................. 15

    Special Log Values ........................................................................ 15

    Convert between Log & Index Form .................................... 16

    Ex 7.2 Laws of Logarithms ........................................................16

    Laws of Logarithm ....................................................................... 16

    Ex 7.3 Logarithmic Equations ..................................................16

    Equality of Logarithms ............................................................... 16

    Solve Log Equations .................................................................... 16

    Ex 7.4 Log and Eqns of the form = ..............................16

    Solve ax = b .................................................................................... 16

    Solve Index Equations ................................................................ 16

    Ex 7.5 Logarithmic Graphs ........................................................17

    Draw Logarithmic Graphs ........................................................ 17

    Ex 8.1 Reducing Equations to Linear Form ........................17

    Linearize .......................................................................................... 17

    Form Non-linear Equation ....................................................... 17

    Equate Coordinates ...................................................................... 17

    Ex 8.2 Linear Law ......................................................................... 17

    Linearization ................................................................................... 17

    Gradient & Y-intercept ............................................................... 17

    Scale.................................................................................................... 17

    Graphical Reading ........................................................................ 17

    Intersection ..................................................................................... 18

    Ex 9.1 Graphs of Parabolas of the Form = ............. 18

    Sketch y2 = kx ............................................................................... 18

    Ex 9.2 Coordinate Geometry of Circles ................................ 18

    Circle Equation .............................................................................. 18

    Circle Equation Cross-applications ....................................... 19

    Ex 10.1 Triangle Theorems ............................................................ 20

    Use Line Addition and Subtraction ........................................ 20

    Angle Properties of Line(s) ...................................................... 20

    Angle Properties of Triangles .................................................. 20

    Congruency Tests ......................................................................... 20

    Similarity Tests .............................................................................. 20

    Mid-point Theorem ...................................................................... 21

    Ex 10.2 Quadrilaterals Theorems ........................................ 21

    Definition & Properties of Quadrilaterals ........................... 21

    Prove Quadrilaterals ................................................................... 22

    Ex 10.3 Circles Theorems ........................................................ 22

    Angle Properties of Circle .......................................................... 22

    Chord Properties of Circle ......................................................... 22

    Tangent Properties of Circle .................................................... 22

    Ex 11.1 Trigo Ratios of Acute Angles .................................. 22

    Special Angles ................................................................................. 22

    Convert between Degrees and Radians ............................... 23

    Complementary s ....................................................................... 23

    Supplementary s ........................................................................ 23

    Identify Quadrant ......................................................................... 23

    Find Basic Angle ........................................................................ 23

    Find General Angle ................................................................... 23

    Use .................................................................................................. 23

    Ex 11.2 Trigo Ratios of any Angles ...................................... 23

    Trigo Function Definition .......................................................... 23

    Use in Quadrant(s) .................................................................. 23

    Reciprocal Identities ................................................................... 24

    Negative Angles ............................................................................. 24

    ASTC Rule ......................................................................................... 24

  • 3 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Solve Trigo Eqn f(x) = k ........................................................... 24

    Ex 11.3 Trigo Graphs .................................................................25

    Solve Trigo Eqn f(x) = k by Graph ........................................ 25

    Range of Sine & Cosine ............................................................... 25

    Find Unknowns of Trigo Function af(bx) + c ................... 25

    Sketch Trigonometric Functions ........................................... 25

    Use Symmetrical/Cyclical Nature of Trigo Graphs ........ 26

    Inverse Trigo Function .............................................................. 27

    Ex 12.1 Simple Identities .........................................................27

    Questions involving Identities ................................................ 27

    Ratio Identities .............................................................................. 27

    Pythagorean Identities ............................................................... 28

    Square Root of Trigo Function f(x) ....................................... 28

    Ex 12.2 Further Trigo Eqns .....................................................28

    Simplify to Tangent Eqn ............................................................ 28

    Factorize Trigo Eqn ..................................................................... 28

    Solve Trigo Eqn f(ax + b) = k ................................................. 28

    Ex 13.1 The Addition Formulae ............................................28

    Addition Formulae ....................................................................... 28

    Ex 13.2 The Double Angle Formulae ...................................29

    Double Formulae ...................................................................... 29

    Half Formulae ............................................................................ 29

    Ex 13.3 The R-Formulae ..........................................................29

    R-Formulae ..................................................................................... 29

    Ex 14.1 The Derivative and its Basic Rules .......................29

    Derivative as Gradient ............................................................... 29

    Power Rule ...................................................................................... 30

    Constant Multiple Rule .............................................................. 30

    Sum/Difference Rule .................................................................. 30

    Differentiation from First Principles .................................... 30

    Ex 14.2 The Chain Rule .............................................................30

    Chain Rule ....................................................................................... 30

    Ex 14.3 The Product Rule ........................................................30

    Product Rule ................................................................................... 30

    Ex 14.4 The Quotient Rule ......................................................31

    Quotient Rule ................................................................................. 31

    Ex 15.1 Tangents and Normals..............................................31

    Find Tangent .................................................................................. 31

    Find Normal .................................................................................... 31

    Tangent Properties ...................................................................... 31

    Normal Properties ....................................................................... 31

    Ex 15.2 Increasing and Decreasing Functions ................ 31

    Increasing/Decreasing function ............................................. 31

    Ex 15.3 Rates of Change ........................................................... 31

    Rate of Change ............................................................................... 31

    Quantity & Constant Rate .......................................................... 31

    Ex 15.4 Connected Rates of Change .................................... 32

    Connected Rates of Change ...................................................... 32

    Ex 16.1 Nature of Stationary Points .................................... 32

    Stationary Point/Value ............................................................... 32

    1st Derivative Test ....................................................................... 32

    2nd Derivative Test ...................................................................... 32

    Ex 16.2 Maxima and Minima .................................................. 32

    Maxima/Minima ............................................................................ 32

    Ex 17.1 Derivatives of Trigo Functions .............................. 32

    Derivatives of Trigonometric Functions ............................. 32

    Ex 17.2 Derivatives of Exponential Functions ................ 32

    Derivatives of Exponential Functions .................................. 32

    Ex 17.3 Derivatives of Log Functions ................................. 33

    Derivatives of Log functions ..................................................... 33

    Use Logarithmic Differentiation ............................................. 33

    Ex 18.1 Indefinite Integrals .................................................... 34

    Integral Rules ................................................................................. 34

    Find Integral from Derivative .................................................. 34

    Find Curve from Derivative ...................................................... 34

    Integrals of Power Functions ................................................... 34

    Ex 18.2 Definite Integrals ........................................................ 35

    Definite Integrals .......................................................................... 35

    Definite Integrals Rules .............................................................. 35

    Integrals of Modulus Functions .............................................. 35

    Ex 18.3 Integrals of Trigo Functions ................................... 35

    Integrals of Trigonometric Functions .................................. 35

    Ex 18.4 Integrals of Exponential Fns & 1/x ..................... 35

    Integrals of Exponential Functions ....................................... 35

    Integrals of 1/x & 1/(ax + b) ................................................... 35

    Ex 19.1 Area by Integration ................................................... 36

    Area by integration ...................................................................... 36

    Ex 19.2 Area bounded by Curves ......................................... 36

    Strategies to find area bounded by curves ......................... 36

    Ex 20.1 Kinematics .................................................................... 36

    Kinematics Relation ..................................................................... 36

    Implications of Kinematics Statements ............................... 37

  • 4 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Distance ............................................................................................ 37

    Appendix 1 Geometric Formulae .............................................38

    2D Shapes ........................................................................................ 38

    3D Shapes ........................................................................................ 38

    Appendix 2 Trigonometric Identities .....................................39

    Appendix 3 Calculus Formulae .................................................40

    Differentiation ............................................................................... 40

    Integration ...................................................................................... 40

  • Additional Math Notes (20 Oct 2014)

    5 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Step 1: Subject variable in linear eqn Step 2: Substitute it into non-linear eqn

    Step 1: Assign variables

    Step 2: Form relation between variables

    Step 1: Simplify to ax2 + bx + c = 0

    Step 2: State roots

    Step 3: Find SOR/POR

    Sum of roots = + = b

    a

    Product of roots = =c

    a

    Applications Evaluate expressions involving its roots

    e.g. find 2

    +

    2

    Given context e.g. the heights of two men satisfy 40x2 138x + 119 = 0. Without solving the

    equation, find the average height of these two

    men. Average height =+

    2

    Find roots and unknowns e.g. the equation x2 4x + c = 0 has roots which

    differ by 2. Find the value of each root and c.

