1
Advisory commi,ee P. Smith (Senior Associate Dean for Research) A. Fenton, Scien8fic director (Biochemistry and Molecular Biology) K. Peterson (vice-chair, Biochemistry and Molecular Biology) L. Swint-Kruse (Biochemistry and Molecular Biology) S. Weinman (Internal Medicine) K. McCarson (Pharmacology, Toxicology and Therapeu8cs) M. Winter (Rodent Behavior Facility) Mass Spectrometry/ Proteomics M. T. Villar and A. Artigues Dept of Biochemistry and Molecular Biology, KU Medical Center The mission of the Mass Spectrometry Laboratory of the University of Kansas Medical Center is to provide access to mass spectrometry based proteomics applica;ons to KU researchers. The technology and exper;se offered by the KUMC Mass Spectrometry Core laboratory are intended to enhance the extramural funding of inves;gators of KU Medical Center. The MSPC Laboratory is part of the KDRIKC and is located in room 1058, Hemenway Life Sciences Innova;on Center (HLSIC). For more information please visit our web page:hNp://www.kumc.edu/mspc.html Proteomics is the study of all proteins expressed in a par;cular cell type, ;ssue or organism, and the changes in their rela;ve abundance during development, aging or as a result of an injury or trauma. This discipline has acquired significance in biological and health sciences due to advances in other related areas such as: The possibility of genera;ng ions in the gas phase of very large molecules such as proteins/pep;des. The use new mass spectrometers than can measure their masses with a high degree of accuracy, resolu;on and reproducibility The availability of large databases containing the complete genome/proteome of many species The availability of powerful computers and computer algorithms to interrogate those databases with MS informa;on Standard Mass spectrometry proteomics: Protein iden;fica;on MudPIT technology Protein quan;fica;on: free label, SILAC and using chemically labeled pep;des with isobaric Tags (TMT, iCAT, and others) SRM and MRM: method development and quan;fica;on Analysis of protein posNransla;onal modifica;ons De novo pep;de and protein sequencing Analysis of protein-protein interac;ons and chemical cross-linking Deuterium-exchange mass spectrometry for the analysis of Protein dynamics Protein-ligand interac;ons Protein conforma;on Gel imaging and spot picking on a ProPic II. Note: In addi;on to the standard and specialized mass spectrometry methods above, the MSPC Laboratory has the capability to introduce/adapt or develop methods for specific studies as needed. Direct spot picking and gel imaging The ProPic II is a fully integrated robo8c plaMorm for protein gel imaging and spot excision. LTQ FT Hybrid ion trap ICR FT mass spectrometer SAIDE An in-house build interface for HDX MS High resolving-high sensi;ve hybrid mass spectrometry Orbitrap Fusion Lumos The most advanced mass spectrometer EASY nLC1200 an ultrahigh resolu8on HPLC Total deuterium content -10 -5 0 5 10 Residue number 0 20 40 60 80 Difference in deuterium content 0 2 4 Lower H/D rate for mutant, EX2 kinetics for WT; EX1 kinetics for mutant No differences No H/D exchange Slower H/D rate for the mutant Histidine tag An# MinCD domain Topological specificity domain MTS β1 β2 β3 α1 Pathway for conversion of MinE to the ac:ve form m/z 200 400 600 800 1000 1200 Intensity ( counts) 0 200 400 600 800 y 2 + y 6 + y 7 + b 7 2+ -NH 3 b 11 2+ b 15 2+ z 8 + a 7 + c 6 2+ x 14 3+ x 13 2+ x 7 3+ y 9 3+ -NH 3 y 5 + y 15 3+ x 10 2+ b 10 2+ +H 2 O y 14 2+ +H 2 O YYKYILtRnFEALNAR Abundance (%) m/z 600 800 1000 1200 1400 1600 1800 2000 0 20 40 60 80 100 + 4 b + 3 16 y + 5 y + 2 11 b + 3 18 b + 2 12 b + + 3 4 3 ] 3 [ PO H H M + 7 y + 2 21 y + 12 y + 2 30 y + 3 21 b + 3 23 y + 2 16 y + 8 y + 7 b + 8 b + 2 19 y + 9 y + 3 30 y + 2 20 y + 3 21 b + 10 y + 2 22 y + 3 32 b + 2 23 y + 11 y + 13 y + 2 28 y + 14 y + 2 30 b + 2 32 y + 16 b + 19 y x5 x5 H Q Q Q pS P V S Q S oM Q T L S D S L S G S S L Y S T S A N L P V oM G H E K A B Protein quan;fica;on via SILAC Altering O-GlcNAc cycling disrupts mitochondrial func8on Analysis of protein post-transla;onal modifica;ons Iden8fica8on of pSer 574 on FOXO3 H/D exchange - MS Analysis of protein dynamics in MinE A) The figure shows the CID spectrum of the triple charged ion with m/z of 1353.6, containing a pS two oxidized, in comparison with B) the CID spectrum