12
DIRECT DESIGN SOFTWARE: Clear. Precise. Direct. Try it FREE TODAY! www.directdesignsoftware.com 703.713.1900 [email protected] www.directdesignsoftware.com Masonry Structural Design Simplified

Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

DIRECT DESIGN SOFTWARE: Clear. Precise. Direct.

Try it FREE TODAY!www.directdesignsoftware.com

703.713.1900 [email protected]

Masonry Structural Design Simplified

Page 2: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

2 \ DDS

Direct Design Software enables design of an entire masonry structure in minutesDirect Design Software (DDS) is a structural analysis program for designing single and multi-story, reinforced concrete masonry buildings. The software provides a streamlined procedure for determining loads, analyzing load paths, performing design checks, and creating drawings, resulting in an economical structural masonry design with little effort. The core goals for this application included:

• Automation of the full structural workflow, from loads to analysis to design checks to drawings

• Support for the majority of common masonry building configurations

• Transparency of calculations, design assumptions and methodology

• Ease of use with a low learning curve

• A masonry-specific application, rather than a general-purpose application adapted for masonry

Design PressuresPressure values from Equation 28.4-1:

p = q (GC -GC ) = (22.36 psf)(0.61--0.18) = 17.67 psf (Windward surface, edge zone)

p = q (GC -GC ) = (22.36 psf)(0.40--0.18) = 12.97 psf (Windward surface, field zone)

p = q (GC -GC ) = (22.36 psf)(-0.43-0.18) = -13.64 psf (Leeward surface, edge zone)

p = q (GC -GC ) = (22.36 psf)(-0.29-0.18) = -10.51 psf (Leeward surface, field zone)

A

B

1 2

17.67 psf

12.97 psf

17.67 psf

13.64 psf

10.51 psf

13.64 psf

17.67 psf12.97 psf

17.67 psf

13.64 psf 10.51 psf 13.64 psf

Z

X

DESIGN LOADSOut-Of-Plane Wall ChecksCheck SummaryFor each check, this shows whether it passed or failed, the index of the critical load combination, and the ratio of the two critical values for comparison (usually required/provided, e.g. Mᵘ/ M ). A ratio greater than 1.0 is failing. Load combinations are listed beneath the table.

AllPass?

