45
The report committee for Augustine Faustino Chavez Certifies that this is the approved version of the following report: Mars North Polar Ice Stratigraphy Project: A Curriculum Module for 5 th Grade APPROVED BY SUPERVISING COMMITTEE: Supervisor: _______________________________________________ Clark R. Wilson Co‐Supervisor: _______________________________________________ John W. Holt

Mars North Polar Ice Stratigraphy Project: A Curriculum

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mars North Polar Ice Stratigraphy Project: A Curriculum

ThereportcommitteeforAugustineFaustinoChavez

Certifiesthatthisistheapprovedversionofthefollowingreport:

MarsNorthPolarIceStratigraphyProject:

ACurriculumModulefor5thGrade

APPROVEDBY

SUPERVISINGCOMMITTEE:

Supervisor:_______________________________________________

ClarkR.Wilson

Co‐Supervisor:_______________________________________________

JohnW.Holt

Page 2: Mars North Polar Ice Stratigraphy Project: A Curriculum

MarsNorthPolarIceStratigraphyProject:

ACurriculumModulefor5thGrade

by

AugustineFaustinoChavez,B.A.

Report

PresentedtotheFacultyoftheGraduateSchool

oftheUniversityofTexasatAustin

inPartialFulfillment

oftheRequirements

fortheDegreeof

MasterofArts

TheUniversityofTexasatAustin

August,2011

Page 3: Mars North Polar Ice Stratigraphy Project: A Curriculum

iii

MarsNorthPolarIceStratigraphyProject:

ACurriculumModulefor5thGrade

By

AugustineFaustinoChavez,M.A.

TheUniversityofTexasatAustin,2011

SUPERVISOR:ClarkR.Wilson

Co‐SUPERVISOR:JohnW.Holt

Thisreportisexplorestheneedforacurriculummoduleforlateelementary

schoolstudentsbylookingatwhatdrivesstudentinterestsandmotivationsin

pursuingcareersinthesciences.Thecurriculummodulecreatediscomposedof

visualaids,includingvideoanimations,a3‐Dscalemodel,andahands‐on,guided

classroomactivity.ExploringthestratigraphyonMarsPlanumBoreumnorthern

polaricecapusingradargramsfromtheMarsReconnaissanceOrbiterandmodeling

sublimationofCarbonDioxidewithadryiceexperiment,thecurriculummodule

willbetestedandimproveduponoverthenextacademicyearina5thgrade

classroomwithintentforsubmissiontoNASAforfundingandeventual

disseminationtothegeneralpublic.Thegoaloftheprojectistoaddnew,engaging

dimensionstospacescienceactivitiesandtounderstandingoffundamentalgeologic

principles,usingreal‐timeapplicationstofosterinterestandmotivatestudentsto

enterthefieldsofthegeosciencesinthefuture.

Page 4: Mars North Polar Ice Stratigraphy Project: A Curriculum

AspecialthanksgoestoDr.JackHoltandthegraduateandundergraduate

studentsinhislabforallthesupporttheyhavegivenmeinmyresearchpursuits

towardsthisdegreeandtowardsfruitionofthisproject.Iwouldliketothankthe

UniversityofTexasInstituteforGeophysicsandtheJacksonSchoolforGeosciences

forparticipatingintheUTeachSummerMastersProgramandallowingmetowork

withtheirfaculty,staffandresearchtools.ThanksmustalsobegiventoKathy

Ellins,whoprovidedmewithresourcesandsupportformaintainingstandards

alignmentandcurrentbestpractices.IwouldalsoliketothankDr.ClarkWilson

andDr.MarkCloosforallthesupporttheyhaveprovidedourcohortoverthe

courseofthisprogram.