of the non-phosphorylated counterpart pep;de containing only one oxidized M. Fragmenta;on of the phosphorylated pep;de results in the loss of 98 Dalton and in the forma;on of a prominent neutral loss ion ([M+3H-HPO 4 ] 3+ ). The arrows point to the differen;ally modified y 32 2+ which iden;fies S574 as a phosphoryla;on site. Protein iden;fica;on Iden8fica8on of CHD4 human protein Mitochondrial proteins were immmuniprecipitated using an;- OGlcNAc IgG. Protein iden;fica;on was performed following HPLC separa;on on line tandem MS on the LTQ FT. A) Pep;de mass map of human CHD4, pep;des in green and yellow are iden;fied at a FDR of <0.1% or <0.5%, respec;vely. B) the CID spectrum of a O-Glc_Nacylated pep;de. Color coding indicates the type of fragment ion A.Scheme of sample processing. B.Quan;fica;on of SILAC-labeled total (above) or mitochondrial (below) proteins from OGT (green) - and OGA (light) - overexpressing SY5Y cells. C.Heat map shows proteins demonstra;ng a >1.5-fold expression change in the OGT/OGA-overexpressing cells normalized to GFP control cells. D.Components of the electron transport chain that are altered in OGT- or OGA-overexpressing cells. JT Park, M. Villar, A. Ar8gues, J. Lutkenhaus. (submi‘ed) Z. Zang, M. Villar, A. Ar8gues and C Slawson E. Tan et al, JBC, 2013 I. Tikanovich et al Hepatology (2013) m/z ;me Chromatographic Separa8on (reversed-phase) Tandem mass spectra of 50-150,000 pep8des Protease digestion Pep,de extrac,on Nano-HPLC MS/MS Protein sequence Database Database searching SoBware (SEQUEST) Output : Protein iden,fica,on in simple/complex mixtures Extensive sequence coverage and pep,de mapping Analysis of modified pep,des possible Protein quan,fica,on Sample Solware/Search engines Oliver C, Hernández MA, Tandberg JI, Valenzuela KN, Lagos LX, Haro RE, Sánchez P, Ruiz PA, Sanhueza-Oyarzún C, Cortés MA, Villar MT, Ar;gues A, Winther-Larsen HC, Avendaño-Herrera R, Yáñez A. The Proteome of Biologically Ac;ve Membrane Vesicles from Pisciricke‘sia salmonis LF-89 Type Strain Iden;fies Plasmid-Encoded Puta;ve Toxins.. J Front Cell Infect Microbiol. 2017 Sep 28; 7:420. doi: 10.3389/ fcimb.2017.00420. eCollec;on 2017. PMID: 29034215 Park KT, Villar MT, Ar;gues A, Lutkenhaus J. MinE conforma;onal dynamics regulate membrane binding, MinD interac;on, and Min oscilla;on. Proc Natl Acad Sci U S A. 2017 Jul 18; 114(29):7497-7504. doi: 10.1073/pnas.1707385114. Epub 2017 Jun 26. PMID: 28652337 Jadalannagari S, Converse G, McFall C, Buse E, Filla M, Villar MT, Ar;gues A, Mellot AJ, Wang J, Detamore MS, Hopkins RA, Aljitawi Decellularized Wharton's Jelly from human umbilical cord as a novel 3D scaffolding material for ;ssue engineering applica;ons. OS. PLoS One. 2017 Feb 21;12(2):e0172098. doi: 10.1371/journal.pone.0172098. eCollec;on 2017. Erratum in: PLoS One. 2017 Mar 7;12 (3):e0173827. PMID: 2822216 Naik S., i Akkaladevi N., Machen A., O’Neil P., Wendy A. Divya L, Amin, N Villar MT, Ar;gues A, Tischer A, Auton MT, Burns JR, Michael T. Baldwin MT and Fisher MT. Seeing is Believing: Analyzing protein complex assembly from Biolayer Interferometry biosensor surfaces using Electron Microscopy and Mass Spectrometry. JoVE (in press) Rimmer MA, Nadeau OW, Ar;gues A, Carlson GM. Structural characteriza;on of the cataly;c γ and regulatory β subunits of phosphorylase kinase in the context of the hexadecameric enzyme complex.. Protein Sci. Rimmer MA, Nadeau OW, Yang J, Ar;gues A, Zhang Y, Carlson GM. The structure of the large regulatory α subunit of phosphorylase kinase examined by modeling and hydrogen-deuterium exchange. Protein Sci. Machen AJ, O’Neil PT, Pentelute BL, Villar MT, Ar;gues A, Fisher MT. Analyzing Dynamic Protein Complexes Assembled On and Released From Biolayer Interferometry Biosensor using Mass Spectrometry and Electron Microscopy. JoVE (in press) H Q Q Q S P V S Q S M Q T L S D S L S G S S L Y S T S A N L P V oM G H E K Abundance (%) m/z + 12 y + 7 y + 2 21 y + 2 30 y + 2 32 y + 17 a + 13 y + 5 y + 9 y + 8 y + 10 y + 14 y + 19 y + 4 b + 5 b + 2 13 y + 2 14 y + 7 b + 3 25 y + 2 16 y + 8 b + 2 18 y + 2 21 b + 2 23 y + 11 y + 2 24 y x5 x5 + 3 36 y + 2 24 b + 2 28 y + 2 30 b + 15 y + 2 33 y + 16 y + 16 b + 2 35 y + 2 36 b 600 800 1000 1200 1400 1600 1800 2000 0 20 40 60 80 100 + 2 19 y + 2 22 y B cation of a phospho-Serine-574 site on FOXO3. A. The figure