Length AxialStressCheck

AxialForceCheck

P-MIntrCheck@ top

P-MIntrCheck@ mid

P-FlexCheck

TMSDeflCheck

IBCDeflCheck

ShearCheck

MaxReinfCheck

Segment 1 in Wall along grid 1 from A to B, Story 1

Yes 10.00 ft 0.073 (1)Pass

0.061 (1)Pass

0.000 (1)Pass

0.668 (16)Pass

0.642 (16)Pass

0.013 (6)Pass

0.009 (6)Pass

0.031 (32)Pass

0.156Pass

Segment 2 in Wall along grid 1 from A to B, Story 1

Yes 2.00 ft 0.131 (1)Pass

0.060 (1)Pass

0.000 (1)Pass

0.312 (16)Pass

0.298 (16)Pass

0.026 (6)Pass

0.018 (6)Pass

0.000 (1)Pass

0.832Pass

Segment 3 in Wall along grid 1 from A to B, Story 1

Yes 11.33 ft 0.068 (1)Pass

0.059 (1)Pass

0.000 (1)Pass

0.719 (16)Pass

0.695 (16)Pass

0.012 (6)Pass

0.009 (6)Pass

0.077 (32)Pass

0.137Pass

Segment 1 in Wall along grid 2 from A to B, Story 1

Yes 4.00 ft 0.090 (1)Pass

0.057 (1)Pass

0.000 (1)Pass

0.328 (16)Pass

0.316 (16)Pass

0.015 (6)Pass

0.011 (6)Pass

0.014 (32)Pass

0.397Pass

Segment 2 in Wall along grid 2 from A to B, Story 1

Yes 2.67 ft 0.106 (1)Pass

0.057 (1)Pass

0.000 (1)Pass

0.227 (16)Pass

0.218 (16)Pass

0.015 (6)Pass

0.011 (6)Pass

0.006 (32)Pass

0.606Pass

Segment 3 in Wall along grid 2 from A to B, Story 1

Yes 10.00 ft 0.058 (1)Pass

0.048 (1)Pass

0.000 (1)Pass

0.476 (16)Pass

0.461 (16)Pass

0.009 (6)Pass

0.007 (6)Pass

0.050 (32)Pass

0.153Pass

Segment 4 in Wall along grid 2 from A to B, Story 1

Yes 10.67 ft 0.058 (1)Pass

0.049 (1)Pass

0.000 (1)Pass

0.586 (16)Pass

0.568 (16)Pass

0.011 (6)Pass

0.008 (6)Pass

0.052 (32)Pass

0.144Pass

Segment 1 in Wall along grid A from 1 to 2, Story 1

Yes 4.00 ft 0.232 (4)Pass

0.148 (4)Pass

0.115 (2)Pass

0.416 (16)Pass

0.389 (16)Pass

0.019 (16)Pass

0.011 (6)Pass

0.032 (32)Pass

0.458Pass

Segment 2 in Wall along grid A from 1 to 2, Story 1

Yes 4.00 ft 0.342 (2)Pass

0.218 (2)Pass

0.126 (2)Pass

0.514 (16)Pass

0.464 (16)Pass

0.022 (16)Pass

0.013 (6)Pass

0.052 (32)Pass

0.528Pass

Segment 3 in Wall along grid A from 1 to 2, Story 1

Yes 6.00 ft 0.236 (2)Pass

0.174 (2)Pass

0.188 (2)Pass

0.628 (16)Pass

0.551 (16)Pass

0.019 (16)Pass

0.011 (6)Pass

0.039 (32)Pass

0.308Pass

Segment 4 in Wall along grid A from 1 to 2, Story 1

Yes 4.67 ft 0.212 (2)Pass

0.143 (2)Pass

0.138 (2)Pass

0.475 (16)Pass

0.428 (16)Pass

0.019 (16)Pass

0.011 (6)Pass

0.069 (32)Pass

0.385Pass

Segment 1 in Wall along grid B from 1 to 2, Story 1

Yes 14.00 ft 0.143 (2)Pass

0.118 (2)Pass

0.267 (2)Pass

0.696 (16)Pass

0.664 (16)Pass

0.015 (16)Pass

0.009 (6)Pass

0.041 (32)Pass

0.179Pass

Segment 2 in Wall along grid B from 1 to 2, Story 1

Yes 13.33 ft 0.145 (2)Pass

0.118 (2)Pass

0.255 (2)Pass

0.671 (16)Pass

0.635 (16)Pass

0.015 (16)Pass

0.009 (6)Pass

0.039 (32)Pass

0.188Pass

Segment 1 in Wall along grid 1 from A to B, Story 2

Yes 4.00 ft 0.051 (1)Pass

0.033 (1)Pass

0.000 (1)Pass

0.244 (16)Pass

0.238 (16)Pass

0.010 (6)Pass

0.007 (6)Pass

0.067 (32)Pass

0.380Pass

Segment 2 in Wall along grid 1 from A to B, Story 2

Yes 4.00 ft 0.069 (1)Pass

0.044 (1)Pass

0.000 (1)Pass

0.281 (16)Pass

0.272 (16)Pass

0.011 (6)Pass

0.008 (6)Pass

0.011 (32)Pass

0.387Pass

Segment 3 in Wall along grid 1 from A to B, Story 2

Yes 4.00 ft 0.069 (1)Pass

0.044 (1)Pass

0.000 (1)Pass

0.281 (16)Pass

0.272 (16)Pass

0.011 (6)Pass

0.008 (6)Pass

0.000 (32)Pass

0.387Pass

Segment 4 in Wall along grid 1 from A to B, Story 2

Yes 6.67 ft 0.045 (26)Pass

0.034 (26)Pass

0.000 (1)Pass

0.340 (16)Pass

0.332 (16)Pass

0.008 (6)Pass

0.006 (6)Pass

0.138 (32)Pass

0.226Pass

Segment 1 in Wall along grid 2 from A to B, Story 2

Yes 30.67 ft 0.033 (1)Pass

0.030 (1)Pass

0.000 (1)Pass

0.591 (16)Pass

0.586 (16)Pass

0.007 (6)Pass

0.005 (6)Pass

0.050 (32)Pass

0.097Pass

Segment 1 in Wall along grid A from 1 to 2, Story 2

Yes 4.00 ft 0.142 (4)Pass

0.090 (4)Pass