Page 5: Mars North Polar Ice Stratigraphy Project: A Curriculum

TableofContents

I. Introduction................................................................1

A. ProblemStatement................................................1

B. PurposeStatement...............................................2

C. ResearchObjectives..............................................4

D. OrganizationofReport............................................6

II. ReviewofLiterature........................................................7

A. EducationalLiteratureReview.....................................7

B. MarsLiteratureReview..........................................17

C. ProjectLiteratureReview........................................20

III. Methods..................................................................22

A. ProjectActionPlan..............................................23

B. ProjectObjectivesandUnitOverview.............................23

C. Project/UnitComponents........................................25

IV. ReportandProjectResults................................................28

V. ConclusionsandSuggestedImprovements................................30

VI. ApplicationstoPractice...................................................31

Appendices....................................................................33

AppendixA...............................................................34

AppendixB...............................................................38

ReferenceList..................................................................39

Page 6: Mars North Polar Ice Stratigraphy Project: A Curriculum

1

I. Introduction

A. ProblemStatement

Almosteveryoneremembersplayinginthedirtasachild,buthow

manypeopleactuallytaketheirfascinationwiththeearthbelowthemand

transformitintoaprofessionalcareerlaterinlife?Manygenerationsofkids

haveenjoyedplayingoutsideasamateur“backyardscientists”,butan

increasingnumberofstudieshaveshownthatwiththeadvancementand

availabilityofnewtechnologies,kidsarespendinglessandlesstime

outdoorsandthusscienceliteracyandinterestingeneralisdeclining,

resultingin,amongotherthings,whatLouvhastermed“nature‐deficit

disorder”(Lowman,2006;Louv,2005).Forexample,asurveywasrecently

conductedintheU.K.thatfoundthat10yearolds,atthetime,couldidentify

manymorePokémon(videogame)charactersthannaturalhabitatfeatures

andorganismsintheirsurroundingenvironment(Balmfordet.al.,2002).

ResearchhasalsocometoshowthatinthelastfewdecadesintheUnited

Statestherehavebeensignificantlyfeweruniversitymajorsinthe

geosciencesthaninotherfieldsinscience(chemistry,physicsbiology),

althoughthereareoverwhelminglymorejobopportunitiesper4‐year

graduate(CenterforEducationalStatistics,2010;VanNorden,2002;

Holbrook,1997).Thesearejusttwoinitialexamplesprovingthatas

educatorsanduniversityresearchers,wemustfindmoreinterestingwaysto

capturetheimaginationsandinterestsofyounglearnersbyengagingthemin

Page 7: Mars North Polar Ice Stratigraphy Project: A Curriculum

2

real‐worldapplicationsofscience,ifweexpectthemtopursuedegreesin

science‐basedfields,letaloneinthegeosciences.Thequestionthenremains,

inthefaceofwavesoftechnologicaladvancement,howdowecreate

innovative,engagingandapplicablecurriculumthatwillfosterthenext

generationofgeoscientists?

B. PurposeStatement

Growingupanamateur“backyardscientist,”Ijumpedfromwanting

tobeanarchaeologist(digging)tobeingapaleontologist(dinosaurs),yet

enteringmyundergraduatestudiesasaproposedearthsciencemajorI

quicklylearnedthatIhadlittlebackgroundtotakeonthatspecificendeavor.

Eventuallydecidingtopursueenvironmentalstudiesandeconomicsasan

interdisciplinarycompromisebetweentheseeminglypracticalworldsof

businesswhileremainingtruetomydefenseoftheenvironment.NowIhave

foundmyselfinthelatterportionoftheUTeachSummerMastersprogramin

scienceeducationwithanemphasisingeosciencesandwonderhow,forme,

itallcamearoundfullcircle.Myexperience,thusfar,istantamounttobeing

alivingexampleofthestrugglesofearthscienceeducation,bothasastudent

andasaneducator.

Thisreportaimstodescribethegoalsofmypursuitsasaneducator,

whileoutliningmyproductsasaresultofcompletingmyresearchand

studieswithintheUTeachprogram.Overthecourseofthelastthreeyears,I

Page 8: Mars North Polar Ice Stratigraphy Project: A Curriculum

3

havefoundthatIbeganwithtrulylittleknowledgeofthegeosciences,even

asIamsupposedtobea“highly‐qualified”expertasapubliceducator.Itis

inthislightthatIexplorehowstudentscanbetterunderstandgeological

principalswithnewcurriculummoduleswhilebeingabletoreflectonmy

ownpersonalgrowthasaneducator/learnerinthisfieldofstudy.The

ultimategoalofthisreportistocreateaunitthatiscohesive,engaging,and

applicabletoreal‐worldsituationsthatarebeingresearchedbytop‐level

academicsaroundtheworld.Thisreportalsoattemptstoinvestigatethe

connectionsbetweenbasic(orcore)scienceeducationandthegeosciences.