Mass Spectrometry/ Proteomics - KUMC showcase/mass spec proteomics... · 2018. 5. 3. · Spectrometry Core laboratory are intended to enhance the extramural funding of inves;gators

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mass Spectrometry/ Proteomics - KUMC showcase/mass spec proteomics... · 2018. 5. 3. · Spectrometry Core laboratory are intended to enhance the extramural funding of inves;gators

Advisorycommi,eeP.Smith(SeniorAssociateDeanforResearch)A.Fenton,Scien8ficdirector(BiochemistryandMolecularBiology)K.Peterson(vice-chair,BiochemistryandMolecularBiology)L.Swint-Kruse(BiochemistryandMolecularBiology)S.Weinman(InternalMedicine)K.McCarson(Pharmacology,ToxicologyandTherapeu8cs)M.Winter(RodentBehaviorFacility)

Mass Spectrometry/ Proteomics M. T. Villar and A. Artigues

Dept of Biochemistry and Molecular Biology, KU Medical Center ThemissionoftheMassSpectrometryLaboratoryoftheUniversityofKansasMedicalCenter istoprovideaccesstomassspectrometrybasedproteomics applica;ons toKU researchers. The technologyandexper;seofferedby theKUMCMassSpectrometryCorelaboratoryareintendedtoenhancetheextramuralfundingofinves;gatorsofKUMedicalCenter.TheMSPCLaboratoryispartoftheKDRIKCandislocatedinroom1058,HemenwayLifeSciencesInnova;onCenter(HLSIC).