    To prove existence of positive & negative root, use

    < 0

    Convert to quadratic equation in y by substitution

    e.g. x2

    3 2x1

    3 + 3 = 0 has roots &

    sub y = x1

    3:

    y2 2y + 3 = 0 has roots 1

    3 & 1

    3

    Step 1: State roots

    Step 2: Find SOR/POR

    Step 3: Form equation

    x2 (SOR)x + (POR) = 0

    2 + 2 = ( + )2 2

    = ( )2

    ( )2 = ( + )2 4

    4 + 4 = (2 + 2)2 2()2

    To form useful equations (to be substituted),

    (i) is a root of ax2 + bx + c = 0, a2 + b + c = 0 (1)

    (ii) Multiply n to (1)

    (iii) Apply power of n to (1)

    Given that is a root of the equation x2 = x 3, show that (i) 3 + 2 + 3 = 0 (ii) 4 + 52 + 9 = 0

    (i) is root, 2 = 3 (1)

    (1) : 3 = 2 3 (2) sub (1) into (2): 3 = ( 3) 3 3 = 2 3 3 + 2 + 3 = 0 (shown)

    (ii) (1)2: 4 = ( 3)2

    4 = 2 6 + 9 4 = 2 6(2 + 3) + 9 [use (1) to make the subject] 4 = 2 62 18 + 9 4 = 52 + 9 4 + 5 9 = 0 (shown)

    x2 + kx = (x +k

    2)2 (

    k

    2)2

    Solve a Pair of Linear & Non-linear Eqns

    Ex 1.1 Simultaneous Equations

    Form Relation

    Sum & Product of Roots

    Ex 1.2 Sum and Product of Roots

    Form a Quadratic Equation from its Roots

    Useful Formulae

    Solution

    Question

    Prove Identities involving Roots

    Complete the Square

    Ex 1.3 Discriminant

  • Additional Math Notes (20 Oct 2014)

    6 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Step 1: Express as y = a(x h)2 + k

    Step 2: Obtain turning point (h, k)

    Step 3: Determine or shape from a

    Step 4: Sub x = 0 to find y-intercept

    Step 5: Sub y = 0 to find x-intercept Note: x = h is the line of symmetry e.g.

    To find x1, 2+x1

    2= 5 x1 = 8

    Step 1: Simplify to ax2 + bx + c = 0

    (by substituting line into curve)

    Step 2: Use relation between b2 4ac & nature of roots/x-intercepts/intersections

    Discriminant Nature of roots

    No. of x-intercepts/ intersections

    b2 4ac > 0 2 distinct 2 b2 4ac = 0 2 equal 1 (tangent) b2 4ac 0 2 1 or 2 (meet) b2 4ac < 0 0 0

    ax2 + bx + c > 0 for all x a > 0, b2 4ac < 0

    ax2 + bx + c < 0 for all x a < 0, b2 4ac < 0 Step 1: Simplify inequality to ax2 + bx + c vs 0

    Step 2: Use 2 conditions (i) a > 0 or a < 0 (ii) b2 4ac < 0

    Step 1: Simplify to ax2 + bx + c vs 0, a > 0 Step 2: Factorize Step 3: Draw sign diagram (Arrange roots & alternate signs with + at left)

    Step 4: Find range of x

    f(x) < g(x) < h(x) f(x) < g(x) and g(x) < h(x)

    Step 1: Split into 2 inequalities using and

    Step 2: Solve each inequality

    Step 3: Take intersection of both solutions

    x1 < x < x2 k(x x1)(x x2) < 0

    x < x1 or x > x2 k(x x1)(x x2) > 0

    For a > 0 and b > 0,

    a b = ab

    a

    b =

    a

    b

    a a = a Notation

    For xn ,

    n index

    x radicand

    radical sign or radix or root symbol

    xn

    surd (if xn is irrational)

    Note: For xn and x < 0,

    Even n results in non-real number

    Odd n results in real number

    e.g. 4 does not exist but 83

    exists

    2 (5, 3)

    1

    = 2 + +

    Sketch Quadratic graphs

    Discriminant & Nature of Roots/Number of x-intercepts/Number of Intersections

    Conditions for ax2 + bx + c to be always positive or negative

    1 2 + +

    Solve Quadratic Inequality

    Ex 1.4 Quadratic Inequalities

    Solve Simultaneous Inequalities

    Form Quadratic Inequality from Solution

    Surds Properties

    Ex 2.1 Surds

  • Additional Math Notes (20 Oct 2014)

    7 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Factor out largest square number

    e.g. 45 = 9 5 = 35 Prime factorize (for more challenging numbers)

    e.g. 540 = 22 33 5

    = 2 31.5 5

    = 2 33 5

    = 615

    1

    a

    a

    a=

    a

    a

    1

    ah + bk

    1

    ah bk=

    1

    a2h b2k

    Square both sides

    a = b a = b2

    Equate rational & irrational terms

    a + bk = c + dk a = c, b = d

    Note: Check the answer mentally by substituting it into

    the original equation.

    e.g. 6 5x = x 6 5x = x2 x2 + 5x 6 = 0 (x + 6)(x 1) = 0 x = 6 or x = 1 (rej) When x = 1,

    LHS = 6 5 = 1 RHS = 1 LHS RHS

    If you cannot simplify to a = b or a + bk = c + dk, consider solving surds equation by substitution

    e.g. 2x + 3x + 1 = 0

    sub u = x:

    2u2 + 3u + 1 = 0

    Step 1: Break each term into partial sums

    Step 2: Arrange partial sums vertically

    Step 3: Cancel diagonally

    a0 = 1

    an =1

    an

    am

    n = (an )

    m= am

    n

    (am)n = amn

    When you multiply/divide terms, identify common base/power

    e.g. 313309

    13

    2723

    (common base is 3)

    e.g. (a3 + b2 + b3

    ) (a3 + b2 b3

    )

    (common power is 1

    3)

    When you add/subtract terms, identify highest common factor e.g. 8x+2 34(23x)

    = (23)x+2 2 17(23x)

    = 23x+6 17(23x+1) (HCF is 23x+1)

    = 23x+1(25 17)

    = 23x+1(15)

    Note: Equations involving even power functions may have multiple solutions

    e.g. x4 = 16 x = 2 or x = 2

    ax = an, for a > 0, a 1 x = n

    Simplify Surds

    Rationalize Denominator

    Solve Surds Equation

    Method of Difference

    am an = am+n

    am

    an = amn

    an bn = (ab)n

    an

    bn = (

    a

    b)n

    Same Base

    Same Power

    Law of Indices

    Ex 2.2 Indices

    Equality of Indices

    Ex 2.3 Index equations

  • Additional Math Notes (20 Oct 2014)

    8 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Manipulate Key Words Simplify Complex to simple Express In terms of Evaluate Find numerical value Show Work towards distinct characteristic Solve Equation Given Consider rearranging given equation.

    y = ax, a > 1 (slopes up)

    y = ax, 0 < a < 1 (slopes down)

    Note: y = ax 0 for 0 < a < 1

    Polynomials must have

    non-negative power

    integer power

    Expand using strategic alignment

    Find coefficient using selective multiplication

    Substitute Compare coefficients Tip: Sub values of x that makes a factor zero e.g. a(x 2) + b = 5 3x

    sub x = 2: a(0) + b = 5 3(2) b = 1

    compare x: a = 3

    Step 1: Surface out hidden terms and express polynomial

    in powers of decreasing integers

    Repeat step 2-5 until Deg(R) < Deg(divisor)

    Step 2: Divide

    Step 3: Multiply

    Step 4: Subtract

    Step 5: Bring down e.g. (3x2 2x + 5) (x + 2)

    Different Types of Manipulation

    1

    1

    Sketch Exponential Functions

    Ex 2.4 Exponential Functions

    Definition of Polynomials

    Ex 3.1 Polynomials and Identities

    e.g. Find coefficient of x2 in (x2 + x + 1)(x2 + 2x + 3)

    e.g. (x + 1)(x2 + x + 1) = x3 +x2 +x +x2 +x +1

    Multiply Polynomials

    Find Unknown(s) in an Identity

    Long Division

    Ex 3.2 Division of Polynomials

  • Additional Math Notes (20 Oct 2014)

    9 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Quotient Q(x) Divisor g(x) Dividend f(x) Remainder R(x)

    Dividend = Divisor Quotient + Remainder

    Dividend

    Divisor = Quotient +

    Remainder

    Divisor

    Deg(Dividend) = Deg(Divisor) + Deg(Quotient)

    Deg(Remainder) < Deg(Divisor)

    For quadratic divisor, f(x) (px2 + qx + r) R(x) = ax + b f(x) = (px2 + qx + r)Q(x) + ax + b

    Polynomial f(x) (ax + b) R = f (b

    a)

    Tip: Insert value of x that makes the divisor zero Note: If polynomial is not given, use division algorithm

    Polynomial f(x) has factor (ax + b) f (b

    a) = 0

    Tip: Insert value of x that makes the factor zero

    a3 b3 = (a b)(a2 ab + b2)

    Step 1: Guess factor (factor thm)