0.110 (2)Pass

0.301 (16)Pass

0.282 (16)Pass

0.012 (16)Pass

0.007 (6)Pass

0.042 (32)Pass

0.407Pass

Segment 2 in Wall along grid A from 1 to 2, Story 2

Yes 6.00 ft 0.148 (4)Pass

0.108 (4)Pass

0.176 (2)Pass

0.429 (16)Pass

0.396 (16)Pass

0.012 (16)Pass

0.006 (6)Pass

0.049 (32)Pass

0.276Pass

Segment 3 in Wall along grid A from 1 to 2, Story 2

Yes 4.00 ft 0.188 (4)Pass

0.119 (4)Pass

0.122 (2)Pass

0.354 (16)Pass

0.323 (16)Pass

0.014 (16)Pass

0.008 (6)Pass

0.063 (32)Pass

0.430Pass

Segment 4 in Wall along grid A from 1 to 2, Story 2

Yes 4.67 ft 0.125 (4)Pass

0.084 (4)Pass

0.128 (2)Pass

0.331 (16)Pass

0.312 (16)Pass

0.012 (16)Pass

0.007 (6)Pass

0.084 (32)Pass

0.346Pass

Segment 1 in Wall along grid B from 1 to 2, Story 2

Yes 30.67 ft 0.075 (4)Pass

0.068 (4)Pass

0.420 (2)Pass

0.755 (16)Pass

0.741 (16)Pass

0.009 (16)Pass

0.005 (6)Pass

0.049 (32)Pass

0.101Pass

Segment 1 in Wall along grid 1 from A to B, Story 3

Yes 30.67 ft 0.011 (1)Pass

0.010 (1)Pass

0.000 (1)Pass

0.584 (16)Pass

0.582 (16)Pass

0.007 (6)Pass

0.005 (6)Pass

0.049 (26)Pass

0.095Pass

Segment 1 in Wall along grid 2 from A to B, Story 3

Yes 30.67 ft 0.011 (1)Pass

0.010 (1)Pass

0.000 (1)Pass

0.584 (16)Pass

0.582 (16)Pass

0.007 (6)Pass

0.005 (6)Pass

0.049 (26)Pass

0.095Pass

STRUCTURAL CHECKS

90' 8"

16'

6' 10.8" 2'

2'

6'

6' 10.8" 4'

2'

6'

6' 10.8" 4'

2'

6'

6' 10.8" 4'

4'

4'

6' 10.8" 4'

4'

4'

6' 10.8" 4'

4'

4'

6' 10.8" 4'

4'

4'

6' 10.8" 2'

4'

4'

7' 5.6"

B A

#5 #5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5

#4

SEG

1SEG

2SEG

3SEG

4SEG

5SEG

6SEG

7SEG

8SEG

9

Z

X

ELEVATIONSCode Compliance Status

Wall Segments (In-Plane Loading): All 30 are passing

Wall Segments (Out-of-Plane Loading): All 30 are passing

Wall Header & Sill Panels (Out-of-Plane Loading): All 28 are passing

Lintels: All 16 are passing

Diaphragm Levels (Chord Reinforcement): All levels pass

Structure has one or more irregularities, but the relevant provisions do not trigger anything that would prohibit Direct Design

COMPLIANCE SUMMARY

Page 3: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

DDS / 3

Brains …DDS generates structural concrete masonry designs in compliance with the 2015 edition of the International Building Code, which references the 2013 TMS 402, Building Code Requirements for Masonry Structures. The basis for the design loading requirements is the 2010 ASCE 7, Minimum Design Loads for Buildings and Other Structures. Where applicable, specific references to these standards are included in the reports generated by DDS.

Platform …A building is modeled in DDS by defining its plan dimensions, number of stories and story heights, diaphragm properties, roof configuration, and locations of openings within each elevation. Optional modeling inputs include the placement of control joints, defining interior column lines, identifying openings for which arching action is permitted, presence of parapets, length of roof overhangs, eccentricity of floor and roof connections, and adding the self-weight of nonstructural cladding systems.

Page 4: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

4 \ DDS

Design Parameters …Design parameters that are common throughout a structural system, such as unit thickness, specified masonry compressive strength (f’

m), reinforcement yield strength, mean roof height, spectral accelerations, and basic wind speed are defined by

the user for each project. DDS uses this information to determine design loads and their distribution throughout the structural system. The software does not perform designs for unreinforced masonry; all components will include a minimum amount of reinforcement regardless of design load to meet the minimum requirements for reinforced masonry in accordance with TMS 402.