Byquestioningwhystudentsfromgradesk‐12havelessexposuretotopics

ingeologicalsciences,howteachercontentknowledge(orlackthereof)can

influencethefuturepathsofScience,Technology,Engineering,andMath

(STEM)students,andwhattheacademicandprofessionalcommunitieshave

donetoaddresstheseissues,Iwillexploreapathtowardscreatingan

elementarygeosciencesprojectthatcontributesinaddressingdeficienciesat

theelementarylevelandattemptstogeneratemoreinterestinthefield

amongbothteachersandstudents.

Myoverarchinggoalsinthisentireprogramhavealwaysbeentofind

commonthemesthroughk‐12educationandthefurtheringofgeoscience

education,giventhatisthescopeandultimategoaloftheprogram.

Therefore,Ihaveworkedtoaligntheunitwithnationalandstatestandards

Page 9: Mars North Polar Ice Stratigraphy Project: A Curriculum

4

aswellaswithresearch‐baseddesignperspectivesinbothteachingand

learningpractices.

C. ResearchObjectives

EducationalResearchObjectives

Theeducationalresearchobjectivesaretoinitiallyexaminewhythere

isalackofinterestinthefieldsofgeosciencesandwhyarek‐12studentsless

effectiveintopicsofEarthScienceatthelocallevel,aswellasinvestigating

whatfactorscontributetotheperceivedlowinterestinundergraduate

studiesinthegeosciences.Objectivesalsoincludeexamininghowteacher

preparednessandcurriculumavailabilityaffectstudentperspectivesand

interests,aswellasteacherperspectivesandinterestsinearthsciences.

Lastly,todevelopaneffectivecurricularmodel,researchobjectivesmustalso

includeanexaminationofwhatstudentsknowaboutstratigraphyandmore

specificallythelawofsuperposition.

ScientificResearchObjectives

FormytimespentpreparingthecurriculummoduleinDr.J.W.“Jack”

Holt’sMarsLab,therearemultiplequestionsthatarebeinginvestigated

acrossresearchareas.Frommyshorttimeandexperienceworkingwiththe

analysistoolsinthelab,Iwilldevelopthecurricularmodulesothatit

Page 10: Mars North Polar Ice Stratigraphy Project: A Curriculum

5

accuratelyreflectsandisbasedupontheworkthatisbeingconductedinthe

lab.

SomeoftheoverarchingobjectivesthatguidetheresearchinDr.

Holt’slabinclude:

1) Whatgeomorphologicalprocessesledtothecurrentdominant

formationsfoundonthepolaricecapofMars(PlanumBoreum)?

2) Howdoesunderstandingtheformationofthepolaricecapgiveus

insightintothepaleoclimateonMars?

OverallProjectResearchObjectives

Toachievethefinalproductforthedevelopmentofthecurriculum

unitandmastersreportcompletionImustkeeptheseoverallresearch

objectivesinmindasIproduceafinalsuiteofactivitiesforuseinthe

classroom:

1)HowcanIusewhatIlearninmylabexperiencetomybenefitasa

teacherandforthebenefitofthestudents?

2)HowcanIimproveuponmyowncontentknowledgeandpedagogy

intheclassroomtohelpstudentsmoreeffectivelyidentifyand

understandgeologicalprocessesonEarth?

Page 11: Mars North Polar Ice Stratigraphy Project: A Curriculum

6

D. OrganizationofReport

SectionIIofthereportcontainsbackgroundinformationasthe

foundationforcreatingtheeducationalmoduletobeusedintheclassroom.

First,educationalliteraturerelatingtostudentperspectivesandinterest

towardstopicsingeoscienceswillbeexplored.Second,literature

investigatinghowteacherprofessionaldevelopmentinfluencespedagogical

contentknowledgeandcontentdeliveryandhowstudentsformulate

abstractandconcreteconceptsinthescienceclassroomwillbeinvestigated.