For more information please visit our web page:hNp://www.kumc.edu/mspc.html

Proteomicsisthestudyofallproteinsexpressedinapar;cularcelltype,;ssueororganism,andthechangesintheirrela;veabundanceduringdevelopment,agingor as a result of an injury or trauma. This discipline has acquired significance inbiologicalandhealthsciencesduetoadvancesinotherrelatedareassuchas:•  Thepossibilityofgenera;ngionsinthegasphaseofverylargemoleculessuch

asproteins/pep;des.•  Theusenewmass spectrometers than canmeasure theirmasseswith ahigh

degreeofaccuracy,resolu;onandreproducibility•  Theavailabilityof largedatabasescontainingthecompletegenome/proteome

ofmanyspecies•  Theavailabilityofpowerfulcomputersandcomputeralgorithmstointerrogate

thosedatabaseswithMSinforma;on

•  StandardMassspectrometryproteomics:Proteiniden;fica;onMudPITtechnologyProteinquan;fica;on:freelabel,SILACandusingchemicallylabeledpep;deswithisobaricTags(TMT,iCAT,andothers)

•  SRMandMRM:methoddevelopmentandquan;fica;on•  AnalysisofproteinposNransla;onalmodifica;ons•  Denovopep;deandproteinsequencing•  Analysisofprotein-proteininterac;onsandchemicalcross-linking•  Deuterium-exchangemassspectrometryfortheanalysisof

ProteindynamicsProtein-ligandinterac;onsProteinconforma;on

•  GelimagingandspotpickingonaProPicII.•  Note: Inaddi;ontothestandardandspecializedmassspectrometrymethods

above, theMSPCLaboratoryhas thecapability to introduce/adaptordevelopmethodsforspecificstudiesasneeded.

DirectspotpickingandImaging

TheProPicIIisafullyintegratedrobo:cpla;ormforproteingelimagingandpicking(spotexcision).

Directspotpickingandgelimaging

TheProPicIIisafullyintegratedrobo8cplaMormforproteingelimagingandspotexcision.

LTQFTHybridiontrap–ICRFTmassspectrometerSAIDEAnin-housebuildinterfaceforHDXMS

Highresolving-highsensi;vehybridmassspectrometry

OrbitrapFusionLumosThemostadvancedmassspectrometerEASYnLC1200anultrahighresolu8onHPLC

Tota

l de

uter

ium

co

nten

t

-10 -5 0 5

10

Residue number 0 20 40 60 80

Diff

eren

ce in

de

uter

ium

co

nten

t

0 2 4

Lower H/D rate for mutant, EX2 kinetics for WT; EX1 kinetics for mutant No differences

No H/D exchange

Slower H/D rate for the mutant

Histidine tag

An#MinCDdomain Topologicalspecificitydomain

MTS β1 β2 β3α1

PathwayforconversionofMinEtotheac:veformKTPark,AAr#guesandJLutkenhaus,inpress

Hydrogenexchange–MSanalysisofproteindynamicsinMinE

m/z

200 400 600 800 1000 1200

Inte

nsi

ty (

co

un

ts)

0

200

400

600

800

y2+

y6+

y7+

b72+-NH3

b112+

b152+

z8+

a7+

c62+

x143+ x13

2+

x73+

y93+ -NH3

y5+

y153+

x102+

b102+ +H2O

y142+ +H2O

YYKYILtRnFEALNAR

Abu

ndan

ce (%

)

m/z600 800 1000 1200 1400 1600 1800 2000

0

20

40

60

80

100

+4b

+316y

+5y

+211b

+318b

+212b

+−+ 343 ]3[ POHHM

+7y

+221y

+12y

+230y

+321b

+323y

+216y

+8y

+7b

+8b

+219y

+9y

+330y

+220y

+321b

+10y

+222y

+332b

+223y

+11y

+13y

+228y

+14y

+230b

+232y

+16b

+19y

x5 x5

H Q Q Q pS P V S Q S oM Q T L S D S L S G S S L Y S T S A N L P V oM G H E K

H Q Q Q S P V S Q S M Q T L S D S L S G S S L Y S T S A N L P V oM G H E K

Abu

ndan

ce (%

)

m/z

+12y

+7y

+221y

+230y

+232y

+17a

+13y

+5y

+9y

+8y +

10y

+14y

+19y

+4b

+5b

+213y

+214y

+7b

+325y

+216y+8b

+218y

+221b

+223y

+11y+224y

x5 x5

+336y

+224b

+228y

+230b

+15y +2

33y+16y

+16b

+235y

+236b

600 800 1000 1200 1400 1600 1800 20000

20

40

60

80

100

+219y

+222y

A

B

Identification of a phospho-Serine-574 site on FOXO3. A. The figure shows the CID spectrum of the triple charged ion with m/z of 1353.6, containing a phosphoSer (pS) in position 574 and two oxidized Met (oM) in position 580 and 602, in comparison with (B) the CID spectrum of the non-phosphorylated counterpart peptide with m/z of 1321.6 containing only one oxidized M at position 602. Fragmentation of the phosphorylated peptide results in the loss of 98 Dalton and in the formation of a prominent neutral loss ion ([M+3H-HPO4]3+). The modified residues are indicated by the presence of an unmodified b4