Page 5: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

DDS / 5

Design Preferences …DDS allows the user to indicate reinforcement preferences to achieve different code-compliant design solutions that fit varying project needs and conditions. Users can select different input preferences for the size of the vertical and horizontal reinforcement used in each story. Alternatively, users can select ‘Maximum Spacing’ of the reinforcement, in which case DDS will make largest bar spacing (and hence fewest bars) the highest priority, using the smallest bar size that will meet code requirements while still maintaining the large spacing. Users are also given the option to specify the use of bed joint reinforcement (BJR) as horizontal reinforcement for resisting out-of-plane flexure or meeting the minimum prescriptive horizontal reinforcement requirements of TMS 402.

Loading Analysis …Based on the given building geometry and loading criteria, DDS calculates the lateral loads resulting from the main wind force, components and cladding, and seismic loads. Gravity loads resulting from user-defined dead, live, and snow loads are also distributed using conventional engineering mechanics. One of the primary goals in the development of DDS was the complete transparency of all design calculations, thus allowing users the ability to verify design loads and material resistance at any stage of design by checking the design reports. In order to validate the assumptions made when applying the loading provisions of ASCE 7 and for general due diligence, the structure is checked for both vertical and horizontal structural irregularities in accordance with ASCE 7.

Page 6: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

6 \ DDS

Masonry Design …Each concrete masonry element in the structure is designed using the Strength Design provisions of TMS 402. Design checks include: in-plane wall design, out-of-plane wall design, design of lintels and deep beams, header and sill panels and diaphragm chords. The software considers an exhaustive set of load combinations, considering varying load sources (e.g. wind and seismic), methodologies (e.g. both MWFRS and C&C for wind), and directions (e.g. both windward & leeward pressures for wind). Design results are shown in varying levels of detail to allow for anything from a quick, at-a-glance overview of status to an in-depth calculation review. Available results displays include:

• Status Overview. Overall pass/fail indicators for each component (e.g. walls & lintels).

• Check Summary. For each component type (e.g. lintels), a summary table showing which checks passed and which failed, along with the most critical load combination.

• Design Loads. A table of factored loads for all load combinations.

• Calculation Details. Highly detailed calculations for each component, including all checks and loads combinations.

Code Compliance Checks …Based on user defined inputs, DDS verifies all applicable aspects of the structural analysis comply with the 2015 IBC and provides a condensed report.

Page 7: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

DDS / 7

Import/Export Function to Revit …The Direct Design Software can import building models from Autodesk Revit and export reinforcement schedules. This process simplifies design and reduces the need for multiple building models. Using this feature, walls within an existing Revit model are exported into the DDS environment. Users can then select and/or manipulate these walls to generate a DDS-compliant model where the masonry structural design and analyses are completed. Finally, the structural design information is exported back to Revit in the form of schedules.

Page 8: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

8 \ DDS

Reports …DDS generates a full set of design and analysis reports, allowing for designers to drill into specific design details or review the results from a global perspective. In addition to producing the design calculations for each masonry element in the structure, DDS also graphically displays the resulting design, including reinforcing bar size and location, for each elevation. In cases where DDS cannot arrive at a code-compliant design, the software will flag the failing element(s) in the summary output and identify those elements with red hatching in the design elevation outputs.

Nicholas LangNCMA

A

B

C

D

1 2 3 4

101'

51'

5'

40'

5'

30' 40' 30'

Z

X

General Criteria

Masonry Unit Designation 12 in CMUCMU Density Normal WeightGrouting SolidMortar Type S Portlan…Masonry f'm 2000 psiSteel Fy 60000 psiRoof Dead Load 20 psfRoof Live Load 20 psfFloor Dead Load 15 psfFloor Live Load 35 psfPreferred LFRSO Ordinary (OR…I-cracked Coefficient 0.4

Structure Details

Roof/Floor Span Direction XParapet Height 2 ftRoof Mean Height 45 ftRoof Maximum Height 45 ftRoof Angle 0 °Roof Overhang 0 ftEccentricity of Floor Conn… 3 inEccentricity of Roof Conn… 1 inVeneer Type AdheredVeneer Weight 20 psf

ASCE 7 Criteria

Risk Category IISite Class DSs: Short Period Spectral … 0.4S1: One Second Spectral … 0.5Wind Speed (V) 250 mphExposure Category CExposure Factor (Ce) 0.9 Topographic Factor (Kzt) 1 Ground Snow Load (pg) 20 psfThermal Factor (Ct) 1.2 Use specified lu distances False

Direct Design Software 3.0 Page 1 of 13 Tuesday 04/02/19 9:07:21 AM

Page 9: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

DDS / 9

Nicholas LangNCMA

p = q (GC -GC ) = (145.49 psf)(-0.43-0.18) = -88.75 psf (Leeward surface, edge zone)

p = q (GC -GC ) = (145.49 psf)(-0.29-0.18) = -68.38 psf (Leeward surface, field zone)

Scenario: +X, +Z WindNote that this is not considering wind to act in both of these directions at the same time; they are just illustrated together for convenience and conciseness.