ThelatterportionofsectionIIwillbrieflyreferencescientificliterature

appropriatetoresearchconductedintheMarslabthatwillaidtheunit.In

thecontextofthestratigraphyactivity,literaturedefendingthebenefitsof

usingvisualanimationstoexplainabstractconceptswillbeincluded.Section

IIIwillfocusonthemethodologyofdesigningtheunitandgatheringdatafor

eachspecificcomponentofthemodule.SectionIVwilldetailtheresultsof

designingtheprojectthusfaraswellaspossiblefuturedevelopmentand

additionalresourcesthatwillbelinkedtothemodelasitisexpanded.

SectionVwilldetailconclusionsaftercompletionoftheproject,aswell

describinghowtheprojectrelatestothelargerresearchquestionsposedin

thisreport.Thefinalsection(VI)willpresentadiscussionofhowthe

curriculummodelcanbeappliedtopractice,aswellasareflectionuponthe

professionalgrowthanddevelopmentIhaveexperiencedthroughmy

participationintheUTeachprogram.

Page 12: Mars North Polar Ice Stratigraphy Project: A Curriculum

7

II. ReviewofLiterature

A. EducationalLiteratureReview

Notmanywilldisagreethatscienceshouldbetaughtatanearlyage.

EshachandFreid(2005)stressthatteachershaveanarrowwindowthat

mustbetakenadvantageofinearlychildhoodeducation,wherethechild’s

conceptualmodelsofscientificconceptsaregovernedbyanaturalwonder

andwillingnesstoexploretheirsurroundingsthroughplayandguided

activities.Theauthors,throughtheirresearch,initiallyquestionhowearlya

childshouldbeexposedtoscientificthinkingandinquiryandwhetherthis

negativelyinfluencestheirpreconceptions,potentiallyleadingto

misconceptionsthatmightbehardtoundolaterinformaleducation.They

ultimatelyconclude,throughaVygotsky‐inspiredsocialconstructivist

frameworkwhichimpliesthatchildren,throughplayandsocialization,will

createandorganizetheirownconceptionsoftheworldaroundthem

(Vygotsky,1978);thatexposuretoscientificlanguageandconceptsatan

earlyageallowstheyoungstudenttoconstructtheirownscientific

understanding,suchthatwhentheyencountertheconceptagain,theywill

recognizetheverbal,non‐verbalandvisualrepresentationslearnedbefore

and,overtime,makesenseoftheirnewconceptionsbybuildingontheir

priorexperiences,ultimatelyincreasingthechancestheywillinternalizethe

correctrichand/orcomplexscientificconcept(EshachandFreid,2005).Yet,

theycautionthattheyoungerthestudent,themore“scientifically‐correct

Page 13: Mars North Polar Ice Stratigraphy Project: A Curriculum

8

guidance”theywillneedfromtheteachertopreventtheunnecessary

developmentofmisconceptions,whichIbelieveistheoverarchingdutyof

theeffectivescienceteacherregardlessofastudent’sage.Overall,the

authorsprovideasufficientargumentfordevisingandteachingengaging,

andconceptuallyrichscientificcontenttoelementarychildrenofallages.

Strikingly,whenagroupof37scientistsandengineersweresurveyed

astowhatinfluencedtheirdecisionstoenterascience‐basedcareer,allbut

onecitedtherelationshipsbuiltthroughin‐schoolexperienceswith

‘motivating’teachersandprofessorsand‘engaging’sciencecontent(Joneset.