    Step 2: Compare x3

    Step 3: Compare x0

    Step 4: Compare x2

    Step 5: Compare x (optional)

    Given 1 distinct root x1,

    f(x) = k(x x1)3

    Given 2 distinct roots x1 and x2,

    f(x) = k(x x1)2(x x2) or k(x x1)(x x2)

    2 Given 3 distinct roots x1, x2 and x3,

    f(x) = k(x x1)(x x2)(x x3)

    Step 1: Convert to proper fraction

    Step 2: Factorize denominator

    Step 3: Break into partial fraction forms

    Step 4: Solve for unknowns Cover-up rule Substitution Compare coefficients

    Denominator Form

    ax + b A

    ax+b

    (ax + b)2 A

    ax+b+

    B

    (ax+b)2

    x2 + c2 Ax+B

    x2+c2

    Division Algorithm

    Remainder Theorem

    Ex 3.3 Remainder Theorem

    Factor Theorem

    Ex 3.4 Factor Theorem

    Sum/Difference of Cubes

    (x )

    (x )(px2 + + )

    (x )(px2 + + r)

    (x )(px2 + qx + r)

    (x )(px2 + qx + r)

    Factorize Cubic Expressions

    Ex 3.5 Cubic Polynomials and Equations

    Form Cubic Polynomial

    Break into Partial Fractions

    Ex 3.6 Partial Fractions

  • Additional Math Notes (20 Oct 2014)

    10 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    To solve for unknown with linear factors,

    Step 1: Insert root Step 2: Cover up linear factor (that becomes zero) Step 3: Equate unknown (highest power)

    e.g. f(x)

    (xx1)(xx2)2=

    A

    (xx1)+

    B

    (xx2)+

    C

    (xx2)2

    insert x1, cover up (x x1) and equate A

    x = x1: f(x)

    ( )(xx2)2|x=x1

    = A

    insert x2, cover up (x x2) and equate C

    x = x2: f(x)

    (xx1)( )2|x=x2

    = C

    Step 1: Clear fractions by multiplying denominator

    Step 2: Simplify to polynomial of descending power

    Step 3: Compare coefficients

    e.g. x2+2x+15

    x(x2+3) =

    5

    x+

    Bx+C

    x2+3

    x2 + 2x + 15 = 5(x2 + 3) +(Bx + C)x

    = 5x2 + 15 +Bx2 + Cx

    = (5 + B)x2 + Cx + 15

    Compare coefficients: x2: 1 = 5 + B B = 4 x: C = 2

    x2+2x+15

    x(x2+3)=

    5

    x+

    4x+2

    x2+3

    Step 1: Copy denominator to numerator Step 2: Multiply to match term with highest power Step 3: Add to balance

    e.g.

    4x2 + 3

    x2 2

    (x2 2)

    x2 2 copy (2 2) to the to numerator

    4(x2 2)

    x2 2

    Multiply 4 to match term with highest power

    =4(x2 2) + 11

    x2 2 add 11 to numerator to balance

    = 4 +11

    x2 2

    Divide each term in numerator by denominator

    Proper Fraction: Deg(Numerator) < Deg(Denominator) Improper Fraction: Deg(Numerator) Deg(Denominator)

    |x| = {x x 0

    x x < 0

    Tip: Use given condition to determine if |f(x)| = f(x) or f(x)

    e.g. Given a > 2, simplify |3 2a|

    a > 2

    2a < 4

    3 2a < 1

    < 0

    |3 2a| = (3 2a) = 2a 3

    |a| = |a|

    |ab| = |a||b|

    |a

    b| =

    |a|

    |b|

    |an| = |a|n

    |a|2 = |a2| = a2

    Tip: differ is the trigger word to use modulus

    e.g. A differs from B by 10 |A B| = 10

    |f(x)| = g(x) f(x) = g(x) or f(x) = g(x) Note: Check the answer by mentally substituting it into the original equation. Tip: Consider squaring both sides to remove mod |f(x)| = k

    [f(x)]2 = k2

    Step 1: Sketch y = f(x)

    Step 2: Reflect negative part of f(x) in x-axis

    Cover-up Rule

    Compare Coefficients

    Juggling

    Proper & Improper fraction

    Modulus Definition

    Ex 4.1 Modulus Functions and their Graphs

    Modulus Properties

    Solve Modulus Equations

    Sketch y = |f(x)|

  • Additional Math Notes (20 Oct 2014)

    11 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    For y = axn, a > 0

    Integer

    Integer Negative Positive

    Even Odd Even Odd ( 1)

    y =1

    x2 y =

    1

    x y = x2 y = x3

    Rational

    Rational n < 0

    ( at rate)

    0 < n < 1

    ( at rate)

    n > 1

    ( at rate)

    n! = n (n 1) 2 1

    = n (n 1)!

    0! = 1

    To divide between factorials,

    Step 1: Expand bigger factorial till smaller factorial

    Step 2: Strike out smaller factorials

    e.g. 7!

    5!=

    765!

    5!= 7 6 = 42

    (n+1)!

    (n2)!=

    (n+1)n(n1)(n2)!

    (n2)!= (n + 1)n(n 1)

    (nr) =

    n!

    (nr)!r!

    (n0) = 1

    (n1) = n

    (n2) =

    n(n1)

    2

    (n3) =

    n(n1)(n2)

    3!

    (n4) =

    n(n1)(n2)(n3)

    4!

    To create table,

    n Binomial coefficients 0 1 1 1 1 2 1 2 1

    Step 1: Insert 1 at the sides

    Step 2: Form numbers inside triangle by adding the 2 numbers above it

    Step 3: Use formula

    (1 + b)n = (1st coeff)b0 +(2nd coeff)b1 ++ (last coeff)bn

    (1 + b)n = (n0) b0 +(

    n1) b1 ++ (

    nr) br ++ (

    nn) bn

    = 1 +nb ++ (nr) br ++ bn

    Sketch Power Graphs

    Ex 4.2 Power Graphs

    Factorial

    Ex 5.1 Binomial Expansion of (1 + b)n

    Combination

    Use Pascals Triangle

    Expand (1 + b)n

  • Additional Math Notes (20 Oct 2014)

    12 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    App 1: Multiply selectively

    App 2: Substitute value/terms

    App 3: Compare coefficients

    (i) Expand (2 x) (1 +1

    2x)

    8 in ascending powers of x, as

    far as the term in x3.

    (ii) Hence estimate the value of 1.9 (1.05)8

    Multiply selectively

    (i) (2 x) (1 +1

    2x)

    8

    = 2 +8x +14x2 +14x3

    x 4x2 7x3 +

    = 2 +7x +10x2 +7x3 + Substitute values (ii) 1.9 (1.05)8 = (2 0.1) (1 + 0.5)8

    = [2 (0.1)] [1 +1

    2(0.1)]

    8

    = 2 +7(0.1) +10(0.1)2 +7(0.1)3 + [sub x = 0.1 into (i)]

    2.807

    The first three terms in the expansion, in ascending powers of x of (1 + 2x)n are 1 + 16x + ax2. Find n and a.

    Compare coefficients (1 + 2x)n = 1 + 2nx + 2n(n 1)x2 + (by Binomial Thm) 1 + 16x + ax2 (given) Compare x: 2n = 16 n = 8

    Compare x2 2n(n 1) = a Sub n = 8: 2(8)(8 1) = a a = 112

    (a + b)n = (n0) an0b0 +(

    n1) an1b1 ++ (

    nn) annbn

    = 1 +nan1b ++ bn

    Tr+1 = (nr) anrbr

    To find particular term,

    Step 1: Simplify to (a + b)n

    Step 2: Use Tr+1 Pull out x

    Step 3: Find r Equate power

    middle term r =n

    2

    constant power = 0

    Step 4: Insert r into Tr+1

    (x1 x2)2 + (y1 y2)2

    m =y1 y2x1 x2

    If y-intercept is not given,

    Step 1: Find point

    Step 2: Find gradient

    Step 3: Find line y y1 = m(x x1)

    If y-intercept is given,

    Step 1: State y-intercept

    Step 2: Find gradient

    Step 3: Find line y = mx + c

    Note: For m = 0, horizontal line y = c For m , vertical line x = a

    Solution

    Question

    = (2 x)(1 +4x + 7x2 + 7x3 + ) [by Binomial Thm]

    Solution

    Question

    Binomial Theorem Cross-applications

    Expand (a + b)n

    Ex 5.2 Binomial Expansion of (a + b)n

    Use Tr+1

    Distance Formula

    Ex 6.1 Mid-point of a Line Segment

    Gradient

    Find line

  • Additional Math Notes (20 Oct 2014)

    13 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    (x1, y1) lies on y = f(x)

    y1 = f(x1) (form eqn)

    (x1, f(x1)) (express coordinates in only 1 variable)

    e.g. (2,1) lies on y = kx 2 1 = k(2) 2

    2k = 3

    k =3

    2

    e.g. A(a1, a2) lies on y = 2x

    A(a1, 2a1)

    By similar triangles, A: B (diagonal) = C:D (horizontal) = E: F (vertical)

    AB = AO + OB

    = OB OA

    Given A is (0,9) & C is (6,3) and AB: BC = 2: 1, find the coordinates of B.

