Mass Transfer in Packed Beds at Low Peclet Numbers

Embed Size (px)

Citation preview

  • 8/11/2019 Mass Transfer in Packed Beds at Low Peclet Numbers

    1/9

    P e r g a m o n

    ( h , 'm~ , . I t im/m , ' . ' rm, / S: w e . Vol 52 . Nos . 21 22. pp . 3995 41~)3 . I t~97

    1 '4 q 7 | q s c ~ . lc r , ~ w n c e l . l d A l l r i g h t s r e s c r ' . e d

    P r i n t e d i n G r e a t B r i t a i n

    Plh SO009-25A)9(97)OO242-X ~ ~ ~ s l ~ l ~ -~l~)

    Mass t rans fer in p ac k ed b ed s a t l ow Pec l e t

    n u m b e r s w r o n g e x p e r i m e n t s o r w r o n g

    interpretat ions?

    G. Rexwinkel ,* A. B. M.

    Heesink and

    W. P. M.

    Van Swaaij

    Department of Chemical Engineering, Twcnte Universi ty of Technology, PO Box 217. 7500 AE

    Enschcdc, The Netherlands

    (Accepted 7 July 1997)

    Abstract Much research has been focused on mass transfer phenomena in packed beds. i-'or

    Peclet numbers above 200, empirical relations have been derived that predict the valuc of the

    mass transfer coefficient as a funct ion of the Reyno lds numb er and the Schmidt number . These

    relations are more or less simila r to the well-known relation that Ranz and Marshall derived for

    mass transfer aroun d a single sphere in an infinite medium

    S h = ~ + f l R e S d .

    For packed beds of spherical particles an :~-value of 3.89 can be calculated on basis of

    fundame ntal considerations. However, Sherwood number s much lower than this minim um

    value have been observed at Peclct numbers below 100. Several expl anat ions have been

    proposed for this apparent discrepancy, such as misinterpr etation of the experimental results

    due to unjustified neglection of axial dispersion or wall channeling. In this work, a model that

    predicts the combined effects of axial dispersion and wall channel ing has been developed. With

    this model, it is possible to explain the results obtained with undiluted beds in which all

    particles are active in the process of mass transfer. However, such an explan atio n is not possible

    for the results obta ined with dilu ted beds in which not all particles arc active. Therefore, in the

    case of diluted beds other reasons for the apparen t drop in mass transfer rate must exist. In the

    present investigation, it is demonstrat ed that the drop again originates from misinterpret ation

    of the experimental results. It is shown, both experimentally and theoretically, that low

    Sherwood number s can be obtained when large differences cxist between the local concent ra-

    tion, experienced by an active particle and the mixed cup concentration of the whole bed

    cross-section. (" 1997 Elsevier Science l,td

    K e y w o r d s : Mass transfer; packed beds: low Peclet numbers; dilution.

    I. INTRODUCTION

    The rate of mass transfer between particles and fluid

    in packed-bed contactors in often predicted with the

    help of a generalized, dimensionless correlation

    S h

    = function

    ( R e , S c ,

    Geomet ry . (11

    Several correlation s have been published, e.g. by

    Wakao and Funazkr i (1978) and Gnielinski (1978j.

    Most of these were based on mass transfer measure-

    ments performed at high Peclet numbers ( P e > 200),

    and are modified versions of the well-known

    Ranz- Mars hall equation, that was derived for a single

    sphere in an infinite medium. Though these correla-

    tions are accurate at high Peclet numbers, at low

    *Corresponding aulhor. Te l. : 0031 534894338: filx:

    0031534894774.

    Peclet numbers ( P e < 100) Sherwood numbers have

    been measured that are less than predicted. See Fig. 1.

    in which the results of several studies are presented.

    Sorcnscn and Stewart (1974) examined mass trans-

    fer in packed beds on a fundamental basis. They

    demonstrated that, at low Reynolds numbers

    I R e < 10), the rate of mass transfer is only a function

    of the Peclet number. They also showed that the

    minimum value of the Sherwood number, which is

    reached at

    Pe = O,

    amounts to 3.89 in the case of

    ideally packed spherical particles. A similar result was

    obta ined by Gu nn (1978). Up to now, this result could

    not bc confirmed experimentally, not even when ap-

    plying sh al lo t beds to minimize experimental inac-

    curacies, that are inevitable due to two complications

    that appear when operating at low Peeler numbers:

    (i) the number of mass transfer units becomes quite

    large, making it difficult to determine the drivi ng force

    for mass transfer in an accurate way, and (i i) the

    3995

  • 8/11/2019 Mass Transfer in Packed Beds at Low Peclet Numbers

    2/9

    3996 G. Rexwinkel t a l

    1 0 0 0 ~

    100 ~ ~-

    0

    . . . . . . .

    "

    0.1

    0.01

    0.1 1 10 100 1000 10 00 0 100000

    Williamson t al (1963)

    Wilson nd Geankoplis 1966)

    Appel nd Newman(1976)

    Fedkiwand Newman(1982)

    o Hsiung nd Thodos (1977)

    13 Hobson nd Thodos (1951)

    O Satterfield nd Resnick (1954)

    Hsiung nd Thodos (1977)

    Bar-Ilan nd Resnick(1957)

    Wilson nd Geankop is (1966)

    - - G n i e l i n s k i

    Sc= 1000 (liquid)

    ....... GnielinskiSc=2.5 (gas)

    1000000

    P e [ ]

    Fig. 1. Experimental Sherwood numbers from literature. Black symbols: undiluted bed--liquid; White

    symbols; undiluted bed--gas; Gray symbols: diluted bed--gas (Bar-llan and Resnick, 1957; Hsiung and

    Thodos, 1977) and diluted bed--liquid (Wilson and Geankoplis, 1966).

    cont ribu tion of free convection to total mass transfer

    may become significant. In order to overcome the first

    complication some researchers applied diluted beds

    in which only a part of the particles is active in the

    mass transfer process, e.g . Bar -lla n and Resnick

    (1957), Wilson and Ge ankopli s (1966)and Hsi ung and

    Thodos (1977). By doing so they could lower the

    concen tratio n in the effluent and calculate the drivi ng

    force for mass transfer more precisely. Nevertheless,

    their results are still not in accordance with expecta-

    tions on basis of theory, as is illustrated by Fig. 1. The

    correlation proposed by Gnielinski is assumed to de-

    scribe the actual Sherwood number satisfactorily for

    the whole Peclet range, since it predicts a limiting

    Sherwood number of 3.8 at zero flow, which is in

    agreement with the theoretical findings of Sorensen

    and Stewart (1974), while at higher Peclet numbers

    this correlation has also proven to be accurate.