al.,2011).IncorporatingtheconstructivistframeworkofVygotsky(1978)

andtheself‐determinationframework,asdetailedbyDeciet.al.(1991)and

others,Joneset.al.concludesthattherearemanyvariablesthatinfluencean

individualsdecisioninselectingacareerpath,includinginterpersonal

relationships,science‐relatedexperiencesinandoutofschool,and

opportunitiestobuildinterestsautonomouslyandindependentoffamily

membersandteachers(G.Joneset.al.,2011).Whatcanbegatheredfrom

thisresearch,inthecontextofthisreportandproject,isthatweasteachers

mustofferopportunitiesinandoutoftheclassroomforstudentstoengagein

science‐richexperiences,wheretheycandeterminetheirownmotivations

andinterests,whethertheybescience‐basedornot.Theauthorsstatefrom

thebeginning,“wedon’tthinkwecanreallytrytomoldpersonalitiesin

ordertomakescientistsanymorethanwecanmoldsomeonetobeagood

Page 14: Mars North Polar Ice Stratigraphy Project: A Curriculum

9

artist”(G.Joneset.al.,2011).WhileIagreecompletely,Ifeelthatas

educators,wemuststrivetoprovidepositivementor/studentrelationships,

engagingin‐schoolandafter‐schoolscienceexperiences(suchastheHarold

Jones4‐HGeologyproject;seeUnderwood,2001),andencouragefamily

participationintheirchildren’sscienceexperiencesbothinandoutofschool.

Therefore,itiscriticalthatteachersandprofessorsatalllevelsof

educationfrompre‐Kthroughcollege,butespeciallyattheprimarylevel,

incorporateengagingearthandspacesciencerelatedactivitiesintotheir

classroomteachingtofosterinterestandfamiliaritywiththeconceptstheir

studentswillencounterthroughouttheirpre‐collegeandcollegeschooling,

withtheultimategoalofpotentiallyproducingmorestudentspursuing

careersinthedifferentfieldswithinthegeosciences.

Manyteachers,althoughqualifiedtoteachtheirgradelevels,

generallyfeeluncomfortablewhenitcomestotheirownprofessional

pedagogicalcontentknowledge(orPCKasreferredtobyShulman(1986)),

inearthsciences.Thus,manyrefrainfromteachingintheseareasinany

detailbeyondwhatisrequiredbylocalandstatestandards.DavisandPetish

(2005)arguethatalthoughateacher’sscientificunderstandingiskeyto

teachingscience‐basedlessons,thatteachersmustalsohavepedagogical

competencyinleadingengagingandcontent‐richsciencelessons

incorporatingcorrectinstructionalmethodsandrepresentations(pg.282).

Whenexaminingtheinstructionalmethodsofdifferentpairsofteachersin

Page 15: Mars North Polar Ice Stratigraphy Project: A Curriculum

10

theirstudy,theauthorsfoundthatthemoreteacherpairsknewaboutthe

subjectmatter(i.e.sciencecontent)indepth,thebetterequippedtheywere

atteachingthesubjectmatter,resultinginamoreeffectiveandlearning

experienceforthestudentsintheirclasses(DavisandPetish,2005).Thus,it

isveryimportantforscienceeducators,atallexperiencelevels,toengagein

arangeofprofessionaldevelopmentopportunitiestolearnhowtooffer

effectivesciencecontentknowledgeandinstructionalmethodswhen

teaching.Theauthorsalsopointoutthatanimportantconclusionoftheir

researchisthatteachersmustalsolooktowardsapplyingtheir

understandingusingreal‐worldcontextsandapplications,whichisa

commonthemefoundinmanyofthestudiescitedinthisreport.

ParticipatinginmodelprogramssuchastheNationalScience

Foundation‐fundedGraduateTeachingFellowsinK‐12Education(GK‐12)