Roof LevelThe design pressures calculated above are applied to the various surfaces at this level as appropriate, over a tributary height of 15.00 ft.

AB

CD

1 2 3 4

114.94 psf

84.38 psf

114.94 psf

114.94 psf114.94 psf

114.94 psf114.94 psf

88.75 psf88.75 psf

88.75 psf

68.38 psf

88.75 psf

88.75 psf88.75 psf

114.94 psf84.38 psf

114.94 psf

114.94 psf84.38 psf

114.94 psf

114.94 psf84.38 psf

114.94 psf

88.75 psf68.38 psf

88.75 psf

88.75 psf68.38 psf

88.75 psf

88.75 psf68.38 psf

88.75 psf

Z

X

This level is a flexible diaphragm. Forces are distributed according to the tributary area for each line.

Force Distributed To Line(k)

Grid line A 4.07Grid line B 32.47Grid line C 32.47Grid line D 4.07Grid line 1 22.28Grid line 2 51.08Grid line 3 51.08Grid line 4 22.28

The story beneath this one is a rigid diaphragm. The forces from the walls at this level will be imparted to that diaphragm. To facilitate calculations at that level, the resultant of these forces is determined to be 73.08 k (X), 146.74 k (Z) applied at (50.00 ft,25.00 ft):

AB

CD

1 2 3 4

73.08 k

146.74 k

Z

X

Floor Level 2The design pressures calculated above are applied to the various surfaces at this level as appropriate, over a tributary height of 12.00 ft.

Direct Design Software 3.0 Page 4 of 34 Wednesday 03/27/19 4:18:22 PM

Nicholas LangNCMA

Out-Of-Plane Wall ChecksCheck SummaryFor each check, this shows whether it passed or failed, the index of the critical load combination, and the ratio of the two critical values for comparison (usually required/provided, e.g. M�/ M ). A ratio greater than 1.0 is failing. Load combinations are listed beneath the table.

AllPass?