+ for both forms of the peptide, and on the differentially modified y322+ and b11

+ ions, which together identify S574 as a phosphorylation site.

I.  Tikanovich et al Hepatology (2013)

Analysis of protein post-translational modifications

Proteinquan;fica;onviaSILACAlteringO-GlcNAccyclingdisruptsmitochondrialfunc8on

Analysisofproteinpost-transla;onalmodifica;onsIden8fica8onofpSer574onFOXO3

H/Dexchange-MSAnalysisofproteindynamicsinMinE

A)ThefigureshowstheCIDspectrumofthetriplechargedionwith m/z of 1353.6, containing a pS two oxidized, incomparisonwithB) the CID spectrum of the non-phosphorylated counterpartpep;decontainingonlyoneoxidizedM.Fragmenta;on of the phosphorylated pep;de results in thelossof98Daltonandintheforma;onofaprominentneutrallossion([M+3H-HPO4]3+).The arrows point to the differen;ally modified y322+ whichiden;fiesS574asaphosphoryla;onsite.

Proteiniden;fica;onIden8fica8onofCHD4humanprotein

Mitochondrial proteins were immmuniprecipitated using an;-OGlcNAc IgG.Protein iden;fica;onwasperformedfollowingHPLCsepara;ononlinetandemMSontheLTQFT.A)Pep;demassmapofhumanCHD4,pep;desingreenandyellowareiden;fiedataFDRof<0.1%or<0.5%,respec;vely.B) the CID spectrum of a O-Glc_Nacylated pep;de. Color codingindicatesthetypeoffragmention

A. Schemeofsampleprocessing.B. Quan;fica;on of SILAC-labeled total (above) ormitochondrial(below) proteins from OGT (green) - and OGA (light) -overexpressingSY5Ycells.

C. Heatmapshowsproteinsdemonstra;nga>1.5-foldexpressionchangeintheOGT/OGA-overexpressingcellsnormalizedtoGFPcontrolcells.

D. ComponentsoftheelectrontransportchainthatarealteredinOGT-orOGA-overexpressingcells. JTPark,M.Villar,A.Ar8gues,J.Lutkenhaus.(submi`ed)

Z.Zang,M.Villar,A.Ar8guesandCSlawson

E.Tanetal,JBC,2013

I.TikanovichetalHepatology(2013)

m/z

;me

ChromatographicSepara8on(reversed-phase)

Tandemmassspectraof50-150,000pep8des

ProteasedigestionPep,deextrac,on

Nano-HPLC MS/MS

ProteinsequenceDatabase

DatabasesearchingSoBware(SEQUEST)

Output:

• Proteiniden,fica,oninsimple/complexmixtures

• Extensivesequencecoverageandpep,demapping

• Analysisofmodifiedpep,despossible

• Proteinquan,fica,on

Sample

Solware/Searchengines

•  OliverC,HernándezMA,TandbergJI,ValenzuelaKN,LagosLX,HaroRE,SánchezP,RuizPA,Sanhueza-OyarzúnC,CortésMA,VillarMT,Ar;guesA,Winther-LarsenHC,Avendaño-HerreraR,YáñezA.TheProteomeofBiologicallyAc;veMembraneVesiclesfromPisciricke`siasalmonis LF-89 Type Strain Iden;fies Plasmid-Encoded Puta;ve Toxins.. J Front Cell InfectMicrobiol. 2017 Sep 28; 7:420. doi: 10.3389/fcimb.2017.00420.eCollec;on2017.PMID:29034215