    OB = OA +AB

    = OA +2

    2+1AC

    = OA +2

    3(OC OA )

    = OA +2

    3OC

    2

    3OA

    =1

    3OA +

    2

    3OC

    =1

    3(09) +

    2

    3(63)

    = (45)

    B(4,5)

    A is (0,6), B is (2, 2) and D is (2, 2). AB is parallel to DC and AB: DC = 1: 2. Find the coordinates of C

    OC = OD +DC

    = OD +2AB

    = OD +2(OB OA )

    = OD +2 [(88) (

    06)]

    = OD +2(82)

    = (2

    2) +(

    164

    )

    = (182

    )

    C is (18,2)

    Use point on line/curve

    Ratio of Diagonal Segments

    Solution

    Question

    Solution

    Question

    Use Vectors

    A

    B

    C E

    F

    D

    (6,3)

    (0,9)

    2

    1

    (0,6)

    (2,2)

    (8,8)

  • Additional Math Notes (20 Oct 2014)

    14 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    A is (2,4) and B is (6,10). ACB and MDB are 90. AC:MD = 3: 1. Find the coordinates of M

    ACB ~ MDB. AB

    MB =

    AC

    MD (corr. sides or ~ s)

    =3

    1

    = 3

    AB = 3MB

    AM:MB = 2: 1

    OM = OA +AM

    = OA +2

    3AB

    = OA +2

    3(OB OA )

    =1

    3OA +

    2

    3OB

    =1

    3(33) +

    2

    3(69)

    = (57)

    M is (5,7)

    Solve a pair of equations

    M = (x1 + x2

    2,y1 + y2

    2)

    To find endpoint,

    Step 1: Denote endpoint

    Step 2: M = (x1+x2

    2,y1+y2

    2)

    Step 3: Equate coordinates To find curve traced by mid-point,

    Step 1: Find midpoint M

    Step 2: Let M = (x, y)

    Step 3: Equate coordinates

    Step 4: Connect x & y

    Shapes Implications Parallelogram ABCD

    MAC = MBD

    iso. ABC with AB = AC

    MBC = Foot of from A to BC

    Circle with diameter AB

    MAB = Centre

    A is (2,4) and B is (6,10). AC:MD = 2: 1. Given the diagram below, find the coordinates of M.

    M = MAB = (2+6

    2,4+10

    2) = (4,7)

    m = tan (wrt positive x axis)

    l1 l2 m1 = m2

    Solution

    Question

    Find Intersection

    A B

    C D M

    A

    B C

    A B

    Solution

    2

    1

    (2,4)

    (6,10)

    Question

    Mid-point Formula

    Angle of Inclination

    Ex 6.2 Parallel Lines

    Parallel Lines

    3

    1

    (3,3)

    (6,9)

  • Additional Math Notes (20 Oct 2014)

    15 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    If A, B & C are collinear, mAB = mAC (any two line segments)

    Step 1: Find point/y-intercept

    Step 2: Find gradient (m1 = m2)

    Step 3: Find line y y1 = m(x x1)

    y = mx + c

    l1 l2 m1. m2 = 1

    m1 =1

    m2

    Shapes Implications Rhombus ABCD

    mAC mBD

    P is equidistant from A and B

    AB intersects P

    Step 1: Find point/y-intercept

    Step 2: Find gradient (m1 =1

    m2)

    Step 3: Find line y y1 = m(x x1)

    y = mx + c

    Step 1: Find mid-point (MAB)

    Step 2: Find gradient (1

    mAB)

    Step 3: Find bisector (AB)

    y y1 =1

    mAB(x x1)

    Tip: To find the line equidistant to points A & B, find the perpendicular bisector of AB If the 2 points have the same x or y-coordinate, bisector = average of the other coordinates

    Area of polygon

    =1

    2|x1 x2 xn x1y1 y2 yn y1

    |

    =1

    2[(sum of products )

    (sum of product )] Coordinates should be in anti-clockwise order to have

    positive output. On the contrary, if coordinates are in

    clockwise order, the output is negative.

    Use modulus if unsure anti-clockwise or clockwise

    Zero area implies points are collinear

    App 1: To find angle, use area =1

    2ab sin C

    App 2: To find height ( distance from point to line),

    use Area =1

    2(base)(height)

    A logarithm must have

    (i) base > 0

    (ii) base 1

    (iii) arg > 0

    loga a = 1 Same base & argument results in output of 1

    loga 1 = 0 argument of 1 results in output of 0

    Collinearity

    Find Parallel Line

    A B

    C D

    P A

    B

    Perpendicular Lines

    Ex 6.3 Perpendicular Lines

    Find Perpendicular Line

    Find Perpendicular Bisector

    Area of quadrilateral 1

    2|x1 x2 x3 x4 x1y1 y2 y3 y4 y1

    |

    =1

    2(x1y2 + x2y3 + x3y4 + x4y1

    x2y1 x3y2 x4y3 x1y4)

    Area of triangle

    =1

    2|x1 x2 x3 x1y1 y2 y3 y1

    |

    =1

    2(x1y2 + x2y3 + x3y1

    x2y1 x3y2 x1y3)

    Shoelace Formula

    Ex 6.4 Areas of Triangles and Quadrilaterals

    Logarithm Definition

    Ex 7.1 Introduction to Logarithms

    Special Log Values

  • Additional Math Notes (20 Oct 2014)

    16 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    x = loga y y = a

    x

    Step 1: Identify base

    Step 2: Connect base to opp. side of eqn

    Step 3: Switch form keeping base

    e.g. Log Index

    Index Log

    loga x = loga n x = n

    Step 1: Use laws of log

    Step 2: Remove log

    Equality of log Change to index form

    Step 3: Check log conditions

    Note: Use substitution u = loga x if you cannot simplify to log =

    To solve ax = b, log both sides

    Method 1: ax = an x = n

    Method 2: ax = b (log both sides)

    Method 3: Convert to log form

    Method 4: Substitution Step 1: Use laws of indices to simplify to ax = an or b

    When multiply/divide terms, identify common base/power

    When add/subtract terms/identify highest common factor

    Step 2: Remove base

    Equality of indices (ax = an x = n) Log both sides (ax = b) Convert to log form

    If you cannot simplify to ax = an or b, use substitution u = ax

    e.g. 9(3x)2 + 1 = 10(3x)

    e.g. x3

    2 8x3

    2 = 7

    ax = y x = loga y

    Base is a. Connect base a to y

    Switch from index to log form. Keep the base a, therefore argument is x.

    loga y = x y = ax

    Base is a. Connect base a to x

    Switch from log to index form. Keep the base a, therefore power is x.

    Convert between Log & Index Form

    Product Law loga xy = loga x + loga y

    Quotient Law logax

    y = loga x loga y

    Power Law loga xr = r loga x

    Change-of-Base Law

    loga b =logc b

    logc a =

    1

    logb a

    Laws of Logarithm

    Ex 7.2 Laws of Logarithms

    Equality of Logarithms

    Ex 7.3 Logarithmic Equations

    Laws of log Action

    Change-of-base law convert to common base

    Power law move coefficient to power

    Product law/ Quotient law

    combine to single log

    Solve Log Equations

    Solve ax = b

    Ex 7.4 Log and Eqns of the form ax = b

    Solve Index Equations

  • Additional Math Notes (20 Oct 2014)

    17 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    y = loga x, a > 1 (slopes up)

    y = loga x, 0 < a < 1 (slopes down)

    Note: For base > 1, there is an inverse relation between base & rate of increase For a > b > c > 1,

    Contains x & y

    Contains constants

    X & Y m & c

    e.g. if ax2 + by3 = 1, then y3 = a

    bx2 +

    1

    b

    i.e. Y = y3, X = x2, m = a

    b, c =

    1

    b

    e.g. if y = eb+x

    a , then ln y =1

    ax +

    b

    a

    i.e. Y = ln y , X = x,m =1

    a, c =

    b

    a

    To find unknowns,

    Step 1: Linearize to axes variables

    Step 2: Equate gradient & Y-intercept or use points on line

    (whichever is given)

    Step 1: Find point/gradient/ Y-intercept

    Step 2: Form linear equation Y = mX + c (If Y-intercept is given) Y Y1 = m(X X1) (If Y-intercept is not given)

    Step 3: Form non-linear eqn by replacing X & Y with axes variables

    The first and second coordinates are not necessarily x and y respectively!

    If C(9, 8) lies on the graph of yx against x, find the value of y corresponding to c.

