42
Instituto Nacional de Astrofísica, Óptica y Electrónica Rubén Ramos García Departamento de Óptica [email protected] Tel 52 (222) 266 3100 Ext.2214 Massive manipulation of microparticles

Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Instituto Nacional de Astrofísica,

Óptica y Electrónica

Rubén Ramos GarcíaDepartamento de Óptica

[email protected] 52 (222) 266 3100 Ext.2214

Massive manipulation of

microparticles

Page 2: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Overview

Optical Tweezers: Background, Basic Principles and Applications

Massive Manipulation

Time-sharing trapping

Non-Gaussian Beams

Interferometry

Opto-Dielectrophoresis

Plasmons

Photorefractive effect

Concluding remarks

Page 3: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Some History…

P.N. Lebedev (1903) measured the light’spressure!!

Maxwell (1873) shown that light, can in fact,exert pressure

Johannes Kepler (1619) suggested thatcomet’s tails are due to light’s pressure

In 1970, Arthur Ashkin (Bell Labs) demonstrate for the first time the

manipulation of microobject by radiation pressure.

Phys. Rev. Lett. 24, 156 - 159 (1970)

Viking space craft (would've missed Mars by

15,000 km)http://www.planetary.org/programs/projects/solar_sailing/

Page 4: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Consider a micromirror of mass of 10-12 kg

Change of momentum (P=2h/l) in a 100%

reflecting mirror

A stream of photons bombarding

something small can have big effects

Fm = 1000g!!

is the "photon flux," or theNumber of photons/sec in a beam

= P / hn

where P is the beam power.

Force= change of momentumx photon flux ~ 7nN (1 Watt)

Page 5: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

PicoNewton Forces

1 picoNewton (pN, 10-12 N) is roughly equal to…

… the gravitational attraction between you and a book

at arm’s length

… the radiation pressure on a penny from a flashlight 1

yard away

… 1 millionth the weight of a grain of salt

Atomic Force Microscope

Optical Tweezers

Force (pN)

1 10 100 1000 10,000

http://yakko.bme.virginia.edu/lab/laserpresent.htm

Page 6: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

z

pi

Pf

Dps

pi

pf

Dps

Why light can push objects?Radiation Pressure

Fs

Particles are accelerated along the propagation axis!!

dv dpF ma m

dt dt

Page 7: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Radiation Pressure in Action!!

I. Ricárdez-Vargas, M. Iturbe-Castillo, R. Ramos-García, K. Volke-Sepúlveda, V. Ruíz-Corté

7 February 2005 / Vol. 13, No. 3 / OPTICS EXPRESS 969

Page 9: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

D: 0.59 - 2.68

en agua

m

First Trap: Two-Counter Propagating

Beams

•Long working distance

•Particle guiding

•Works well in fiber traps

Page 10: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

How optical trapping works?

Net Force

UP!

Longitudinal Gradient Force

pi

pf

Dp

Transversal Gradient Force

Net Force

Higher intensity!!

pi

pf

pf

Dp

Dp

Page 11: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Potential Well and Force

The potential well depth

can be controlled by

the light intensity

Any object can be trapped

in the potential well!!

Several methods can be implemented to measure the trapping

force.

1

0

0( ) ( ) ( )

x

x

U x F x dx U x

Page 12: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

For typical biological application we find that the roll-off frequency well below

1 kHz. In fact, it means that inertial and gravitational forces can be ignored

altogether

Page 13: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian
Page 14: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Optical Basic Trapping Setup

Page 15: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

d << l/20

Particle can be seen as a small dipole induced by

an homogeneous electric field

(Ray optics)

Page 16: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian
Page 17: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Optical force in the Mie Regime (D>>l):Ray Optics

22 220

0 0 2

0 0

sin 2( ) sin 2( , ) sin 2

2 1 2 cos 2

( , )sin 2 cos .

m t

t

n R RF x y T R

c R R

I x y d d

Where , are the polar and azimuthal angles respectively. T, R are the

transmitance and reflectance averaged over the two orthogonal polarizations

However, in most cases D is comparable to l!!

A Lorentz-Mie model is used, no analytical solution exists and therefore

numerical solutions must be sought.

Page 18: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian
Page 19: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Single-Molecule Motors

Page 20: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Light-induced Neuron Growth

Ehrlicher et al. PNAS December 10, 2002 vol. 99

no. 25 16027

Neuron PC12 cells (a rat neuron precursor cell line)

stimulated to spread with neuronal growth factor

(5x10-5 mg/ml), and NG108 cells, an immortalized

mouse neuroblastoma rat glioma hybrid cell line.

Cells were cultured in medium at 37°C (PC12:

85% RPMI-1640, 10% horse serum, 5% FBS;

NG108: 90% DMEM, 10% FBS)

Page 21: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Question:

“What if I want more than one

trap?”

Page 22: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Acousto-Optic Deflectors (AODs) can be scanned at hundreds of kHz

Time-share: Repositioning the laser on such a short timescale that the trapped particles experience only a timeaveraged potential.If the optical tweezers are absent for 25 microsecs, the diffusion distance is about 5nm.