programisjustoneexample(asidefromtheUTeachSummerMasters

Program),wheregraduatestudents,universityresearchers,professors,K‐12

educatorsandcommunitymembersworktogetherinaneffectiveoutreach

programthatintegratesgraduateeducation,teaching,anduniversity

researchintothe“everydayscience”classroomexperiencesofpre‐college

students(TrautmanandKrasny,2006).Inprogramslikethis,partnerships

arebuiltencouragingcollaborationandpre‐collegestudentparticipationin

graduate‐levelresearch.Anevaluation,citedbyTrautmanandKrasnyasa

positiveeffect,byMitchellet.al.(2003)showsthat“thestrongestimpactsof

Page 16: Mars North Polar Ice Stratigraphy Project: A Curriculum

11

theGK‐12programwereincreasedcontentknowledgeforteachers,positive

rolemodelsforK‐12students,strongerrelationshipsbetweenschoolsand

universities,andimprovedcommunicationandteachingskillsfor

[participatinggraduate]fellows”(TrautmanandKrasny,2006).Although

thispaperfocusedmoreontheprogram’seffectsongraduatestudents

effectivenessatpedagogicalpracticesandcontentdelivery,itoffersprofound

insightsintothefutureroleofteacherprofessionaldevelopment

opportunitiesaswellasuniversityandgraduate‐leveloutreachprogram

modelsinthepre‐collegeclassroom,whichcanfosterinterestand

motivationinthesciencesforbothclassroomteachersandstudents.The

GK‐12programaswellastheUTeachSummerMastersProgram,bothoffer

directopportunitiesfortheapplicationof“real‐world”and“everyday”

scienceexperiencesinandoutoftheclassroomforteachers,professors,

researchers,andpre‐collegeandcollege‐levelstudents.

Itisalsotheninterestingtolookattheimpactingresultsofmasters‐

levelcoursesoneffectivepedagogicalcontentknowledgeandstudent

science‐contentknowledgeandachievement,whichhavealsobeen

supportedbyresearchinotherpartsoftheworld.PomboandCosta(2009)

studiedtheimpactofmasters‐levelgeologycoursesontheimprovementof

scienceeducationinPortugalandfoundthatpostgraduateeducationhada

significantimpactontheprofessionalpracticesofthestudysample,which

includedpracticingpre‐collegescienceeducatorswhoobtainedmasters

Page 17: Mars North Polar Ice Stratigraphy Project: A Curriculum

12

degreesoverafive‐yearstudy(p.40).Theauthorsfoundthatmanyoftheir

respondentsexpressedincreasesin“criticalreflectionabouttheteaching

andlearningprocess,theuseofdiverse(ornew)teachingstrategies,[and]

bettereducationalknowledgewhileteaching”(PomboandCosta,2009).

Theyalsostressedupontheimportanceofeducatoraccesstocurrentpeer‐

reviewedresearch,askeytoindependentandcollaborativeprofessional

developmentopportunities.Onlybysharingthewealthofknowledgeand

educationalresearchwiththeeducationcommunityatlarge(orasissaid“in

thetrenches”),willwebeablegroweducatorsinourfieldtobetrulyefficient

andeffectiveinthedynamically‐changing21stcentury.

Inthisdayandage,itisveryimportantforbothteachersandstudents

toknowaboutandunderstandtheenvironmentweinhabit.Modern

challengesfacingoursocietynecessitatethatourstudentsbecomethenext

generationofproblem‐solversandrationalthinkerstoresolvecurrentand

futureissuesrequiringgeologicalinputandexpertise.Waterqualityissues

andpopulationgrowth,riskmanagementandpollutioncontrols,

environmentalqualityandland‐useanddevelopment,aswellaspetroleum

andnaturalgasinfrastructuremanagement,allentailutilizingvariousskills

drawingfromthegeosciences.Inthisrespect,theredefinitelyareeconomic

justificationsandincentivesforpursuingacareerinthegeoscienceslaterin

life,asvanNorden(2002)notesthatrecentBureauofLaborstatisticsshow

thatthecurrentgeosciencegraduatehastentimesthenumberofjobs

Page 18: Mars North Polar Ice Stratigraphy Project: A Curriculum

13

availabletothemafterreceivinganundergraduatedegree,comparedto

othersciences(physics,chemistry,biology).Somewherealongtheline

though,asHolbrook(1997)pointsout,particularlyinhighschool,students

havelessexposuretosciencetopicsbasedinthegeosciences,optingforthe

traditionalphysics,chemistry,andbiologytracks.Thequestionthatisraised

isthis:doeslessexposuretocoursesingeologyandearthsciences

throughoutone’spre‐collegeschoolingtranslatetofewerstudentsenrolling,

graduatingandultimatelypursuingacareerinthegeosciences?Thisreport

cannot,anddoesnot,attempttoexhaustivelyanswerthisquestion,butaims

tohighlightinterestingtrendsandgenerateideasabouthowtoengender

futuregrowthwithintheearthscienceeducationcommunityandimprove

communicationbetweenacademicresearchersandprofessionaleducators.