    Equate 1st coordinate: x = 9 Equate 2nd coordinate: yx = 8

    y9 = 8

    y = 8

    3

    Step 1: Simplify to Y = mX + c Step 2: Complete table

    Step 1: State 2 points:

    (i) On y-axis (ii) Halfway-down

    Step 2: Equate gradient & Y-intercept

    Step 1: Estimate Y-intercept

    Y1 = mX1 + c c = Y1 mX1

    Step 2: State domain & range Step 3: Find X & Y interval

    X-Interval =XlastX1st

    10

    Y-Interval =YlastY1st

    12

    (Round down to 1, 2, 25 or 5) Step 4: State X & Y scale

    Step 1: Simplify to (X or Y)

    Step 2: Identify point

    Step 3: Equate (Y or X) & solve for desired variable Note: Graphical reading is reliable only within the data range (interpolation) & not reliable outside the data range (extrapolation)

    1

    1

    = log = log

    = log

    1

    Draw Logarithmic Graphs

    Ex 7.5 Logarithmic Graphs

    Linearize

    Ex 8.1 Reducing Equations to Linear Form

    Form Non-linear Equation

    Solution

    Question

    Equate Coordinates

    Linearization

    Ex 8.2 Linear Law

    Gradient & Y-intercept

    Scale

    Graphical Reading

  • Additional Math Notes (20 Oct 2014)

    18 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Step 1: Work towards 2 curves on each side

    Step 2: Plot 2nd curve & use intersection

    y2 = kx, k > 0

    Note: y = 0 is the line of symmetry

    Given the graph y2 = 2x, draw a suitable line to solve x2 8x + 9 = 0.

    x2 8x + 9 = 0 x2 6x + 9 = 2x (x 3)2 = 2x y = x 3 or y = (x 3)

    Standard form (x a)2 + (y b)2 = r2

    General form x2 + y2 + 2gx + 2fy + c = 0

    Centre (a, b) = (g,f)

    Radius r = g2 + f2 c

    Note: It appears to be a counter-intuitive convention that g comes before f in the formula

    Trigger/Setup Action

    2 points Find bisector of chord where centre lies on

    Centre & point Use distance formula to find radius.

    Diameter Use midpoint formula

    Touches horizontal/vertical line

    Sketch graph. Deduce coordinates, centre, radius or point on circle. (see example)

    Right angle triangle drawn

    Use Pythagoras Theorem

    0,1 or 2 intersections

    Use discriminant.

    Touches another circle

    Connect centres with a line.

    Line is tangent to circle

    Identify right angle (tan rad) Find normal.

    If the centre cannot be found from the approaches above (or only 1 coordinate can be deduced), use given information about centre (if any)

    e.g. centre C(h, k) lies on line y = f(x) C is (h, f(h))

    e.g. centre C(h, k) is 6 units away from point A(1,2)

    (h 1)2 + (k 2)2 = 6 insert parameters into (x h)2 + (y k)2 = r2 and

    solve for unknowns by elimination.

    Intersection

    Solution

    Question

    Sketch y2 = kx

    Ex 9.1 Graphs of Parabolas of the Form y2 = kx

    Circle Equation

    Ex 9.2 Coordinate Geometry of Circles

  • Additional Math Notes (20 Oct 2014)

    19 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Examples of sketching graph to deduce information

    Touch axis

    Given: centre (3, 2), touches x-axis

    Deduce: radius = 2

    Cut axis

    Given: Cuts y-axis at 2 and 5

    Deduce: y coordinate of centre

    =1+(5)

    2= 3

    Touch line(s)

    Given: Touches x = 2 & x = 8

    Deduce: radius =82

    2= 3

    x coordinate of centre

    =2+8

    2= 5

    Pythagoras Theorem

    Find length of PT, given radius is 13.

    Idea: Find PC by distance formula

    PT = PC2 CT2 (Pythagoras thm) Find AC

    Idea: AC = r2 AB2 (Pythagoras thm)

    Solve System of Equations

    To find circle equation given 3 points on the circle,

    insert the points into general form of circle

    Complete the Square

    Convert general form to standard form

    Use Discriminant Find number of intersections between line & circle

    (you can also compare the perpendicular distance

    with the radius to determine the number of points of

    intersection)

    Find unknown c in line eqn given line is tangent to

    circle

    Find Intersection Point

    Find point on circle

    Find point of contact between tangent & normal

    Find centre where line through centre meets

    perpendicular bisector of chord

    Use Distance Formula Find radius

    To check if point A lies within circle, compare distance between A and centre with the radius

    Use Midpoint Formula

    Given that A(2,3) and B(4,5) are points on the circle,

    the find the centre.

    Given A is (2,3), the centre C is (4,5) and AB is the

    diameter of the circle, find the point B

    Find line Find tangent/normal at point of contact

    e.g. Find AB

    Find bisector

    Whenever two points on circle are given, consider

    finding the perpendicular bisector. The perpendicular

    bisector of the chord passes through the centre of the

    circle

    Use Properties of Circle (refer to Ex 10.3)

    bisector of chord

    tan rad

    (3, 2)

    2

    (1, 3)

    1

    5

    = 2 = 8

    3

    (5, 2)

    A C 2

    6 r = 5

    B

    P(9,2)

    T

    C(2, 1)

    Circle Equation Cross-applications

    A B

    P(3,10) 210

    C(1, 4) AB

  • Additional Math Notes (20 Oct 2014)

    20 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    AB + BC = AC

    AC AB = BC

    Given AB = CD, prove AC = BD

    AB = CD AB + (BC) = CD + (BC) AC = BD

    s in line opp. int. corr. alt. Prove straight lines by s in line = 180 Prove parallel lines by int., corr. & alt.

    s in = 180

    ext. = sum of

    int. opp. s

    iso. eq.

    Prove equal sides/angles using iso. & eq.

    SSS SAS AAS RHS 3 eq. sides

    2 eq. sides, 1 included

    2 eq. s, 1 corr. sides

    1 rt , 1 eq. hyp, 1 eq. side

    Note: Order of Points matter e.g. ABC XYZ is not the same as

    ACB XYZ Prove equal sides/angles using congruent s

    SSS SAS AA

    3 sides 2 sides, 1 included

    2 eq.

    Given ABC ~ DEF, prove that AB DF = AC DE

    Given ABC ~ DEF, prove that AB DF = AC DE

    Whenever you encounter product of multiple line segments, consider using the property of similar triangles: ratios of corresponding sides are equal.

    AB

    AC

    Identify which line segments in the above product correspond to the triangle ABC. AB and AC.

    Take ratio AB

    AC at the left. Note the

    sequence. AB is 12 and AC is 13. 12 over 13.

    AB

    AC =

    DE

    DF

    Use same sequence on the other triangle DEF at the right. 12 is

    DE and 13 is DF. Take ratio DE

    DF at

    the right.

    AB DF = AC DE [proven]

    Cross multiply.

    Given ABC ~ DEF & DE: EF = 1: 2, prove that

    AB =1

    2BC (or AB: BC = 1: 2)

    AB

    BC =

    DE

    EF

    =1

    2

    AB =1

    2BC

    AB: BC = 1: 2

    Solution

    A B C D

    Question

    A B C

    Use Line Addition and Subtraction

    Ex 10.1 Triangle Theorems

    a b a b

    a b a

    b a b

    Angle Properties of Line(s)

    a b c a b c a b a b a b

    c

    Angle Properties of Triangles

    Congruency Tests

    Solution

    Question (Prove relation/ratio of line segments)

    Solution

    Question (prove product of sides)

    Similarity Tests

  • Additional Math Notes (20 Oct 2014)

    21 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Given ABC ~ EDC, BC: CD = 1: 2 & area of ABC = x, find the area of DEC

    Area of DEC = (2

    1)2x = 4x [use

    A1

    A2= (

    l1

    l2)2]

    D = MAB, E = MAC

    DE BC, DE =1

    2BC

    Kite

    Quad. with two pairs of equal adjacent sides

    s between unequal sides are equal (angle)

    One diagonal bisects the other (diagonal)

    Longer diagonal bisects s (diagonal)

    Diagonals are (diagonal)

    Note: Concave kite have interior s > 180 Trapezium

    Quad. with exactly one pair of parallel sides

    supplementary interior s Parallelogram

    Quad. with two pairs of parallel sides

    Opp. sides are equal (side)

    Opp. s are equal (angle)

    interior s are supplementary (angle)

    Diagonals bisect each other (diagonal) Rectangle

    Quad. with four right angles Opp. sides are parallel (side)

    Opp. sides are equal (side)

    Diagonals bisect each other (diagonal)

    Diagonals are equal (diagonal) Rhombus

    Quad. with four equal sides

    Opp. sides are parallel (side)

    Supplementary interior s (angle)