    In this paper, we will demonstrate that the discrep-

    ancy between measured and predicted Sherwood

    numbers, which is observed at low Peclet numbers, is

    caused by wrong calculation of the (local) driving

    force for mass transfer. We will do so both for un-

    diluted beds, in which all particles are active, and for

    diluted beds, in which only part of the particles in

    active. However , emphasi s will be on diluted beds. It

    will be shown that such beds need a comple tely differ-

    ent approach than und iluted beds, and that the results

    obtained with diluted beds are of no value to those

    interested in mass transfer phenomena in undiluted

    beds, at low Peclet numbers.

    2. RE-EVALUATIONOF EXPERIMENTALDATA

    Most Sherwood numbers, that were reported in

    literature, where calculated while assuming plug flow

    behavior of the fluid flowing through the bed, i.e.

    while neglecting the effects of axial dispersion and

    wall channeling. This may not always be justified,

    especially not at small Peclet numbers. For example,

    in the case of shallow beds, axial dispersion may have

    a significant negative effect on the average driving

    force for mass transfer, causing an apparent drop in

    Sherwood number as was illustrated by Wakao and

    Funazkri (1978). In the case of small diameter beds,

    wall channeling may result in overestimation of the

    average driving force in the bed, also resulting in an

    apparent drop in Sherwood number (Martin, 1978).

    As most reported data were obtained from

    measurement s that were carried out with shallow beds

    with a small diameter, it makes sense to re-evaluate

    these data while correcting for the influences of axial

    dispersion and wall channeling. We did so with the

    help of the model developed by Martin (1978), which

    was expanded in the following ways:

    Mass transfer is assumed also to occur in the wall

    zone. The mass t rans fer coefficients in the wall

    zone and in the center part of the bed are as-

    sumed to be equal.

    The fluid concentrations in the effluents from

    both zones are calculated on the basis of the

    axially dispersed plug-flow model, in a similar

    way as was done by Wakao and Funa zkri (1978).

    The gas dispersion coefficient is calculated with

    a correlation proposed by Gunn (1987), whereas

    the liquid dispersion coefficient was calcula ted

    using a correlation of Chung and Wen (1968).

    These correlations have been proven to be accu-

    rate also at low Peclet numbers.

    The results of the re-evaluation are shown in Fig. 2. It

    appears that, in the case of undiluted beds, the re-

    evaluated Sherwood numbers reasonably agree with

  • 8/11/2019 Mass Transfer in Packed Beds at Low Peclet Numbers

    3/9

    Mass transfer in packed beds 3997

    1000

    100

    10

    0.1

    0.01

    . . - ' ~ * " "

    i,d J

    [ ]

    Ga - .11'

    . t

    O

    0 . I 1 1 0

    1 00 I (X X ) 1 0 0 0 0 1 0 0 ( O ) 1 0 0 00 0 0

    P e [ - I

    Williarnson et al (1%3)

    W ilson and Geankopl is (1966)

    A p p e l a n d Ne wma n ( 1 97 6 )

    Fedkiw an d Newm an (1982)

    H s i u n g a n d Th o d o s ( 1 97 7 )

    Q H o b s o n a n d Th o d o s ( 1 95 1 )

    o Sat ter f ie ld an d Resnick (1954)

    # H s i u n g a n d Th o d o s ( 1 97 7 )

    o Bar - l lan and Resnick (1957)

    g W ilson an d Geankopl is (1966)

    Gnielin ki Sc=1000 (l iquid)

    . . . . . . . Gn i e li n sk i Sc = 2 .5 ( g a s )

    Fig . 2. Re-evaluated S herwood num bers . Black symbols : und i lu ted bed - - l i qu id: Wh i te symbols : und i lu ted

    b e d - - g a s , Gr a y s y mb o l s: d i l u te d b e d g a s iBa r - I l a n a n d R e s ni c k, 1 9 5 7 ; H s i u n g a n d Th o d o s , 1 9 7 7 ) a n d

    di lu ted bed l iquid (Wilson and G eank opl is . 19661.

    t h e o ry . A p p a r e n t l y , t h e d r o p i n S h e r w o o d n u m b e r .

    t h a t i s o b s e r v e d i n u n d i l u t e d b e d s a t d e c r e a s i n g P e c l e t

    n u m b e r , i s c a u s e d b y w r o n g i n t e r p r e t a t i o n o f t h e

    e x p e r i m e n t a l r e s u lt s , i.e . b y u n j u s t i f i e d n e g l e c t i o n o f

    a x i al d i s p e r s i o n a n d / o r w a l l c h a n n e l i n g .

    R e - e v a l u a t i o n h a r d l y h a s a n e ffe ct o n t h e d a t a o b -

    t a i n e d w i t h d i l u t e d b e d s . W e t h e r e f o r e c o n c l u d e t h a t ,

    i n t h e c a s e o f d i l u te d b e d s , o t h e r p h e n o m e n a t h a n

    a x i al d i s p e r s i o n o r w a l l c h a n n e l i n g c a u s e t h e d r o p i n

    S h e r w o o d n u m b e r w h i c h i s o b s e r v e d a t d e c re a s i n g

    P e c l e t n u m b e r . B e l o w , w e w i l l tr y t o i d e n t i f y th e s e

    p h e n o m e n a . W e s t a r t w i t h a s t u d y o f a s i n g l e a c t i v e

    p a r t i c l e s u r r o u n d e d b y i n a c t i v e p a r t i c l e s o n l y . T h e n ,

    w e w i l l e x a m i n e b e d s c o n t a i n i n g m u l t i p le a c ti v e p a r -

    t ic les .

    3 . D I L l ? T E D B E D S : A S I N G L E A C T I V E P A R T I C I , E

    3 .1 . Th em e t ica l

    R a n z a n d M a r s h a l l ( 1 95 2 ) e x a m i n e d m a s s t r a n s fe r

    a r o u n d a s i n g l e s p h e r e l o c a t e d i n a n i n f i n i t e m e d i u m ,

    i n w h i c h n o o t h e r p a r t i c l e s a re p r e s e n t . T h e y s h o w e d

    i n a s im p l e w a y t h a t t h e m i n i m u m v a l u e o f t h e S h e r -

    w o o d n u m b e r (a t P e = 0 ) a m o u n t s t o 2 . I n t h e c a s e

    t h a t t h e s p h e r e i s l o c a t e d i n a n i n f i n i t e b e d o f i n a c t i v e

    p a r t ic l e s t h e v a lu e o f t h e m i n i m u m S h e r w o o d n u m b e r

    i s b y d e f i n i t i o n o b t a i n e d b y m u l t i p l y i n g t h i s v a l u e o f

    2 w i t h t h e p o r o s i t y ~: o f t h e b e d a n d b y d i v i d i n g i t b y

    t h e t o r t u o s i t y r o f t h e b e d :

    S h m i n

    = - - 2 .