Length AxialStressCheck

AxialForceCheck

P-MIntrCheck@ top

P-MIntrCheck@ mid

P-FlexCheck

TMSDeflCheck

IBCDeflCheck

ShearCheck

MaxReinfCheck

Segment 1 in Wall along grid 1 from A to B, Story 1

Yes 10.00 ft 0.073 (1)Pass

0.061 (1)Pass

0.000 (1)Pass

0.668 (16)Pass

0.642 (16)Pass

0.013 (6)Pass

0.009 (6)Pass

0.031 (32)Pass

0.156Pass

Segment 2 in Wall along grid 1 from A to B, Story 1

Yes 2.00 ft 0.131 (1)Pass

0.060 (1)Pass

0.000 (1)Pass

0.312 (16)Pass

0.298 (16)Pass

0.026 (6)Pass

0.018 (6)Pass

0.000 (1)Pass

0.832Pass

Segment 3 in Wall along grid 1 from A to B, Story 1

Yes 11.33 ft 0.068 (1)Pass

0.059 (1)Pass

0.000 (1)Pass

0.719 (16)Pass

0.695 (16)Pass

0.012 (6)Pass

0.009 (6)Pass

0.077 (32)Pass

0.137Pass

Segment 1 in Wall along grid 2 from A to B, Story 1

Yes 4.00 ft 0.090 (1)Pass

0.057 (1)Pass

0.000 (1)Pass

0.328 (16)Pass

0.316 (16)Pass

0.015 (6)Pass

0.011 (6)Pass

0.014 (32)Pass

0.397Pass

Segment 2 in Wall along grid 2 from A to B, Story 1

Yes 2.67 ft 0.106 (1)Pass

0.057 (1)Pass

0.000 (1)Pass

0.227 (16)Pass

0.218 (16)Pass

0.015 (6)Pass

0.011 (6)Pass

0.006 (32)Pass

0.606Pass

Segment 3 in Wall along grid 2 from A to B, Story 1

Yes 10.00 ft 0.058 (1)Pass

0.048 (1)Pass

0.000 (1)Pass

0.476 (16)Pass

0.461 (16)Pass

0.009 (6)Pass

0.007 (6)Pass

0.050 (32)Pass

0.153Pass

Segment 4 in Wall along grid 2 from A to B, Story 1

Yes 10.67 ft 0.058 (1)Pass

0.049 (1)Pass

0.000 (1)Pass

0.586 (16)Pass

0.568 (16)Pass

0.011 (6)Pass

0.008 (6)Pass

0.052 (32)Pass

0.144Pass

Segment 1 in Wall along grid A from 1 to 2, Story 1

Yes 4.00 ft 0.232 (4)Pass

0.148 (4)Pass

0.115 (2)Pass

0.416 (16)Pass

0.389 (16)Pass

0.019 (16)Pass

0.011 (6)Pass

0.032 (32)Pass

0.458Pass

Segment 2 in Wall along grid A from 1 to 2, Story 1

Yes 4.00 ft 0.342 (2)Pass

0.218 (2)Pass

0.126 (2)Pass

0.514 (16)Pass

0.464 (16)Pass

0.022 (16)Pass

0.013 (6)Pass

0.052 (32)Pass

0.528Pass

Segment 3 in Wall along grid A from 1 to 2, Story 1

Yes 6.00 ft 0.236 (2)Pass

0.174 (2)Pass

0.188 (2)Pass

0.628 (16)Pass

0.551 (16)Pass

0.019 (16)Pass

0.011 (6)Pass

0.039 (32)Pass

0.308Pass

Segment 4 in Wall along grid A from 1 to 2, Story 1

Yes 4.67 ft 0.212 (2)Pass

0.143 (2)Pass

0.138 (2)Pass

0.475 (16)Pass

0.428 (16)Pass

0.019 (16)Pass

0.011 (6)Pass

0.069 (32)Pass

0.385Pass

Segment 1 in Wall along grid B from 1 to 2, Story 1

Yes 14.00 ft 0.143 (2)Pass

0.118 (2)Pass

0.267 (2)Pass

0.696 (16)Pass

0.664 (16)Pass

0.015 (16)Pass

0.009 (6)Pass

0.041 (32)Pass

0.179Pass

Segment 2 in Wall along grid B from 1 to 2, Story 1

Yes 13.33 ft 0.145 (2)Pass

0.118 (2)Pass

0.255 (2)Pass

0.671 (16)Pass

0.635 (16)Pass

0.015 (16)Pass

0.009 (6)Pass

0.039 (32)Pass

0.188Pass

Segment 1 in Wall along grid 1 from A to B, Story 2

Yes 4.00 ft 0.051 (1)Pass

0.033 (1)Pass

0.000 (1)Pass

0.244 (16)Pass

0.238 (16)Pass

0.010 (6)Pass

0.007 (6)Pass

0.067 (32)Pass

0.380Pass

Segment 2 in Wall along grid 1 from A to B, Story 2

Yes 4.00 ft 0.069 (1)Pass

0.044 (1)Pass

0.000 (1)Pass

0.281 (16)Pass