    Diagonals bisect s (diagonal)

    Diagonals are bisector of each other (diagonal) Square

    Quad. with four equal sides & four right angles

    Diagonals bisect angles (diagonal)

    Diagonals are equal (diagonal)

    Diagonals are bisector of each other (diagonal)

    Solution

    Question (Use ratio of area of similar triangles)

    A D

    B C

    E

    Mid-point Theorem

    Definition & Properties of Quadrilaterals

    Ex 10.2 Quadrilaterals Theorems

    A

    B C

    D

    E 1

    2

  • Additional Math Notes (20 Oct 2014)

    22 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Parallelogram

    2 pairs of sides (definition)

    2 pairs of equal & opp. sides (side)

    1 pair of equal & sides (side)

    2 pairs of equal opp. s (angle)

    Diagonals bisect each other (diagonal) Rectangle

    4 right s (definition)

    Parallelogram + 1 right (angle) Rhombus

    4 equal sides (definition)

    Parallelogram + eq. adj. sides (side)

    Parallelogram + bisecting diagonals (diagonal)

    Parallelogram + diagonals (diagonal) Square

    4 equal sides & 4 right s (definition)

    Rectangle + eq. adj sides (side)

    Rhombus + 1 right (angle) Trapezium

    Parallel opposite sides (definition) Kite

    2 pairs of equal adjacent sides (definition)

    in

    semicircle at centre = 2 at

    circumference

    s in same segment

    s in opp. segment

    bisector of chord passes through centre

    Equal chords are equidistant from

    centre Equal arcs results in equal chords

    alt. segment

    thm tan rad tangents

    from ext. point

    Table

    0 30 45 60 90

    0

    6

    4

    3

    2

    sin 0 1

    2 2

    2

    3

    2 1

    cos 1 32

    2

    2

    1

    2 0

    tan 0 1

    3 1 3

    Triangle

    Unit circle

    Prove Quadrilaterals

    a

    a

    b a b a

    b

    Angle Properties of Circle

    Ex 10.3 Circles Theorems

    A C B

    O B

    A X

    Y C O

    D

    Chord Properties of Circle

    a b O P

    Q

    R

    Tangent Properties of Circle

    45 60

    30

    60

    1

    1 2

    2

    1

    3

    Special Angles

    Ex 11.1 Trigo Ratios of Acute Angles

  • Additional Math Notes (20 Oct 2014)

    23 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    rad = 180

    To convert from degrees to radians, multiply

    180

    To convert from radians to degrees, multiply 180

    Tip:

    Track the unit conversion to avoid the mistake of

    multiplying the wrong fraction

    e.g.

    60 = 60

    180 =

    1

    3

    [deg] = [deg] [rad]

    [deg] = [rad]

    60 = 60 180

    =

    10800

    [deg] = [deg] [deg]

    [rad] =

    [deg]2

    [rad]

    sin(90 ) = cos

    cos(90 ) = sin

    tan(90 ) =1

    tan

    sin(180 ) = sin

    cos(180 ) = cos

    tan(180 ) = tan

    Step 1: Add or subtract 360 until 0 360 Step 2: Use table

    Angle Quadrant 0 < < 90 1

    90 < < 180 2 180 < < 270 3 270 < < 360 4

    Step 1: Add or subtract 360 until 0 360

    Step 2: Use table

    Quadrant 1 2 180 3 180 4 360

    Quadrant 1 2 180 3 180 + 4 360

    Step 1: Draw

    Step 2: Find all 3 sides (by Pythagoras Thm)

    Angles measured anti-clockwise from the positive x-axis

    are positive.

    On the contrary, angles measured clockwise from the

    positive x-axis are negative.

    Step 1: Identify quadrant

    Step 2: Draw in quadrant

    Step 3: Find coordinates

    Convert between Degrees and Radians

    Complementary s

    Supplementary s

    Identify Quadrant

    Find Basic Angle

    Find General Angle

    Use

    x

    y r

    sin =y

    r

    cos =x

    r

    tan =y

    x

    r = x2 + y2

    Trigo Function Definition

    Ex 11.2 Trigo Ratios of any Angles

    Use in Quadrant(s)

  • Additional Math Notes (20 Oct 2014)

    24 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Given that tan A =

    5

    12 and that tan A and cos A have

    opposite signs, find the value of each of the following.

    (i) sin(A)

    (ii) cos(A)

    (iii) tan (

    2 A)

    Thought Process

    Step 1: Identify quadrants

    tan A = 5

    12< 0

    2nd or 4th quad.

    Observe that ratio for tan is negative. Tan is only positive in 1st or 3rd quad. Therefore, it is in 2nd or 4th quad.

    tan A & cos A have opp. signs 3rd or 4th quad.

    In 3rd quad., only tan is positive In 4th quad., only cos is positive Therefore, it is in 3rd or 4th quad.

    4th quadrant Take overlap of above deductions. Therefore it is in 4th quadrant.

    Step 2: Draw in quadrant

    Draw in 4th quadrant.

    Step 3: Find coordinates

    tan A = 5

    12=

    y

    x

    tan A =y

    x by definition.

    y = 5,

    Equate numerator, = 5. y-coordinate is negative in 4th quad.

    x = 12, Equate denominator, = 12. x-coordinate is positive in 4th quad.

    r = 122 + (5)2

    = 13

    Find hypotenuse r by Pythagoras Theorem

    sin A =y

    r=

    5

    13,

    cos A =x

    r=

    12

    13

    Find other trigo ratios to serve as useful inputs. The rest of the question makes use of the 3 basic trigo ratios: sin A , cos A & tan A.

    sec =1

    cos

    csc =1

    sin

    cot =1

    tan

    cos() = cos()

    sin() = sin()

    tan() = tan()

    All trigo functions can be converted to trigo function of basic angle with positive or negative sign depending on ASTC rule. e.g. sin(210) = sin(30)

    Quadrants method

    Step 1: Find = f1(|k|) & identify quadrants

    Step 2: State interval

    Step 3: Find x using quadrants

    5

    12

    r

    Solution

    Question Reciprocal Identities

    Negative Angles

    A S T C

    sin is + all are +

    tan is + cos is +

    ASTC Rule

    1 2

    2 3 4 +

    1 2

    360 3 4 180 180 +

    Solve Trigo Eqn f(x) = k

  • Additional Math Notes (20 Oct 2014)

    25 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Graphical method

    When = 0 or 90,

    i.e. sin f(x) = 0,1

    cos f(x) = 0,1

    tan f(x) = 0

    Step 1: State interval

    Step 2: Find x using graph

    y = sin x y = cos x y = tan x

    1 sin x 1

    1 cos x 1

    y = sin x y = cos x

    Min sin x = 1

    at x = 270 cos x = 1 at x = 180

    Max sin x = 1 at x = 90

    cos x = 1 at x = 0, 360

    Sine/Cosine Tangent

    Amplitude A = |a| =maxmin

    2

    Period T =360

    b

    Axis c =max+min

    2

    = min + A = max A

    Period T =180

    b

    Step 1: Simplify to y = af(bx) + c Step 2: Find amplitude & period

    Sin/Cos Tan Amplitude |a| Nil

    Period 2

    b

    b

    Step 3: Complete table and sketch graph

    Domain x1 x x2 Axis with Amplitude

    y = c |a|

    Shape sin/cos/tan

    Cycle x2x1

    T

    y = sin x y = cos x y = tan x

    0 sin x = 0 at x =0, 180, 360

    cos x = 0 at x =90, 270

    tan x = 0 at x =0, 180, 360

    Min sin x = 1 at x = 270

    cos x = 1 at x = 180

    Nil

    Max sin x = 1 at x = 90

    cos x = 1 at x = 0, 360

    Nil

    1

    1

    180 90 270

    360 1

    1

    180 90 270

    360 1

    1

    180 90 270

    360

    Solve Trigo Eqn f(x) = k by Graph

    Ex 11.3 Trigo Graphs

    1

    1

    180 90 270 360

    1

    1

    180 90 270 360

    Range of Sine & Cosine

    c A = |a|

    T =360

    b

    A = |a|

    max

    min

    c

    T =180

    b

    Find Unknowns of Trigo Function af(bx) + c

    1

    1

    180 90 270 360

    1

    1

    180 90 270 360

    180 90 270 360

    Sketch Trigonometric Functions

  • Additional Math Notes (20 Oct 2014)

    26 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Sketch y = 3(1 2 cos 4x) for 0 x 270

    Step 1: Simplify to = () + y = 3(1 2 cos 4x)

    = 3 6 cos 4x = 6 cos 4x + 3

    Step 2: Find amplitude & period A = |6| = 6

    T =360

    4= 90

    Step 3: Complete table and sketch graph

    Domain 0 x 270 Axis with Amplitude

    y = 3 6

    Shape cos

    Cycle 2700

    90= 3

    Follow the sequence from top down to sketch the graph.