    ( 2 )

    T

    T h e t o r t u o s i t y o f a r a n d o m l y p a c k e d b e d c a n b e

    c a l c u l a t e d a c c o r d i n g t o ( P u n c o c h a r a n d D r a h o s ,

    1 9 9 3 ) :

    r - (3)

    y i e l d i n g , Sh,,~, = 2 t: 1 s . T h i s i s i n a g r e e m e n t w i t h t h e

    r e s u l ts o b t a i n e d b y M i y a u c h i (1 97 1) . T h e m i n i m a l

    v a l u e t h u s a m o u n t s t o a b o u t 0 . 5 w h i c h i s lo w e r t h a n

    t h e m i n i m a l v a l u e p r e d i c t e d f o r u n d i l u t e d b e d s , i n

    w h i c h t h e c o n c e n t r a t i o n p r o fi le a r o u n d a p a r ti c le d o e s

    n o t r c a c h b e y o n d t h e n e i g h b o r i n g p a r t ic l e s .

    3.2. Exp er imen ta l

    S o l i d - g a s m a s s t r a n s f e r c o e f fi c i en t s o f a s i n g l e ac -

    t iv e s p h e r e i n a n i n a c t i v e b e d h a v e b e e n d e t e r m i n e d

    b y m e a s u r i n g t he e v a p o r a t i o n r a te o f a c a m p h o r

    s p h e r e w i th a p u r i ty 9 6 % a n d a d i a m e t e r o f 1 c m i n

    a n i t r o g e n g a s s t re a m . A c a m p h o r s p h e r e w a s w e i g h e d

    b e fo r e t h e e x p e r i m e n t a n d s u b s e q u e n t l y p l a c e d i n s i d e

    t h e c e n t e r o f a r e g u l a r l y p a c k e d b e d o f I c m d i a m e t e r

    g l a s s s p h e r e s , h a v i n g a d i a m e t e r o f 1 0 . 5 c m a n d

    a h e i g h t o f 1 2 c m [ F i g . 3 (a ) ] . B e f o re e n t e r i n g t h e

    p a c k e d b e d , th e n i t r o g e n g a s w a s l e d t h r o u g h a d i s-

    t r i b u t o r w i t h a h e i g h t o f 6 c m , c o n s i s t i n g o f g l a ss

    b e a d s o f 1 m m , i n o r d e r t o e n s u r e a n e v e n l y d i s t r i b -

    u t e d g a s f lo w . A f t e r a c e r t a i n t i m e o f o p e r a t i o n , d u r i n g

    w h i c h t h e g a s f l o w w a s d i r e c t e d e i t h e r u p f l o w o r

    d o w n f l o w t h r o u g h t h e b e d , t h e c a m p h o r s p h e r e w a s

    w e i g h e d a g ai n . F r o m t h e c h a n g e i n m a s s t h e m a s s

    t r a n s f e r c o e f f i c i e n t w a s c a l c u l a t e d :

    k = m o - m . . . . ( 4 )

    t ~ . ~ x d 2 ( C , - C b ) M

    I n a f i r s t e x p e r i m e n t a c a m p h o r s p h e r e w a s w e i g h e d ,

    p l a c e d i n s i d e t h e p a c k e d b e d a n d a f t e r a w h i l e , n o t

    a p p l y i n g a n i t r o g e n g a s s t r e a m , t a k e n o u t o f t h e b e d

  • 8/11/2019 Mass Transfer in Packed Beds at Low Peclet Numbers

    4/9

    3998 G. Rexwinkel t a l .

    Sin~l ~

    active

    p r t i c l e

    Vent ]

    --L

    12 cm

    Distributor

    10.5 cm

    ~ UV-meter J

    Inert layer of

    glass beads

    Inert layer of

    glass beads

    5 c m

    i

    2 5m C m

    ).

    10.5 cm

    a) b)

    Fig. 3. Schematicof the experimental setup for two different ypes of experimens: a) Single active sphere in

    an inactive packed bed of glass spheres; (b) Multiple active spheres in a bed of inactive glass spheres which

    is located between two layers of inactive glass spheres.

    Table 1. Physical properties (at 25~C) ogether with design data and operating conditions

    applied during the experiments

    Single ac ti ve Multiple active

    particle particles

    Transferred species Camphor Methylbenzoate

    Fluid Nitrogen gas Water

    Temperature 20-25 C 20- 25:C

    Molecular mass of transferred species 0.15224 kg/mol 0.13615 g/mol

    Diffusion coefficient of transferred species 6.2

    1 0 - 6 m / s *

    9.3 10- lo m2/s

    Solubility of transferred species -- 2.15 g/l:

    Vapor pressure of transferred species 30.2 Pa~ ---

    Particle diameter 10 mm 0.63-0.71 mm

    Bed porosity 0.40 + 0.01 0.40 + 0.01

    Percentage active particles -- 0.35%

    Sc 2.54 1099

    Re 0.11-141 0.001-- I

    *Yaws (1995); *Wilke and Chang (1955); tGetzen e t

    a l . (1992); Presser (1972)

    and weighed again. It appeared that the reduction of

    mass during this experiment could be neglected com-

    pared to the reduction observed after a normal experi-

    ment of several hours. During all experiments thc

    decrease in particle diameter was negligible whereas

    the increase of the camphor concentration in the ni-

    trogen stream was small. Therefore, the bulk concen-

    tration, Cb, could be considered equal to zero. The

    saturation concentration, Cs, was determined from

    the ideal gas law and the camphor vapor pressure,

    P r e p , that was calculated for the applied temperature,

    which varied between 20 and 25C but remained

    constant during a single experiment. With these data

    and the data from Table 1 available, the Sherwood

    numb er was calculated according to

    S h - R T ( m o - m r , , , ) (5)

    t c x p n d p P v a p M D

    In Fig. 4, the experimentally obtained Sherwood

    numbers are plotted versus the Peclet number. The

  • 8/11/2019 Mass Transfer in Packed Beds at Low Peclet Numbers

    5/9

    Mass transl~cr

    solid line in this figure represents the correlation pro-

    posed by Ranz and Marshall (1952). The upflow and

    downflow experiments gave equal results indicating

    that the influence of free convection on the mass

    transfer rate can be neglected. Below a Peeler number

    of 50 the presence of inert particles becomes notice-

    able causing the measured Sherwood number of fall

    below the value predicted by the Ran z Marshall

    equation. At very low Peclet numbers the Sherwood

    number indeed approaches the theoretical minimum

    of approximately 0.5, which is lower than the minimal

    value of 3.89 in undilu ted beds. We may thus conclude

    that diluted beds cannot be used to examine mass

    transfer phenomena in undiluted beds at low Peeler

    numbers. We also conclude that the drop in Sher-

    wood number to wdues below the limit of 0.5, as

    observed with diluted beds. e.g. Bar-ilan and Rcsnick

    (1953), must bc caused by interaction of the active

    particles present in the diluted bed. Wc will examine

    this possible interaction in the next section.