From the Physics of Complex Systems Group at the Faculty of Sciences of the Vrije Universiteit, Amsterdam.

Time-share the laser beam:

Page 23: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Holography in Liquid Crystal Modulators

J. E. Curtis, B. A. Koss and D. G. Grier, Optics Communications 207, 169-175 (2002)

Page 24: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian
Page 25: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Mike MacDonald, Gabe Spalding and Kishan Dholakia, Nature 426, 421 - 424 (2003)

Sorting by a 3D Crystalline Optical Array

Page 26: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Modulated Optical Sieve forOptical Fractionation

)/2exp(2

)(cos

4),( 2

0

22

2

0

0 wrt

L

x

w

PtI

x

r

Page 27: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Optical Forces & Potentials of the Interference Pattern

P. Zemánek, et.al JOSA A 19, 1025 (2002)

Page 28: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Sorting by size

1 and 5 m-diameter latex particles mixture

R1=1 m R2=2.5 m

R3=3 m

Spatial Period LX (m)

Max

imu

m T

ran

sver

se F

orc

e (n

orm

aliz

ed)

There is an optimum

spatial period at LX

~ 2R!!

Page 29: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Sorting by refractive index

1 mm latex (darker)

particles are removed from

the vision field.

Optical Force Optical Potential

latex (n1 1.59)

silica (n2 1.45)

R=2.5 m

L= 2R

Page 30: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Sorting with Computer Generated Holograms

Interferometer. Hard to align and unstable

Not easy to modify (grating period)

SLM. Very stable and dynamical reconfiguration

Page 31: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Manipulation with Plasmons

Kretschmann configuration.

Attenuation distance

~ l/50

Propagation distance

~ 10l

Page 32: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Manipulation using Plasmons

V. Chavez-Garces, Phys. Rev. B 73 085417J. Opt. A: Pure Appl. Opt. 10 (2008) 093001

Page 33: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Brownian motion (named in honor of the botanist Robert Brown) is the random movement

of particles suspended in a liquid or gas

Brownian Motion

Taken from Perrin, Les Atomes,

r=0.53µm

Dt=30 sec

3.2µm

The particle do not move in average!!

Brownian ratchet

No work can be done from systems

in thermal equilibrium!!

Page 34: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Rectifying Brownian Motion

Phys. Rev. Lett. 74, 1504 (1995).

Manuscript in preparation

Page 35: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Dielectrophoresis

http://www.ece.rochester.edu/users/jones/

Electric field gradients can produce forces over dielectric particles!!

Microchips for biological applications

Page 36: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Massively parallel manipulation of single cells and

microparticles using optical images Pei Yu Chiou,

Aaron T. Ohta and Ming C. Wu Nature 436, 370-372 (21

July 2005)

Optical DielectrophoresisUnder illumination

Page 37: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

15,000 particle traps are created across a 1.3x 1.0 mm2

Optical Dielectrophoresis

Page 38: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Shih-Mo Yang et. al OPTICS LETTERS Vol. 35, 1959-1961 (2010)

a:Si requires plasma-enhanced chemical vapor deposition, ion

implantation, reactive ion etching, and a nitrogen-filled glove box $$$$$

Optical Organic Dielectrophoresis

Page 39: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Photorefractive materials and their applications I & II, P. Gunter and J-P. Huignard Ed. Springer

Verlag, Berlin, 1988.

Photorefractive Effect

BV

BC

Interference Pattern

Fotoconductividad

Carga Espacial

Campo de

Carga Espacial

Cambio en el Indice de refracción

En Fotorrefractivos:

Patrón de

Interferenci

a

Esc~1.5 kV/cm for diffusion dominated

charge transport

Esc~2-20 kV/cm for photovoltaic

charge transport

1/22

0

2 ' 2

0

2

2 ' 2

0

( )

(1 / ) ( / / )

(1 / ) ( / / )

ph

D q q ph q

sc

D

D q q ph q

E E

E E E E E EE

E

E E E E E E

Page 40: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Xinzheng Zhang, et al 2009 / Vol. 17,

No. 12 / OPTICS EXPRESS 9981

Trapping with evanescent fields: PRE

Charged aluminum particles

Nelson V. Tabiryan et al J. Opt. Soc. Am. B/ Vol. 15,

No. 7/July 1998

2 /( , ) sin(2 / )z

scE x z E e x

Page 41: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Esperamos verlos en el INAOE

como estudiantes de nuestro

postgrado!!

Page 42: Massive manipulation of microparticles - INAOE - P...Overview Optical Tweezers: Background, Basic Principles and Applications Massive Manipulation Time-sharing trapping Non-Gaussian

Ibis Ricardez Vargas (UPT Villahermosa)

Ulises Ruiz Corona (Postdoc at Calabria University)

Javier Silva Barranco (PhD student INAOE)

Edy Flores (BUAP)

Kei Fujimura (UDLAP)

Isac Olave Cruz (UDLAP)

Carmelo Rosales (PhD ICFO)

Valeria Rodriguez (PhD ICFO)

Dr. Julio Cesar Ramirez San Juan (INAOE)

Dr. Victor Arrizon (INAOE)

Dra. Karen Volke Sepulveda (IFUNAM)

Coworkers