    Mark the endpoint of domain, 270.

    Mark the axis 3. Add and subtract 6 to get max 9 and min 3.

    Draw 1 cycle of negative cosine.

    There are 3 cycles in total. Draw 2 more.

    Symmetrical

    Given & are roots of 3 cos x + 2 = 2 where 3 < k < 4. Find in terms of , given that <

    x = is line of symmetry, +

    2 =

    = 2 Cyclical

    Given that is the smallest positive root of the equation

    2 cos 4x = 3.1 tan 2x, where 0 x 360, state the other roots in terms of .

    Period = 90, x = , + 90, + 180, + 270

    Solution

    Question

    270

    270

    3

    9

    3

    270

    3

    9

    3

    270

    3

    9

    3

    1 = 3.1 tan 2

    2 = 2 cos 4

    90

    = 45 = 135

    180

    2

    2

    Solution

    Question

    x

    y

    2

    5

    -1 2

    = 3 cos + 2

    Solution

    Question

    Use Symmetrical/Cyclical Nature of Trigo Graphs

  • Additional Math Notes (20 Oct 2014)

    27 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Principal values

    2 sin1 x

    2

    0 cos1 x

    2< tan1 x 0

    For decreasing function, dy

    dx< 0

    Applications Determine whether a function is increasing or

    decreasing Find the range of values of x for which a function is

    increasing or decreasing

    dy

    dt rate of change of y wrt t

    Consider adding/subtracting between related rates

    Water is entering a container at a constant rate of 5 cm3/s Water is leaking from the container at a constant rate of 1 cm3/s. Find the net rate of water flow into the container.

    Net rate = 5 1 = 4cm3/s

    Quantity = (constant rate) time

    d

    dx[f(x)

    g(x)] =

    g(x) f(x) f(x) g(x)

    [g(x)]2

    Square Bottom

    Diff Top

    Bottom

    Diff Bottom

    Top

    Quotient Rule

    Ex 14.4 The Quotient Rule

    Find Tangent

    Ex 15.1 Tangents and Normals

    Find Normal

    Normal Properties

    Tangent Properties

    Increasing/Decreasing function

    Ex 15.2 Increasing and Decreasing Functions

    Solution

    Question

    Rate of Change

    Ex 15.3 Rates of Change

    Quantity & Constant Rate

  • Additional Math Notes (20 Oct 2014)

    32 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Step 1: Assign variables, state given & unknown rate

    Step 2: y = f(x) (Form relation between variablesof given rate & unknown rate

    )

    (see appendix 1)

    Step 3: dy

    dx= f(x) (Find derivative)

    Step 4: dy

    dt=

    dy

    dxdx

    dt (Use chain rule)

    Step 5: Find rate at instant

    dy

    dx= 0

    x a a a+ dy

    dx sign + 0

    max

    x a a a+ dy

    dx sign 0 +

    min

    x a a a+ dy

    dx sign 0

    inflexion

    d2y

    dx2< 0 max

    d2y

    dx2> 0 min

    d2y

    dx2= 0 inflexion

    Step 1: Assign variables

    Step 2: y = f(x) (Express variable to be max/minas a function of a single variable

    )

    (see appendix 1)

    Step 3: Find dy

    dx (Find derivative)

    Step 4: Solve dy

    dx= 0 (Find stationary value)

    Step 5: Find d2A

    dx2 and compare against 0

    (Verify max/min)

    d

    dx(sin x) = cos x

    d

    dx(cos x) = sin x

    d

    dx(tan x) = sec2 x

    d

    dx[sin(ax + b)] = a cos(ax + b)

    d

    dx[cos(ax + b)] = a sin(ax + b)

    d

    dx[tan(ax + b)] = a sec2(ax + b)

    Consider simplifying using trigonometric identities before differentiating

    e.g. d

    dx(2 sin x cos x) =

    d

    dx(sin 2x) = 2 cos x

    d

    dx(ex) = ex

    d

    dx(eax+b) = aeax+b

    Consider simplifying using indices properties before differentiating

    e.g. d

    dx(e2x e13x) =

    d

    dx(e1x) = e1x

    Connected Rates of Change

    Ex 15.4 Connected Rates of Change

    Stationary Point/Value

    Ex 16.1 Nature of Stationary Points

    1st Derivative Test

    2nd Derivative Test

    Maxima/Minima

    Ex 16.2 Maxima and Minima

    Derivatives of Trigonometric Functions

    Ex 17.1 Derivatives of Trigo Functions

    Derivatives of Exponential Functions

    Ex 17.2 Derivatives of Exponential Functions

  • Additional Math Notes (20 Oct 2014)

    33 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    d

    dx(ln x) =

    1

    x

    d

    dx[ln(ax + b)]=

    a

    ax+b

    Consider simplifying by using laws of logarithm before differentiating Product law

    e.g. d

    dx(ln xex) =

    d

    dx(ln x + ln ex)

    =d

    dx(ln x + 1)

    =1

    x

    Quotient law

    e.g. d

    dx[ln (

    x

    x2+1)] =

    d

    dx[ln x + ln(x2 + 1)]

    =1

    x+

    2x

    x2+1

    Power law

    e.g. d

    dx[ln(4x 3)2] =

    d

    dx[2 ln(4x 3)]

    = 2(4

    4x3)

    =8

    4x3

    Change-of-base law

    e.g. d

    dx(loga x) =

    d

    dx(ln x

    ln a)

    =1

    ln a

    d

    dx(ln x)

    =1

    ln a(1

    x)

    =1

    xln a

    Step 1: Take natural log both sides Step 2: Simplify using laws of log Step 3: Differentiate It is useful when differentiating

    functions of the form y = [f(x)]g(x), f(x) e complicated products or quotients

    Differentiate y = 2x with respect to x

    y = 2x

    ln y = ln 2x Take ln both sides

    ln y = x ln 2 Simplify using power law

    Diff wrt x: Differentiate both sides wrt x 1

    ydy

    dx = ln 2

    dy

    dx = (ln 2)y

    = (ln 2)2x Replace y with 2x

    Find dy

    dx if y = (2 + x2)(1 x3)4

    y = (2 + x2)3(1 x3)4 (1)

    ln y = ln[(2 + x2)3(1 x3)4]

    = ln(2 + x2)3 + ln(1 x3)4

    = 3 ln(2 + x2) +4 ln(1 x3)

    Diff wrt x: 1

    ydy

    dx = 3

    1

    2+x2

    d

    dx(2 + x2) +4

    1

    1x3

    d

    dx(1 x3)

    = 3 1

    2+x2 2x +4

    1

    1x3 (3x2)

    =6x

    2+x2

    12x2

    1x3

    dy

    dx = (

    6x

    2+x2

    12x2

    1x3) y

    = 6x (1

    2+x2

    2x

    1x3) y

    = 6x [(1x3)2x(2+x2)

    (2+x2)(1x3)] y

    = 6x [1x34x2x3

    (2+x2)(1x3)] y

    = 6x [14x3x3

    (2+x2)(1x3)] y (2)

    sub (1) into (2): dy

    dx = 6x [

    14x3x3

    (2+x2)(1x3)] (2 + x2)3(1 x3)4

    = 6x(1 4x 3x3)(2 + x2)2(1 x3)3

    Derivatives of Log functions

    Ex 17.3 Derivatives of Log Functions

    Solution

    Question

    Solution

    Question

    Use Logarithmic Differentiation

  • Additional Math Notes (20 Oct 2014)

    34 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    f(x) g(x) dx = f(x) dx g(x) dx

    af(x) dx = a f(x) dx

    Integration is the reverse of differentiation

    Given d

    dx6x + 5 =

    3

    6x+5,

    find 1

    6x+5dx.

    1

    6x+5dx =

    1

    3

    3

    6x+5dx

    =1

    36x + 5 + c

    Consider rearranging equation involving derivative.