    4. DILUTED BEt)S:

    M I .

    I .TIPI,E ACTIVE PARTICI.ES

    4 1 Theoretical

    As has been stated earlier, it is important to know

    the local drivin g force for mass transfer in order to be

    able to calculate the local mass transfer coefficient. In

    1(~ )

    I 0

    - r , ~ f .

    D

    0.1

    1

    Single article u p f l o v .

    O Smgteparticle downtlow

    I~ Bar-Ilan and R~n ick (19571

    Ranz-Mar~hall

    e q u a t k m

    .~x=-2.5

    (~L~,)

    0 . 0 1 L , , ,

    O. I I 0 I ~ 100 0 1(X](30

    Pe

    [ I

    Fig. 4. Experimental Sherwood numbers for a single active

    particle together with the results of multiple acti~,e particles

    of Bar-ilan and Resnick 11957).

    in packed beds 3999

    the case of a single active sphere in an infinite bed of

    inert particles, the driving force for mass transfer

    experienced by the active particle in exactly known

    and trivial. Determination of the driving force experi-

    enced by an individual active particle in a diluted

    packed bed. in which more active particles are pres-

    ent. is less trivial.

    In Fig. 5, several hypothetical distributions of ac-

    tive particles in a two-dimens iona l packed bed are

    shown. The driving force experienced by the active

    particles will be much different in each situation. In

    situation 1 all active particles experience the same

    driving force which has not been influenced by the

    presence of any active particles upstream. In situation

    It all active particles have been placed directly on top

    of each other. The influence of particles upstream on

    the driving force experienced by the particles dov

  • 8/11/2019 Mass Transfer in Packed Beds at Low Peclet Numbers

    6/9

    4000

    thoroughly mixed with spherical glass particles of the

    same size. The mixture, of which 0.35% of all particles

    was active, was brought into the bed resulting in an

    active layer of 2 cm high. This layer was enclosed by

    two 5 cm thick layers of inert glass beads. See Fig.

    3(b). The methylbenzoate concentr ation at the exit of

    the packed bed was continu ously measured using an

    UV-spectrophotometer. The meth ylbenzoate concen-

    tration in the effluent remained constant during the

    first hou r of operation, indicatin g that pore limitat ion

    in the porous Amberlite XAD-2 particles could be

    neglected. The Sherwood numbers were calculated by

    assuming plug-flow behavior

    S h - d 2 ~ v p P In ( C s - C o u t )

    6 D i n , \ C s - ~ (6)

    The results are shown in Fig. 6 and are similar to

    those of Bar-Ilan and Resnick (1957): Much smaller

    values are obtained than with a single active particle.

    In order to confirm that these smaller Sherwood

    numbe rs are found because of intera ction between the

    different active particles in the bed, extra experiments

    were performed. These were done at a fixed Peclet

    numb er of 2.89 using 0.5 g of impregnated Amberlite

    XAD-2 particles. The number of mass transfer units

    was thus kept constant. The height of the bed, includ-

    ing the inert layers at the bottom and the top, always

    was 12 cm. In orde r to simulate situati on I of Fig. 5 all

    active particles were positioned in a horizontal layer

    which was enlosed by two layers of inert glass beds

    having the same diameter of 0.66 mm as the active

    particles. In this way about 20% of the bed cross-

    section was covered with active particles. Situat ion III

    of Fig. 5 was also simulated. First all active particles

    were mixed with equally sized inert glass beads. The

    obtained mixture was then dumped into a tube with

    a diameter of 1.35 cm a nd a height of 8 cm, which was

    placed in the center of the bed, which was already

    filled with a 2 cm thick layer ofiner t glass beads. Next,

    the annular space in between the tube and the bed

    wall was filled with inert glass beads and the tube was

    slowly removed. Finally, a 2 cm thick layer of inert

    G. Rexwinkelet al .

    glass beads was added to complete the bed. Addi-

    tional to these experiments, tests were performed us-

    ing diluted layers of varying thickness [accord ing to

    the set-up shown in Fig. 3(b)]. By appl ying a consta nt

    amo unt of impregnated Amberlite XAD-2 particles of

    0.5 g, the degree of dilution was varied. The results of

    the interact ion experiments were evaluated on basis of

    eq. (61. The ca lculated Sherwood numbers are shown

    in Fig. 7.

    If the as sumption of a radia lly well-mixed fluid

    would hold in all cases, all experiments should have

    given the same result, since equal amounts of active

    particles have been applied. However, the results

    show a significant influence of the particle distribu-

    tion, which is in conflict with this assumption. The

    calculated Sherwood numbers appear to increase

    when the fraction of active particles is decreased,

    especially at high degrees of dilution. This is in ac-

    cordance with expectations, since the average axial

    distance between the active particles strongly depends

    on the degree of dilution at high dilution degrees,

    whereas this dependence is relatively small at lower

    degrees of dilut ion. So, the extent of radial mixing will

    increase with the degree of dilution, in particular at

    high degrees of dilution. The results obtai ned with the

    particle distributions resembling situations I and III

    of Fig. 5 also confirm that interaction between active

    particles is an important item in diluted beds. This

    interaction, which results from radial concentration

    profiles, is not accounted for when assuming plug-

    flow behavior. We will illustrate this with the model

    discussed below.

    4.3. T h e m o d e l

    The importance of radial concentration profiles

    and the resulting inter action between different active

    particles in the bed can also be demonstrated in a the-

    oretical way. To do so, the diluted bed is modelled by

    a two-dimensional network of interconnected con-

    tinuously stirred t ank reactors (CSTR); see Fig. 8.

    Each CSTR contains exactly one particle which is

    1 0 0

    10

    0 . 1

    0 . 0 1

    0.1

    , Y

    S m g t e p a r t i c l e . Th i s w o r k

    I I I

    0

    M u l t i p l e p a r t i c l e s . T h i s w o r k

    B a t - I l a n a n d R e sn i c k ( 1 9 5 7 )

    1 3 t i s i u n g a n d T h o d o s ( 1 9 7 7 )

    Ranz-Mar~,ha l l equa t i on Sc .=2 .5 (gas)

    I I I

    I 1 0 1 0 0 1 0 0 0 1 0 0 0 0

    Pe

    [-]

    0 . 6 '

    0.5

    0.4

    i

    , ~ 0 . 3

    0 . 2

    0.I

    S i n g l e m o n o l a y e r r e s e m b l i n g

    s i t u a t i o n I o f F i g . 5.

    o

    T u b e n ' ~ u r e m e n t r e s em b l i ng

    s i t u a t i o n I n o f F i g . 5 .

    . . . . . . . . . . . . . : : ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    o d ~ l u t e d b e d m e a s u r e m e n t s

    0 . 0 1 0 . 0 2 0 . 0 3

    f rac t ion of partc i l es ac t ive

    [-]

    0 . 0 4

    Fig. 6. Experimental Sherwood numbers for single particle Fig. 7. Experimental Sherwood numbers for several distri-

    and multiple particles in a diluted bed. butions of active particle over the bed. P e = 2.89;S c = 1099.

  • 8/11/2019 Mass Transfer in Packed Beds at Low Peclet Numbers

    7/9

    Mass transfer

    Fig. 8. Schem atic representat ion of the interconnected

    C STRs mod el where the grey dots represent act ive particles;

    Flowdirect ion is downward,

    n x

    = number of part icles in

    ho rizon tal direct ion and ny = number of particles in vert ical

    direction.

    e i t h e r a c t i v e o r i n a c t i v e . W h e t h e r a p a r t i c l e is a c t iv e

    o r n o t i s r a n d o m l y d e t e r m i n e d . A s o m e w h a t s i m i l a r

    a p p r o a c h w a s a p p l i e d b y v a n d e n B l e ek (1 96 9) , w h o

    i n v e s t i g a t e d t h e e ff e c t o f d i l u t i o n o n t h e d e g r e e o f

    c o n v e r s i o n i n f ix e d - b e d c a t a l y t i c r e a c t o r s .

    M a s s t r a n s f e r b e t w e e n C S T R s t a k e s p l a c e in a x i a l

    d i r e c t i o n t h r o u g h c o n v e c t i o n a n d a x i a l d i s p e r s i o n

    a n d i n l a te r a l d i r e c t i o n b y d i sp e r s i o n . T h e a m o u n t o f

    m a t e r i a l t r a n s f e rr e d b y d i s p e r s i o n b e tw e e n t w o n e i g h -

    b o r i n g C S T R s i s c a l c u l a t e d a c c o r d i n g t o

    N ~. j .~ . i ~ t = - D ~ C i . i+ t - C , . j ( 7a )

    d ,

    C i - l , j - C i . j

    N c i ~ i - 1 .~ = D l~ ,

    (7b/

    t i p

    A s t a t i o n a r y d i m e n s i o n l e s s m a s s b a l a n c e f o r C S T R i.

    j y i e l d s

    2 2 C 1

    0 = ( - I B o , ~ , B - ~ , , x ) ~ J + (1 B-~a , )C~. j

    1 1

    + zo ~ - c ' ' i ~ ~ + __Bol~--C~_ ~.j

    1 . . r t S h

    + __Bo,~--C i + t

    ~

    + n,~ j ~: P e (A C i4) ' (8)

    W i t h C ~ . j d e f i n e d a s C ~ . j / C . , , C ~ b e i n g t h e c o n c e n t r a -

    t i o n a t t h e s u r f a c e o f a n a c t i v e p a r t i c l e w h i c h i s e i th e r

    d i s s o l v i n g o r e v a p o r a t i n g . I n t h is e q u a t i o n n ~, c a n

    a d a p t t h e v a l u e s 0 o r 1 a n d i n d i c a t e s w h e t h e r o r n o t

    a n a c t iv e p a r t i c l e is p r e s e n t i n C S T R

    i , j .

    T h e C S T R s

    in packe d beds 4001

    t h a t a r e l o c a t e d a g a i n s t t h e p a c k e d - b e d w a l l a r e o n l y

    c o n n e c t e d t o C S T R s i n t h e i n t e r i o r o f t h e b e d .

    A n i m p o r t a n t t e r m i s A C ~ , ~ . w h i c h r e p r e s e n t s t h e

    d r i v i n g f o r c e e x p e r i e n c e d b y a n a c t i v e p a r t i c l e in

    C S T R i , j . I n t h e c a s e o f u n d i l u t e d b e d s t h i s d r i v i n g

    f o rc e s h o u l d b y d e f i n i t io n b e b a s e d o n t h e m i x e d c u p

    c o n c e n t r a t i o n o f th e w h o l e b e d c r o s s- s e c t io n . H o w -

    e v e r , i t i s n o t t o b e e x p e c t e d t h a t t h e s a m e d e f i n i t i o n

    h o l d s f o r d i l u te d b e d s b e c a u s e o f r a d i a l c o n c e n t r a t i o n

    g r a d i e n t s. A s w e a r e i n t e r e st e d i n d e m o n s t r a t i n g t h e

    e f f e c t s o f n e g l e c t i n g t h e s e r a d i a l c o n c e n t r a t i o n g r a d i -

    e n t s , i n t h e p r e s e n t m o d e l t w o d e f i n i t i o n s o f d r i v i n g

    f o r c e a r e a p p l i e d : ( ij m i x e d c u p d r i v i n g f o rc e , w h i c h is

    c a l c u l a t e d f r om t h e m i x e d c u p c o n c e n t r a t i o n in

    a h o r i z o n t a l r o w , a n d l i il C S T R d r i v i n g f o r c e , w h i c h i s

    c a l c u l a t e d o n b a s i s o f t h e c o n c e n t r a t i o n w i t h i n t h e

    C S T R i n w h i c h t h e a c t i v e p a r t i c l e is l o c a t e d . I n m a t h -

    e m a t i c a l f o r m

    A C , j - - I - ~ " '" ( 9 a )

    t I t2 . (

    A C cj - -- 1 - C~. j . (9b)

    E q u a t i o n ( 8 ) h a s b e e n s o l v e d u s i n g b o t h e x p r e s s i o n s

    f o r t h e d r i v i n g f o r c e b y t h e s u c c e s s i v e o v e r r e l a x a t i o n

    m e t h o d . A s i t m a k e s n o s e n s e t o a p p l y e x p r e s s i o n s

    t h a t w e r e d e r i v e d f or t h r e e - d i m e n s i o n a l b e d s a n d t h a t

    p r e d i c t a f i n a l v a l u e o f S h e r w o o d a t P e = 0 . t h e S h e r -

    w o o d n u m b e r w a s c a l c u l a t e d s o m e w h a t a r b i t r a r i l y

    a c c o r d i n g t o

    S h = 0.3 P e 1 3 . (10)

    T h e v a l u e s o f B o t, , a n d B o ~ x w e r e c a l c u l a t e d f r o m

    c o r r e l a t i o n s r e p o r t e d b y G u n n (1 98 7) . F i g u r e 9 s h o w s

    t h e c a l c u l a t e d l a t e r a l c o n c e n t r a t i o n p r o f i l e s a t t h e e x i t

    o f a p a c k e d b e d . c o n t a i n i n g 2 0 0 x 4 0 p a r t i c l e s w i t h

    a d i a m e t e r o f 0. 5 m m o f w h i c h 3 0 0 a r e a c t i v e , u s i n g

    t h e t w o d i f f e re n t d e f i n i t i o n s o f d r i v i n g f o r c e .