0.272 (16)Pass

0.011 (6)Pass

0.008 (6)Pass

0.011 (32)Pass

0.387Pass

Segment 3 in Wall along grid 1 from A to B, Story 2

Yes 4.00 ft 0.069 (1)Pass

0.044 (1)Pass

0.000 (1)Pass

0.281 (16)Pass

0.272 (16)Pass

0.011 (6)Pass

0.008 (6)Pass

0.000 (32)Pass

0.387Pass

Segment 4 in Wall along grid 1 from A to B, Story 2

Yes 6.67 ft 0.045 (26)Pass

0.034 (26)Pass

0.000 (1)Pass

0.340 (16)Pass

0.332 (16)Pass

0.008 (6)Pass

0.006 (6)Pass

0.138 (32)Pass

0.226Pass

Segment 1 in Wall along grid 2 from A to B, Story 2

Yes 30.67 ft 0.033 (1)Pass

0.030 (1)Pass

0.000 (1)Pass

0.591 (16)Pass

0.586 (16)Pass

0.007 (6)Pass

0.005 (6)Pass

0.050 (32)Pass

0.097Pass

Segment 1 in Wall along grid A from 1 to 2, Story 2

Yes 4.00 ft 0.142 (4)Pass

0.090 (4)Pass

0.110 (2)Pass

0.301 (16)Pass

0.282 (16)Pass

0.012 (16)Pass

0.007 (6)Pass

0.042 (32)Pass

0.407Pass

Segment 2 in Wall along grid A from 1 to 2, Story 2

Yes 6.00 ft 0.148 (4)Pass

0.108 (4)Pass

0.176 (2)Pass

0.429 (16)Pass

0.396 (16)Pass

0.012 (16)Pass

0.006 (6)Pass

0.049 (32)Pass

0.276Pass

Segment 3 in Wall along grid A from 1 to 2, Story 2

Yes 4.00 ft 0.188 (4)Pass

0.119 (4)Pass

0.122 (2)Pass

0.354 (16)Pass

0.323 (16)Pass

0.014 (16)Pass

0.008 (6)Pass

0.063 (32)Pass

0.430Pass

Segment 4 in Wall along grid A from 1 to 2, Story 2

Yes 4.67 ft 0.125 (4)Pass

0.084 (4)Pass

0.128 (2)Pass

0.331 (16)Pass

0.312 (16)Pass

0.012 (16)Pass

0.007 (6)Pass

0.084 (32)Pass

0.346Pass

Segment 1 in Wall along grid B from 1 to 2, Story 2

Yes 30.67 ft 0.075 (4)Pass

0.068 (4)Pass

0.420 (2)Pass

0.755 (16)Pass

0.741 (16)Pass

0.009 (16)Pass

0.005 (6)Pass

0.049 (32)Pass

0.101Pass

Segment 1 in Wall along grid 1 from A to B, Story 3

Yes 30.67 ft 0.011 (1)Pass

0.010 (1)Pass

0.000 (1)Pass

0.584 (16)Pass

0.582 (16)Pass

0.007 (6)Pass

0.005 (6)Pass

0.049 (26)Pass

0.095Pass

Segment 1 in Wall along grid 2 from A to B, Story 3

Yes 30.67 ft 0.011 (1)Pass

0.010 (1)Pass

0.000 (1)Pass

0.584 (16)Pass

0.582 (16)Pass

0.007 (6)Pass

0.005 (6)Pass

0.049 (26)Pass

0.095Pass

Direct Design Software 3.0 Page 3 of 5 Monday 04/01/19 7:48:30 AM

Reports: Loading and Design

Page 10: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

10 \ DDS

Nicholas LangNCMA

Wall along grid line 1 from grid lines A to B

90' 8"

16'

2' x 6' 4' x 6' 4' x 6'4' x 4' 4' x 4' 4' x 4' 4' x 4' 2' x 4'

#5 #5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5 #4 #5#5

#5

#4

10'2' x 4' 4' x 4' 4' x 4' 4' x 4' 4' x 4' 4' x 4' 4' x 4' 2' x 4'#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

10'2' x 4' 4' x 4' 4' x 4' 4' x 4' 4' x 4' 4' x 4' 4' x 4' 2' x 4'#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

8'2' x 3' 8" 4' x 3' 8" 4' x 3' 8" 4' x 3' 8" 4' x 3' 8" 4' x 3' 8" 4' x 3' 8" 2' x 3' 8"#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

8'2' x 3' 8" 4' x 3' 8" 4' x 3' 8" 4' x 3' 8" 4' x 3' 8" 4' x 3' 8" 4' x 3' 8" 2' x 3' 8"#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

#5 #5

#4

8'2' x 4' 4' x 4' 4' x 4' 4' x 4' 4' x 4' 4' x 4' 4' x 4' 2' x 4'