    Given d

    dx(x ln x) = 1 + ln x,

    find ln x dx.

    d

    dx(x ln x) = 1 + ln x

    ln x =d

    dx(x ln x) 1

    ln x dx = [d

    dx(x lnx) 1] dx

    = x ln x x + c

    Given d

    dx(x cos x) = cos x x sin x,

    Find x sin x dx

    d

    dx(x cos x) = cos x x sin x

    x sin x = cos x d

    dxx cos x

    x sin x dx = (cos x d

    dxx cos x) dx

    = sin x x cos x + c

    To form equations and solve unknowns, use given equations (unknowns are already present)

    e.g. dy

    dx= x2(x k)

    use proportionality e.g. Gradient is proportional to f(x)

    dy

    dx= kf(x)

    introduce arbitrary constants from integration

    e.g. dy

    dx= 2x + 1

    y = x2 + x + c

    use point on curve e.g. (1, 2) lies on y = f(x)

    2 = f(1)

    use gradient

    e.g. at turning point, dy

    dx= 0

    xn dx =xn+1

    n+1+ c

    axn dx =axn+1

    n+1 +c

    (ax + b)n dx =(ax+b)n+1

    a(n+1) +c

    Note: The rules for above hold for all real values of n

    except for n = 1

    e.g. x1 dx x0

    0+ c

    but x1 dx = 1

    xdx = ln|x| + c

    Consider simplifying before integrating Multiply or divide

    e.g. [x(x + 1)] dx = (x2 + x) dx =x3

    3+

    x2

    2+ c

    (2x2+4x

    x) dx = (2x + 4) dx = x2 + 4x + c

    (x2+2x

    x1) dx = (x + 3 +

    3

    x1) dx (long division)

    Use law of indices

    e.g. x dx = x1

    2 dx =x32

    3

    2

    =2

    3xx

    1

    x2dx = x2 dx =

    x1

    1+ c =

    1

    x+ c

    Breaking into partial fractions

    e.g. x

    (x1)2dx =

    1

    x1+

    1

    (x1)2dx

    = ln|x 1| 1

    x1+ c

    Integral Rules

    Ex 18.1 Indefinite Integrals

    Solution

    Question

    Solution

    Question

    Solution

    Question

    Find Integral from Derivative

    Find Curve from Derivative

    Integrals of Power Functions

  • Additional Math Notes (20 Oct 2014)

    35 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    f(x)b

    a dx = F(b) F(a)

    f(x)b

    a dx = f(x)

    a

    bdx

    f(x)b

    adx = a

    cf(x) dx + f(x)

    b

    cdx

    f(x)a

    adx = 0

    Definite integrals can be equal

    because they have equal area

    under curve

    e.g. 01x2dx = x2

    0

    1dx

    |f(x)| dx = { f(x) dx if f(x) 0

    f(x) dx if f(x) < 0

    sin x dx = cos x + c

    cos x dx = sin x + c

    sec2 x dx = tan x + c

    sin(ax + b) dx = 1

    acos(ax + b) + c

    cos(ax + b) dx =1

    asin(ax + b) + c

    sec2(ax + b) dx =1

    atan(ax + b) + c

    Consider simplifying using trigonometric identities before integrating e.g. tan2 x dx = sec2 x 1dx

    = tan x x + c Use special angles for definite integrals of trigonometric function

    e.g. cos x

    2

    3

    dx = [sin x]3

    2

    = sin

    2 sin

    3

    = 1 3

    2

    ex dx = ex + c

    eax+b dx =1

    aeax+b + c

    Consider simplifying using indices properties before integrating e.g. e2x e13x dx = e1x dx

    =e1x

    1 +c

    = e1x +c

    1

    xdx = ln|x| + c

    1

    ax+bdx =

    1

    aln|ax + b| + c

    Consider breaking into partial fractions before integrating

    e.g. 2x1

    (x+1)(x+2)dx = (

    5

    x+2

    3

    x+1) dx

    = 5 ln|x + 2| 3 ln|x + 1| + c

    Definite Integrals

    Ex 18.2 Definite Integrals

    Definite Integrals Rules

    Integrals of Modulus Functions

    Integrals of Trigonometric Functions

    Ex 18.3 Integrals of Trigo Functions

    Integrals of Exponential Functions

    Ex 18.4 Integrals of Exponential Fns & 1/x

    Integrals of 1

    x &

    1

    ax+b

    1 1

    = 2

    Equal areas

  • Additional Math Notes (20 Oct 2014)

    36 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Area = (Top Bottom)x2

    x1

    dx

    Area = (Right Left)y2

    y1

    dy

    There should be a pair of lines parallel to x or y-axis enclosing the region. If parallel to y-axis, integrate wrt x and vice versa. Consider finding geometric area without integration

    Triangle area =1

    2(base)(height)

    Trapezium area =1

    2(sum of bases)(height)

    Given the the diagram at the right. Find area of (i) Region A (ii) Region B

    (i) Area of Region A ()

    =1

    2(base)(height)

    =1

    2(1)(2)

    = 1 unit2

    (ii) Area of Region B (trapezium)

    =1

    2(sum of bases)(height)

    =1

    2(2 + 6)(3 1)

    = 8 unit2

    Axis Integrate wrt x or y-axis

    Break Break into smaller shapes

    Complement Subtract area

    Find the area bounded by y = x2, y = 2 x and the x axis.

    Method 1 (integrate wrt y-axis)

    Area of region F

    = (Right Left)y2y1

    dy

    = [(2 y) y]1

    0dy

    Method 2 (break)

    Area of region G +Area of region H

    = x21

    0dx + (2 x)

    2

    1dx

    Method 3 (complement)

    Area of Area of region I

    =1

    2(2)(2) (2 x)

    1

    0dx

    1 2

    = ()

    Top

    Bottom

    1

    = ()

    Left

    2

    Right

    Solution

    Question

    Area by integration

    Ex 19.1 Area by Integration

    Question

    = 2

    = 2 2

    (1,1)

    Solution

    F

    =

    = 2

    1

    G

    = 2

    = 2 1

    H

    2

    = 2

    = 2 2 1

    I 2

    Strategies to find area bounded by curves

    Ex 19.2 Area bounded by Curves

    v

    v =ds

    dt a =

    dv

    dt

    v = a dt s = v dt

    s a

    Kinematics Relation

    Ex 20.1 Kinematics

    (1,2)

    (3,6)

    1 3

    = 2

  • Additional Math Notes (20 Oct 2014)

    37 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    t is time after passing O s|t=0 = 0

    Rest v = 0

    Time to turn around v = 0

    Max/min quantity 1st derivative = 0

    Max/min dist. from O v = 0

    Max/Min v a = 0

    Total Distance = |v| dt

    Average Speed =total distance

    total time

    Total Distance = |v|t2

    t1

    dt

    (Total distance travelled in between t1 and t2)

    Method 1 (using s-t graph)

    Step 1: Let v = 0 to find t

    Step 2: Find s for each t found

    Step 3: Find s for start & end

    Step 4: Draw s-t graph Method 2 (using v-t graph)

    Step 1: Draw v-t graph

    Step 2: Use distance = |v| dt

    Step 3: Split at v = 0

    Step 4: Remove modulus

    |v| = {v for v 0

    v for v < 0

    Implications of Kinematics Statements

    Distance

  • Additional Math Notes (20 Oct 2014)

    38 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Triangle ( )

    Triangle area =1

    2(base)(height)

    =1

    2ab sin C

    Isosceles triangle area =s23

    4

    Sine rule: sin a

    A=

    sinb

    B=

    sin c

    C

    Cosine rule: a2 = b2 + c2 2bc cos A

    Pythagoras theorem : a2 + b2 = c2

    Similar triangles: a

    A=

    b

    B=

    c

    C

    Trigonometric identities:

    sin =o

    h o = h sin

    cos =a

    h a = h cos

    tan =o

    a

    Quadrilateral ( )

    Square area = x2

    Rectangle area = (base)(height)

    Parallelogram area = (base)(height)

    Rhombus area =1

    2(product of diagonals)

    Trapezium area =1

    2(sum of bases)(height)

    Kite area =1

    2(product of diagonals)

    Circle ( )

    Circle area = r2

    Circumference = 2r

    Arc length = r = s

    Area of sector =1

    2r2

    =1

    2rs

    Area of segment =1

    2r2

    1

    2r2 sin

    Circle properties (refer to Ex 10.3)

    Prism

    Prism volume = (base area)(height)

    Cube volume = x3

    Cube surface area = 6x2

    Cylinder volume = r2h

    Cylinder surface area = 2r2 + 2rh = 2r(r + h)

    Pyramid

    Pyramid volume =1

    3(base area)(height)

    Cone Volume =1

    3r2h

    Cone area (exclude base) = rl

    where l = r2 + h2

    Sphere

    Sphere volume =4

    3r3

    Sphere area = 4r2

    2D Shapes

    Appendix 1 Geometric Formulae 3D Shapes

  • Additional Math Notes (20 Oct 2014)

    39 sleightofmath.com Daniel & Samuel

    Math Tuition 9133 9982

    Special Angles

    0 30 45 60 90

    0

    6

    4

    3

    2

    sin 0 1

    2 2

    2

    3

    2 1

    cos 1 32

    2

    2

    1

    2 0

    tan 0 1

    3 1 3

    Complementary Angles

    sin(90 ) = cos

    cos(90 ) = sin

    tan(90 ) =1

    tan

    Trigonometric Function Definition

    Reciprocal Identities

    sec =1

    cos

    csc =1

    sin

    cot =1

    tan

    Negative Angles

    cos() = cos()

    sin() = sin()

    tan() = tan()

    Principal Values

    2 sin1 x

    2

    0 cos1 x

    2< tan1 x