•  Park KT, Villar MT, Ar;gues A, Lutkenhaus J. MinE conforma;onal dynamics regulate membrane binding, MinD interac;on, and Minoscilla;on.ProcNatlAcadSciUSA.2017Jul18;114(29):7497-7504.doi:10.1073/pnas.1707385114.Epub2017Jun26.PMID:28652337

•  Jadalannagari S, Converse G, McFall C, Buse E, Filla M, Villar MT, Ar;gues A, Mellot AJ, Wang J, Detamore MS, Hopkins RA, AljitawiDecellularizedWharton'sJellyfromhumanumbilicalcordasanovel3Dscaffoldingmaterialfor;ssueengineeringapplica;ons.OS.PLoSOne. 2017 Feb 21;12(2):e0172098. doi: 10.1371/journal.pone.0172098. eCollec;on 2017. Erratum in: PLoS One. 2017 Mar 7;12(3):e0173827.PMID:2822216

•  NaikS.,iAkkaladeviN.,MachenA.,O’NeilP.,WendyA.DivyaL,Amin,NVillarMT,Ar;guesA,TischerA,AutonMT,BurnsJR,MichaelT.BaldwinMTandFisherMT.SeeingisBelieving:AnalyzingproteincomplexassemblyfromBiolayerInterferometrybiosensorsurfacesusingElectronMicroscopyandMassSpectrometry.JoVE(inpress)

•  RimmerMA,NadeauOW,Ar;guesA,CarlsonGM.Structuralcharacteriza;onofthecataly;cγandregulatoryβsubunitsofphosphorylasekinaseinthecontextofthehexadecamericenzymecomplex..ProteinSci.

•  RimmerMA,NadeauOW,YangJ,Ar;guesA,ZhangY,CarlsonGM.Thestructureofthelargeregulatoryαsubunitofphosphorylasekinaseexaminedbymodelingandhydrogen-deuteriumexchange.ProteinSci.

•  Machen AJ,O’NeilPT,PenteluteBL,VillarMT,Ar;guesA,FisherMT.AnalyzingDynamicProteinComplexesAssembledOnandReleasedFromBiolayerInterferometryBiosensorusingMassSpectrometryandElectronMicroscopy.JoVE(inpress)

Abu

ndan

ce (%

)

m/z600 800 1000 1200 1400 1600 1800 2000

0

20

40

60

80

100

+4b

+316y

+5y

+211b

+318b

+212b

+−+ 343 ]3[ POHHM

+7y

+221y

+12y

+230y

+321b

+323y

+216y

+8y

+7b

+8b

+219y

+9y

+330y

+220y

+321b

+10y

+222y

+332b

+223y

+11y

+13y

+228y

+14y

+230b

+232y

+16b

+19y

x5 x5

H Q Q Q pS P V S Q S oM Q T L S D S L S G S S L Y S T S A N L P V oM G H E K

H Q Q Q S P V S Q S M Q T L S D S L S G S S L Y S T S A N L P V oM G H E K

Abu

ndan

ce (%

)

m/z

+12y

+7y

+221y

+230y

+232y

+17a

+13y

+5y

+9y

+8y +

10y

+14y

+19y

+4b

+5b

+213y

+214y

+7b

+325y

+216y+8b

+218y

+221b

+223y

+11y+224y

x5 x5

+336y

+224b

+228y

+230b

+15y +2

33y+16y

+16b

+235y

+236b

600 800 1000 1200 1400 1600 1800 20000

20

40

60

80

100

+219y

+222y

A

B

Identification of a phospho-Serine-574 site on FOXO3. A. The figure shows the CID spectrum of the triple charged ion with m/z of 1353.6, containing a phosphoSer (pS) in position 574 and two oxidized Met (oM) in position 580 and 602, in comparison with (B) the CID spectrum of the non-phosphorylated counterpart peptide with m/z of 1321.6 containing only one oxidized M at position 602. Fragmentation of the phosphorylated peptide results in the loss of 98 Dalton and in the formation of a prominent neutral loss ion ([M+3H-HPO4]3+). The modified residues are indicated by the presence of an unmodified b4

+ for both forms of the peptide, and on the differentially modified y322+ and b11

+ ions, which together identify S574 as a phosphorylation site.

I.  Tikanovich et al Hepatology (2013)

Analysis of protein post-translational modifications