4
3.15 Carrier Fundamentals C.A. Ross, Department of Materials Science and Engineering Reference: Pierret, chapters 1-2. Electron and hole charge: e = 1.6 10 -19 C Effective mass: m*, rest mass m o F = -eE = m o dv/dt in vacuum F = -eE = m* dv/dt in solid in Si, m n */m o = 1.18, m h */m o = 0.81 at 300K. Intrinsic properties in Si, n = p = 10 10 cm -3 at 300K N = 5 10 22 atoms cm -3 Extrinsic properties Donors – group V Acceptors – group III B C N O Al Si P S Ga Ge As Se In Sn Sb Te Tl Pb Bi Po Band diagrams: E c = conduction band edge, E v = valence band edge band gaps: Si 1.12 eV diamond 5.4 eV silica 5 eV energies of dopant levels, in meV, in silicon (kT = 26 meV @ 300K) P 45 B 45 As 54 Al 67 Ga 72 Handout 1

Material Science ELectron HOle mobility

Embed Size (px)

DESCRIPTION

n physics, chemistry, and electronic engineering, an electron hole is the lack of an electron at a position where one could exist in an atom or atomic lattice. It is different from the positron, which is an actual particle of antimatter. If an electron is excited into a higher state it leaves a hole in its old state.

Citation preview

Page 1: Material Science ELectron HOle mobility

3.15

Carrier Fundamentals

C.A. Ross, Department of Materials Science and Engineering

Reference: Pierret, chapters 1-2.

Electron and hole charge: e = 1.6 10-19 C

Effective mass: m*, rest mass mo

F = -eE = mo dv/dt in vacuum

F = -eE = m* dv/dt in solid

in Si, mn*/mo = 1.18, mh*/mo = 0.81 at 300K.

Intrinsic properties

in Si, n = p = 1010 cm -3 at 300K

N = 5 1022 atoms cm-3

Extrinsic properties

Donors – group V

Acceptors – group III

B C N O

Al Si P S

Ga Ge As Se

In Sn Sb Te

Tl Pb Bi Po

Band diagrams: Ec = conduction band edge, Ev = valence band edge

band gaps: Si 1.12 eV

diamond 5.4 eV

silica 5 eV

energies of dopant levels, in meV, in silicon (kT = 26 meV @ 300K)

P 45 B 45

As 54 Al 67

Ga 72

Handout 1

Page 2: Material Science ELectron HOle mobility

Carrier distributions (intrinsic)

g(E) dE = density of electron states cm-3 in the interval (E, E+dE),

units #/eV.cm-3

gc (E) dE = mn*√(2mn*(E – Ec)) / (π2 3

!

h

!

h

) dE gv (E) dE = mp*√(2mp*(Ev – E)) / (π2 3) dE

In these states, the electrons distribute according to Fermi function

f(E) = 1/ {1 + exp (E – Ef)/kT }

Number of electrons in the interval (E, E+dE) is therefore f(E)g(E)dE. In a doped semiconductor, the position of Ef with respect to the band gap determines whether there are more electrons or holes.

Total number of electrons: by integrating f(E)g(E)dE

n = ni exp (Ef - Ei)/kT p = ni exp (Ei - Ef)/kT

where

ni = Nc exp (Ei - Ec)/kT

Nc = 2{2πmn*kT/h2}3/2 = ‘effective density of conduction band states’

Ei is the position of the Fermi level in the intrinsic case.

Similarly for Nv.

Hence

np = ni2 at equilibrium

ni2 = Nc Nv exp (Ev - Ec)/kT = Nc Nv exp (-Eg)/kT

Intrinsic case:

Ei = (Ev + Ec)/2 + 3/4 kT ln (mp*/ mn*)

In a doped material, where n ~ ND or p ~ NA

Ef - Ei = kT ln (n/ ni) = - kT ln (p/ ni) ~ kT ln (ND / ni) or - kT ln (NA / ni) n-type p-type

Handout 1

Page 3: Material Science ELectron HOle mobility

Mayer and

Lau,

Electronic

MaterialsScience

Handout 1

AlAs

GaP

AlSb

GaAs (D)

InP(D)

GaSb (D)

InAs (D)

Si

Ge

0.650.640.630.620.610.600.590.580.570.560.550.540

0.2

0.4

0.8

0.6

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

6.200

3.100

2.067

1.550

1.240

1.033

0.885

0.775

0.689

0.620

0.563

0.517

0.477

InSb (D)

Wav

elen

gth

(mic

rons

)

Lattice constant (nm)

Ener

gy g

ap (e

V)

AlP

Indirect band gap

Direct band gap (D)

Energy Gap and Lattice Constants

Properties Si GaAs SiO2

Atoms/cm3, molecules/cm3 x 1022

StructureLattice constant (nm)Density (g/cm3)Relative dielectric constant, er

Permittivity, e = ereo (farad/cm) x 10-12

Expansion coefficient (dL/LdT) x (10-6 K)Specific Heat (joule/g K)Thermal conductivity (watt/cm K)Thermal diffusivity (cm2/sec)

Drift mobility (cm2/volt-sec)

(cm-3) x 1019

Energy Gap (eV)

ElectronsHoles

Effective density of states

Conduction bandValence band

Intrinsic carrier concentration (cm-3)

5.0diamond0.5432.3311.9

1.05

2.60.71.480.9

1.12

1500450

2.81.04

1.45 x 1010

4.42zincblende0.5655.3213.1

1.16

6.860.350.460.44

1.424

8500400

0.0470.7

1.79 x 106

2.27a

amorphous

2.27a

3.9

0.34

0.51.00.0140.006

~9

Ge

0.67

Properties of Si, GaAs, SiO2, and Ge at 300 K

Figure by MIT OCW.