    F i g u r e 9 c l e a r ly s h o w s t h a t l a r g e l a t e r a l c o n c e n t r a -

    t io n g r a d i e n t s m a y e x i s t in d i l u t e d p a c k e d b e d s . F u r -

    t h e r m o r e , i t s h o w s t h a t n e g l e c t i n g t h e s e l a t e r a l

    c o n c e n t r a t i o n g r a d i e n t s , w h i c h i s d o n e w h e n c a l c u l a t -

    i n g t h e l o c a l d r i v i n g f o r c e fo r m a s s t r a n s f e r a c c o r d i n g

    t o e q . (9 a l , c a n r e s u l t in l o c a l d i m e n s i o n l e s s c o n c e n t r a -

    t i o n s w h i c h a r e l a r g e r t h a n u n i t y , w h i c h b y d e f i n i t i o n

    i s i m p o s s i b l e . T h e l o c a l d r i v i n g f o r c e f o r m a s s t r a n s f e r

    i n a d i l u t e d b e d i s t h u s o v e r e s t i m a t e d w h e n t h e r a d i a l

    c o n c e n t r a t i o n p r o t i l e in t h e b e d i s n e g l e c t e d , a s i s

    d o n e w h e n t h e p l u g - f lo w m o d e l is a p p l i e d t o e v a l u a t e

    t h e e x p e r i m e n t a l r e s u l t s . T h i s i s a l s o i l l u s t r a t e d b y

    F i g . 1 0 i n w h i c h t h c p r c d i c t e d S h e r w o o d n u m b e r i s

    s h o w n a s a f u n c t io n o f th e P e c l e t n u m b e r f o r b o t h

    d e f i n i t i o n s o f t h e l o c a l d r i v i n g f o r c e A C i 4 . T h e p r e -

    s e n t ed S h e r w o o d n u m b e r s w e r e c a l c u l a t e d w h i l e

    a s s u m i n g p l u g - f l o w b e h a v i o r o f t h e f lu i d , w h i c h i s

    c o m m o n p r a c t i c e w h e n e v a l u a t i n g m a s s t r a n s f e r

    e x p e r i m e n t s

    I1X c; ~ ~ i 1 i .n~ ,

    S h - P e l n I . I11)

    t / a t : i t , c 7 C ~ . ~

    o r

  • 8/11/2019 Mass Transfer in Packed Beds at Low Peclet Numbers

    8/9

    4O02

    1 . 6

    1 . 4

    .2

    1

    0 . 6

    0 . 4

    0.2

    0

    G . R e x w i n k e l

    et al .

    I

    M a J i m u m c o r v ~ m l rl U o n I ~ S S t bl

    & ~ r u ~ o ~ l l l l ~ o n B I [ h e (

    ~ i t o f t l ~ I~ d

    2 0 4 0 6 0 8 0 1 0 0

    : : t , _ . . . . . . . o . _ , . , e

    0.2

    A l t l ' l g e Ol l t ' l l l l l l i o i l l [

    ~ t o t a , . I , ~

    0

    2 0 4 0 6 0 8 0 1 0 0

    la teral positio n [ram] lateral pos ition [ram]

    F ig . 9 . C a l c u l a t e d r a d i a l c o n c e n t r a t i o n p r o f i l e s a t t h e e x i t o f t h e p a c k e d b e d : ( a) M i x e d u p d r i v i n g f o rc e :

    (b ) C STR dr iv i ng fo rce .

    P e

    = 10 : Sh = 1 .5 ; Bo i l , = 10 ; Bo~ , = 4 : d r = 0 .5 mm ; nx = 200 : n y = 40 :

    z~

    = 3 00: ~: = 0.48 = 1 - n:6.

    10

    s

    ,ll

    0.1

    O M xed cup driving orce

    CSTRdriving orce

    1 1 1

    Pe 1-1

    F ig . 1 0. S h e r w o o d n u m b e r s c a l c u l a t e d u s i n g e q . ( 1 1 ) f r o m

    t h e m i x e d c u p c o n c e n t r a t i o n a t t h e e x i t o f t h e b e d a s c a l -

    c u l a t e d b y t h e i n t e r c o n n e c t e d C S T R m o d e l u s i n g t h e t w o

    d if fe ren t de f in i t ion s o f the d r iv ing fo rce . S o = 1000;

    dp =

    0.5 mm ; nx = 2(X): ny = 40; n~,,,, = 300: ~: = 0.48.

    5 . CONCLUSIONS

    T h e d e v i a t i o n b e t w e e n p r e d i c t ed a n d r e p o r t e d

    S h e r w o o d n u m b e r s i n p a c ke d b e d s a t lo w P e c l e t n u m -

    b e r s is c a u s e d b y t h e w r o n g i n t e r p r e t a t i o n o f t h e

    e x p e r i m e n t a l d a t a . I n t h e c a s e o f u n d i l u t e d b e d s c o r -

    r e c t i o n s s h o u l d b e m a d e f o r a x i a l d i sp e r s i o n a n d w a l l

    c h a n n e l i n g . T h e S h e r w o o d n u m b e r s w h e n o b t a i n e d

    r e a s o n a b l y a g r e e w i t h t h e o r y. S u c h c o r r e c t i o n s d o n o t

    s u ff i ce in t h e c a s e o f d i l u t e d b e d s . T h e m i n i m a l S h e r -

    w o o d n u m b e r i n d i l u t e d b e d s is l o w e r t h a n i n u n -

    d i l u t e d b e d s. F u r t h e r m o r e . i n d i l u t e d b e d s t h e

    e x i s t e n ce o f r a d i a l c o n c e n t r a t i o n p r o f il e s s h o u l d b e

    c o n s i d e r e d , w h i c h i s n o t p o s s i b l e w h e n t h e d i s t r i b u -

    t i o n o f t h e a c t i v e p a rt i c l es i s r a n d o m a n d t h e r e f o r e n o t

    e x a c t l y k n o w n . N e g l e c t i o n o f th e s e r a d i a l c o n c e n t r a -

    t i o n p r o f i le s b y a p p l y i n g o f th e p l u g - f l o w m o d e l r e -

    s u it s i n u n d e r e s t i m a t e d S h e r w o o d n u m b e r s .