B A

#5 #5

#5#5#4

#5 #5

#5 #5#4

#5 #5

#5 #5#4

#5 #5

#5 #5#4

#5 #5

#5 #5#4

#5 #5

#5 #5#4

#5 #5

#5 #5#4

#5 #5

#5#5#4

#5 #5

#4

Z

X

Direct Design Software 3.0 Page 1 of 6 Friday 03/29/19 3:59:14 PM

Reports: Elevations and Drawings

Information to Include on Plans

Snow LoadsGround Snow Load: 25.00 psf

Flat-Roof Snow Load: 21.00 psf

Snow Exposure Factor: 1.00

Snow Importance Factor: 1.00

Thermal Factor: 1.20

Drift Surcharge Load: 0.00 psf

Width of Snow Drift: 0.00 ft

Wind LoadsUltimate Design Wind Speed: 120.00 mph

Nominal Design Wind Speed: 92.95 mph

Risk Category: II

Wind Exposure: B

Internal Pressure Coefficient (+/-): 0.18

C&C Wall Field Pressure (+): 23.26 psf

C&C Wall Field Pressure (-): -25.46 psf

C&C Wall Edge Pressure (+): 23.26 psf

C&C Wall Edge Pressure (-): -29.40 psf

C&C Roof Zone 1 (Field) Pressure (+): 8.34 psf

C&C Roof Zone 1 (Field) Pressure (-): -23.71 psf

C&C Roof Zone 2 (Edge) Pressure (+): 8.34 psf

C&C Roof Zone 2 (Edge) Pressure (-): -28.10 psf

C&C Roof Zone 3 (Corner) Pressure (+): 8.34 psf

C&C Roof Zone 3 (Corner) Pressure (-): -28.10 psf

C&C Overhang Edge Pressure (net): -24.15 psf

C&C Overhang Corner Pressure (net): -17.56 psf

C&C Parapet Field Pressure, Case A (net): 43.46 psf

C&C Parapet Field Pressure, Case B (net): 40.82 psf

C&C Parapet Edge Pressure, Case A (net): 43.46 psf

C&C Parapet Edge Pressure, Case B (net): 44.76 psf

Gravity LoadsRoof Live Load: 20.00 psf

Floor Live Load: 40.00 psf

Earthquake LoadsRisk Category: II

Site Class: D

Seismic Importance Factor: 1.00

Mapped 0.2 Second Spectral Response Acceleration: 0.200

Mapped 1.0 Second Spectral Response Acceleration: 0.050

Design 0.2 Second Spectral Response Acceleration: 0.213

Design 1.0 Second Spectral Response Acceleration: 0.053

Seismic Design Category: B

Lateral Force Resisting System: Ordinary Reinforced Masonry Shear Walls

Design Base Shear: 7.22 k

Seismic Response Coefficient: 0.11

Response Modification Factor: 2.00

Seismic Analysis Procedure: Equivalent Lateral Force Method

Flood LoadsThis building has not been designed for flood loads.

Special LoadsThis building has not been designed for any special loads.

Geotechnical InformationSoil bearing values and other geotechnical properties must be determined separately.

Masonry Design CriteriaDesign Standard: TMS 402-13

Specified Compresive Strength of Masonry (f'm): 2,000.00 psi

Grade of Reinforcement (fy): 60,000.00 psi

Masonry Unit: 8 in CMU

CMU Density: NormalWeight

Masonry Mortar Type: Type S Portland Cement/Lime

Page 11: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

DDS / 11

The Limitations and Constraints …DDS was created with the goal of accommodating the majority of common masonry building configurations and the software supports a large number of the typical masonry structure layouts seen in so many projects. However, the current version will not handle every conceivable building geometry. There are limitations on the modeling capability that should be understood by the user. Some of the most prominent constraints imposed by DDS include:

• Roof Types. DDS currently only supports flat, hipped, gabled, and single-slope roof systems. These constraints on roof geometry are primarily driven by the software’s ability to model snow and wind loads.

• Mean Roof Height. While DDS does not place any restrictions on the number of stories in a building, it does limit the mean (average) height of the roof (or building for flat roof structures) to 60 feet above the adjacent grade.

• Building Layout. DDS currently only supports input of orthogonal dimensions for plan, elevation, and openings. Walls must be a part of the perimeter of rectangular plan building sections, and each story must maintain the same basic plan layout.

• Reinforcing Bar Position. The software assumes that vertical reinforcing bars are centered within cells, with one bar per cell. This accommodates the fact that there are negative (internal) and positive (external) pressures that act on the wall.

• Concentrated Loads. DDS does not currently allow for modeling discrete, user-defined concentrated loads applied to masonry walls. This precludes joist girders from being framed into the masonry walls without supplemental analysis.

• Pilasters. Walls are modeled as having uniform thickness so pilasters are not supported.

• Diaphragm Design. DDS assumes that diaphragms perform as indicated by the user (rigid or flexible) and does not provide comprehensive design of the diaphragm to resist the applied loads. It does however provide a check on the ability of diaphragm-level bond beam reinforcement to withstand chord forces, and also provides the loads required for the user to conduct a more thorough analysis.

• Revit Import/Export. Revit models can only be imported to DDS if they are compliant with the constraints of Direct Design. The import is not able to circumvent the basic conditions of Direct Design.

When an input is not permitted by DDS, the software will let the user know.

Page 12: Masonry Structural Design Simplified · 2020-05-18 · 2 \ DDS Direct Design Software enables design of an entire masonry structure in minutes Direct Design Software (DDS) is a structural

703.713.1900 [email protected]

www.directdesignsoftware.com

Brochure v3.1 rev. 021020