Figure by MIT OCW.

Page 4: Material Science ELectron HOle mobility

Physical Constants, Conversions, and Useful Combinations

Physical Constants Avogadro constant Boltzmann constant Elementary charge Planck constant

Speed of light Permittivity (free space) Electron mass Coulomb constant Atomic mass unit

N, = 6.022 x particles/mole k = 8.617 x 10-'eV/K = 1.38 x J/K e = 1.602 X 10-l9 coulomb h = 4.136 x 10-IS eV . s

= 6.626 x lo-" joule . s c = 2.998 x 10" cm/s co = 8.85 X 10-l4 farad/cm rn = 9.1095 x lo-" kg kc = 8.988 x lo9 ne~ton-m~/(coulomb)~ u = 1.6606 x kg

Useful Combinations Thermal energy (300 K) kT = 0.0258 eV = 1 eV/40 Photon energy E = 1.24eVatX = 1 pm Coulomb constant kce2 = 1.44 eV . nm Permittivity (Si) E = e,e, = 1.05 x 10-l2 faradlcm Permittivity (free space) q, = 55.3e/V . pm

Prefixes k = kilo = I@; M = mega = I d ; G = giga = 10'; T = tera = 1012 m = milli = p = micm = n = nano = IW9; p = pica = lo-''

Symbols for Units Ampere (A), Coulomb (C), Farad (F) Gram (g), Joule (J), Kelvin (K) Meter (m), Newton (N), Ohm (a) Second (s), Siemen (S), Tesla (T) Volt (V), Watt (W), Weber (Wb)

Conversions 1 nm = m = 10 A = cm 1 eV = 1.602 x 10-l9 joule = 1.602 X 10-l2 erg 1 eV/particle = 23.06 kcal/mol 1 newton = 0.102 kg,,, lo6 newton/m2 = 146 psi = lo7 dyn/crn2 1 Fm = cm 0.001 inch = 1 mil = 25.4 pm 1 bar = lo6 dyn/cm2 = Id ~ / m ~

PHYSICAL CONSTANTS, CONVERSIONS, AND USEFUL COMBINATIONS

Physical Constants

Useful Combinations

Prefixes

Symbols for Units

Conversions

Avogadro constantBoltzmann constantElementary chargePlanck constant

Speed of lightPermittivity (free space)Electron massCoulomb constantAtomic mass unit

Thermal energy (300 K)Photon energyCoulomb constantPermittivity (Si)Permittivity (free space)

Ampere (A), Coulomb (C), Farad (F), Gram (g), Joule (J), Kelvin (K)Meter (m), Newton (N), Ohm (!), Second (s), Siemen (S), Tesla (T)Volt (V), Watt (W), Weber (Wb)

1 nm = 10-9 m = 10 A = 10-7 cm; 1 eV = 1.602 x 10-9 Joule = 1.602 x 10-12 erg; 1 eV/particle = 23.06 kcal/mol; 1 newton = 0.102 kgforce; 106 newton/m2 = 146 psi = 107 dyn/cm2 ; 1 µm = 10-4 cm 0.001 inch = 1 mil = 25.4 µm; 1 bar = 106 dyn/cm2 = 105 N/m2; 1 weber/m2 = 104 gauss = 1 tesla; 1 pascal = 1 N/m2 = 7.5 x 10-3 torr; 1 erg = 10-7 joule = 1 dyn-cm

k = kilo = 103; M = mega = 106; G = giga = 109; T = tera = 1012

m = milli = 10-3; µ = micro = 10-6; n = nano = 10-9; p = pica = 10-12

NA = 6.022 x 1023 particles/molek = 8.617 x 10-5 eV/K = 1.38 x 10-23 J/Ke = 1.602 x 10-19 coulomb

h = 4.136 x 10-15 eV .s= 6.626 x 10-34 joule .sc = 2.998 x 1010 cm/s"0 = 8.85 x 10-14 farad/cmm = 9.1095 x 10-31 kgkc = 8.988 x 109 newton-m2/(coulomb)2

u = 1.6606 x 10-27 kg

E = 1.24 eV at # = µmkce2 1.44 eV . nm" = "r"0 = 1.05 x 10-12 farad/cm"0 = 55.3e/V . µm

kT = 0.0258 eV _ 1 eV/40~

1 weber/m2 = lo4 gauss = 1 tesla 1 pascal = 1 N/m2 = 7.5 X torr 1 erg = 10-'joule = 1 dyn-cm

Figure by MIT OCW.