    T h e r e f o r e , d i l u t e d b e d s s h o u l d n o t b e u s e d t o e x a m i n e

    m a s s t r a n s f e r p h e n o m e n a i n u n d i l u t e d b e d s a t l o w

    P e c l e t n u m b e r s .

    T h e v a l u e s o b t a i n e d w h e n c a l c u l a t i n g t h e d r i v i n g

    f o rc e o n b a s i s o f t h e m i x e d c u p c o n c e n t r a t i o n a r e

    a l m o s t e q u a l t o t h o s e p r e d i c t e d b y e q . ( 1 0) . ( O n l y t h e

    v a l u e a t

    P e

    = 1 i s s o m e w h a t l e s s d u e t o a x i a l d i s p e r -

    s i o n w h i c h i s i n c l u d e d i n t h e m o d e l .) T h e v a l u e s o b -

    t a i n e d w h e n c a l c u l a t i n g t h e d r i v i n g f o rc e o n b a si s o f C

    t h e C S T R - c o n c e n t r a t i o n a r e m u c h l ow e r . W e , t he r e -

    f o re , c o n c l u d e t h a t t h e d e v i a t i o n be t w e e n m e a s u r e d C

    a n d p r e d ic t e d S h e r w o o d n u m b e r , w h i c h i s o b s e r v e d i n

    d i l u t e d b e d s a t l o w P e c l e t n u m b e r s , is , a t l e a s t p a r t l y , A C ~ .j

    c a u s e d b y t h e n e g l e c t i o n o f r a d i a l c o n c e n t r a t i o n p r o -

    f i le s i n s i d e t h e b e d . d r

    D u e t o i t s s i m p l i c i t y , t h e p r e s e n t m o d e l is n o t s u it e d D

    t o q u a n t i f y t h e e f fe c t s o f r a d i a l c o n c e n t r a t i o n p r o f i l e s

    o n t h e a v e r a g e r a t e o f m a s s t r a n s f e r i n s i d e a d i l u t e d D ~x

    b e d . F o r t h is . C F D s i m u l a t i o n s a r e n e c e s s ar y . D la t

    A c k n o w l e d g e m e n t s

    T h i s i n v e s t i g a t i o n w a s s u p p o r t e d b y t h e D u t c h M i n i s t r y o f

    E c o n o m i c A ff ai rs . T h e a u t h o r s a c k n o w l e d g e J . G 6 r t e n a n d

    J . M . M e e r d i n k f o r t h e i r a s s i s t a n c e i n t h e e x p e r i m e n t a l

    work

    NOTATION

    c o n c e n t r a t i o n o f t r a n s f e r r e d s p ec i e s in t h e

    f l ui d , m o l / m 3

    d i m e n s i o n l e s s c o n c e n t r a t i o n

    C / C ~

    d i m e n -

    s i o n l e s s

    d r i v i n g f o r ce e x p e r i e n c e d b y a n a c t i v e p a r -

    t ic l e in C S T R

    i . j

    d i m e n s i o n l e s s

    p a r t i c l e d i a m e t e r , m

    d i f f u s i o n c o e f f i c i e n t o f t r a n s f e r r e d s p e c i e s ,

    m 2 / s

    a x i a l d i s p e r s i o n c o e f f i c i e n t , m Z / s

    l a t e r a l d i s p e r s i o n c o e f f i c i e n t , m Z / s

  • 8/11/2019 Mass Transfer in Packed Beds at Low Peclet Numbers

    9/9

    k

    m

    M

    n ~ J

    Ilactivc

    n x

    n y

    N

    Pv ap

    R

    tcxo

    T

    r

    m a s s t r a n s f e r c o e f f i c i e n t, m / s

    m a s s , k g

    m o l e c u l a r m a s s , k g / m o l

    r a n d o m f a c t o r (0 o r 1 ) o f e q . 8 , d i m e n s i o n l e s s

    n u m b e r o f a c t iv e p a r t i c l e s, d im e n s i o n l e s s

    n u m b e r o f p a r t ic l e s in h o r i z o n t a l d i r e c t io n ,

    d i m e n s i o n l e s s

    n u m b e r o f p a r t i c l e s i n v e r t i c a l d i r e c t i o n , d i -

    m e n s i o n l e s s

    f lu x , m o l / m 2 s

    v a p o r p r e s s u re o f c a m p h o r , P a

    g a s c o n s ta n t , J / m o l K

    d u r a t i o n o f e x p e ri m e n t , s

    t e m p e r a t u r e , K

    i n t e r s t i t i a l f l u id v e l o c i t y , m / s

    Greek letter.s

    ~: b e d p o r o s i t y , d i m e n s i o n l e s s

    r / v i s c os i t y , Pa s

    v fluid flOW, m3."s

    p d e n s i t y , k g / m 3

    r t o r t u o s i t y , d i m e n s i o n l e s s

    Subscripts

    m i n m i n i m a l

    0 i n i t i a l l y

    h i n t h e b u l k

    f w i t h r e s pe c t t o f l u i d

    i r a d i a l p o s i t i o n o f C S T R

    i n a t t he i n l e t

    j a x i a l p o s i t i o n o f C S T R

    o u t a t t h e o u t l e t

    p w i t h r e s p e c t t o p a r t i c l e ( s )

    s s a t u r a t i o n

    Dimensionless numbers

    oax

    BOla

    Sh

    P e

    R e

    Sc

    a x i a l B o d e n s t e i n n u m b e r ( = vdp/D~d

    l a t e r a l B o d e n s t e i n n u m b e r ( = vdp/D~,,)

    S h e r w o o d n u m b e r ( =

    kdp/D)

    i n t e r s ti t ia l P e c l et n u m b e r ( = vdp/D)

    R e y n o l d s n u m b e r ( = plvdp/qy)

    S c h m i d t n u m b e r ( = q//pyD)

    R E F E R E N C E S

    A p p e l , P . W . a n d N e w m a n , J . ( 19 7 6) A p p l i c a t i o n o f

    t h e l i m i ti n g c u r re n t m e t h o d t o m a s s t r a n s f e r i n

    p a c k e d b e d s a t v e r y l o w R e y n o l d s n u m b e r s .

    A. I .Ch.E.J . 22 , 979 -984 .

    B a r - I l a n , M . a n d R e s n i c k , W . ( 19 5 7) G a s p h a s e m a s s

    t r a n s f e r i n fi x e d b e d s a t l o w R e y n o l d s n u m b e r s . Ind.

    Engng Chem. 4 9 , 3 1 3 - 3 2 0 .

    B l e e k v a n d e n ,

    C. M.,

    W i e l e v a n d e r , K . a n d B e r g v a n

    d e n , P . J . (1 9 69 ) T h e e f f e ct o f d i l u t i o n o n t h e d e g r e e

    o f c o n v e r s i o n i n f i x e d b e d c a t a l y t i c r e a c t o r s . Chem.

    Engnq Sci. 24 , 681 -694 .

    Mass transfer in packed beds 4003

    C h u n g , S . F . a n d W e n , C . Y . ( 19 6 8) L o n g i t u d i n a l

    d i s p e r s i o n o f l i q u i d f l o w i n g t h r o u g h f i x e d a n d

    f l u i d i z e d be ds . A. I .Ch.E.J . 14 , 857 -866 .

    F e d k i w , P . S . a n d N e w m a n , J . ( 19 8 2) M a s s - t r a n s f e r

    c o e f f ic i e n ts i n p a c k e d b e d s a t v e r y l o w R e y n o l d s

    n u m b e r . Int. d. Heat Mass Transfer 25 , 935 -943 .

    G e t z e n , F . , H e f t e r, G . a n d M a c z y n s k i , A . ( 19 9 2) Solu-

    bility Data Series, V o l . 4 8 . P e r g a m o n P r e s s , O x f o r d .

    G n i e l i n s k i , V . ( 19 7 8) G l e i c h u n g e n z u r B e r e c h n u n g d e s

    W ~ i r m e - u n d S t o f f a u s t a u c h e s i n d u r c h s t r 6 m t e n

    r u h e n d e n K u g e l s c h i . i t t u n g e n b e i m i t t l e r e n u n d

    g r o s s e n P e c l e t z a h l e n . VT-verfahrenstechnik 12,

    363--366.

    G u n n , D . J . ( 19 7 8) T r a n s f e r o f h e a t o r m a s s t o p a r -

    t i c l e s i n f i xe d a nd f l u i d i s e d be ds . Int . . I . Heat Mass

    TransJer 2 1 , 4 6 7 4 7 6 .

    G u n n , D . J . (1 9 87 ) A x i a l a n d r a d i a l d i s p e r s i o n i n fi x e d

    be ds . Chem. Engn,q Sci. 42 , 363 -373 .

    H o b s o n , M . a n d Y h o d o s , G . (1 95 1) L a m i n a r f l o w o f

    g a s e s t h r o u g h g r a n u l a r b e d s . Chem. Enqng Pro.q. 47,

    370 375.

    H s i u n g , T . H . a n d T h o d o s , G . ( 19 7 7) M a s s - t r a n s f e r

    f a c t o r s f r o m a c t u a l d r i v i n g f o r c e s f o r t h e f l o w o f

    g a s e s t h r o u g h p a c k e d b e d s ( 0. 1 < R e < 100). Int. J.

    Heat Mass TransJer 20 , 331 -340 .

    M a r t i n , H . ( 19 7 8) L o w P e e l e r n u m b e r p a r t i c l e - t o - f l u i d

    h e a t a n d m a s s t r a n s f e r i n p a c k e d b e d s . Chem.

    Enyn 9 Sci .

    33 , 913 -919 .

    M i y a u c h i , T . ( 1 9 71 } F i l m c o e f f ic i e n t s o f m a s s t r a n s f e r

    o f d i l u t e s p h e r e - p a c k e d b e d s i n l o w f l o w r a t e r e -

    g i m e . J. Chem. Engng Japan 4, 238 245.

    P r e s s e r , K . H . (1 9 72 ) D i e S t o f i i b e r t r a g u n g f e s t- g a s f 6 r -

    m i g b e i l a m i n a r e r f r e i e r K n o v e c t i o n . Wiirnw- und

    Sto~iibertragunq 5, 220--228.

    P u n c o c h a r , M . a n d D r a h o s , J . ( 19 93 ) T h e t o r t u o s i t y

    c o n c e p t i n f i x e d a n d f l u id i z e d b e d . Chem. Engng Sci.

    48, 2173 2175.

    R a n z , W . E . a n d M a r s h a l l , W . R . J r ( 1 9 5 2 ) E v a p o r -

    a t i o n f r o m d r o p s . P a r t I . Chem. Engng Prog. 48.

    141 -146 .

    S a t t e r f i e ld , C . N . a n d R e s n i c k , H . (1 9 54 ) S i m u l t a n e o u s

    h e a t a n d m a s s t r a n s f e r i n a d i f f u s i o n - c o n t r o l l e d

    c h e m i c a l r e a c t i o n . Chem. Engng Prog.

    50,

    504 510 .

    S o r e n s e n , J . P . a n d S t e w a r t , M . E . ( 19 7 4) C o m p u t a -

    t i o n o f f o r c e d c o n v e c t i o n i n s lo w f l o w t h r o u g h

    d u c t s a n d p a c k e d b e d s - - I l l . H e a t a n d m a s s tr a n s -

    f e r i n a s i m p l e c u b i c a r r a y o f s p h e r e s. Chem. En#ng

    Sci . 29, 827 832.

    W a k a o , N . a n d F u n a z k r i , T . 1 1 9 7 8 ) E f f e c t o f f lu i d

    d i s p e r s i o n c o e f f ic i e n t s o n p a r t i c l e - t o - f l u i d m a s s

    t r a n s f e r c o e f f i c i e n t s i n p a c k e d b e d s . Chem. Engn.q

    Sci. 33 , 1375 -1384 .

    W i l k e . C . R . a n d C h a n g , P . (1 9 95 ) C o r r e l a t i o n o f

    d i f fu s i on c oe f f i c i c n t s i n d i l u t e s o l u t i o ns . A.I .Ch.E.J .

    1 , 2 6 4 - 2 7 0 .

    W i l l i a m s o n , J . E . , B a z a i r e , K . E . a n d G e a n k o p l i s , C . J .

    (1 96 31 L i q u i d - p h a s e m a s s t r a n s f e r a t l o w R e y n o l d s

    n u m b e r s . Ind. Engnq Chem. Fund. 2, 126--129.

    W i l s o n , E . J. a n d G e a n k o p l i s , C . J . ( 19 6 6) L i q u i d m a s s

    t r a n s fe r a t v e r y l o w R e y n o l d s n u m b e r s i n p a c k e d

    be ds . Ind. En,qn.q Chem . F undam . 5, 9 14.

    Y a w s , C . L . ( 1995 ) l tandook ~ Transport Property

    Data. G u l f P u b l i s h i n g c o m p a n y , H o u s t o n .