Toexploretheabovequestionswemustlookatwhatdeficiencies

existinthecourseofferingsatthepre‐collegelevelstoseehowthatmay

influenceretentionratesinuniversityenrollment.Althoughgeneralizeddata

forpre‐collegecourseofferingsacrossthenationarenotreadilyavailable,

professionalorganizationsliketheAmericanGeologicalInstitute(AGI)

provideaninsightintocurrenttrendsinK‐12geoscienceeducation.Most

stateshavestudentsmeettheirearthsciencerequirementsin6thgrade,and

roughlyhalfincludeearthscienceintheircurriculumrecommendations,yet

only7(asof2007)requiringhighschoolearthscienceasarequirementto

graduate.In2005,23%ofhighschoolgraduateshadtakenageology‐related

Page 19: Mars North Polar Ice Stratigraphy Project: A Curriculum

14

course,comparedtocoursesinotherscienceareas(95%inbiologyand66%

inchemistry)[seefig.1](AGI,2009).Manytimes,asmentionedbyvan

Noorden(2002),motivatededucatorscreatetheirownhigh‐schoollevel

curriculumbasedofftextbooksdesignedformiddleschoolclassroomswith

mostcoursesareofferedasone‐semester,half‐creditelectives.

Thus,itseemsnotasurprisetoinfercorrelationbetweendeficiencies

inhighschoolcourseofferingswithlowercollegeenrollmentratesand

subsequentgraduationrates(figures2and3,respectively).Aseducators,

wemustunderstandthatthereisa‘contentgap’inhighschoolthatmustbe

addressedandtargeted.Essentially,therecannotbeanexpectationof

studentinterestinpursuingthefieldincollegeifthestudenthasnotbeen

exposedtoearthscienceconceptsinanydepthafterthe6thgrade.

Figure1:PercentageofU.S.HighSchoolGraduatesTakingScienceCoursesinHighSchool(1982‐2005).(AGI,2009).

Page 20: Mars North Polar Ice Stratigraphy Project: A Curriculum

15

Figure2:USGeoscienceDegreeProgramEnrollments(1955‐2007)

Figure3:Degreesinchemistry,geologyandearthsciences[highlightedinreds],andphysicsconferredbydegree‐grantinginstitutions,bylevelofdegree:1970‐2009.CenterforEducationalStatistics,2010.

Page 21: Mars North Polar Ice Stratigraphy Project: A Curriculum

16

Nowthatwegenerallyhaveanideahownationalhighschool

offeringsstand,itisimportanttoacknowledgethatTexasisquickly

becomingthenationalmodelforScience,Technology,Engineering,andMath

(STEM)education.Withinthelastfiveyears,theTexasStateBoardof

Educationhasadoptedstandardsforanearthandspacesciencecapstone

course,offeredinthesenioryearasaninterdisciplinarycoursethatrequires

priorcompletionofbiology,chemistry,andphysics.Thecourseisbeing

offeredasafinalpartofthe4x4sciencerequirementandfulfillsacomplete

yearcoursewithfullcreditstatus.Thiscapstonecourse,firstofferedinthe

2010‐2011academicyear,isexactlythetypeofcoursethatcanfillthe

‘contentgap’describedaboveandcanserveasaspringboardintoentering

thedegreeprogramincollege.OrganizationssuchasDIGTexas(Diversity

andInnovationforGeosciencesinTexas)andhighereducationinstitutions

likeUTandtheirUTeachprogram,aswellasprofessionaldevelopment

programsliketheTexasEarthandSpaceScience(TXESS)Revolution,are

nowallworkingtopreparecompetentteacherswhocanadequatelyteach

theadvancedgeosciencecoursesnowavailabletostudents.

Wemustalsolooktohowprofessionalgeosciencesorganizationsare

respondingtotheseeminglackofoverallpositivegrowthinthefieldacross

thecountry,incomparisontoothersciences.Organizations,suchasthe

AmericanGeologicalInstituteandtheGeologicalSocietyofAmerica,know

thattheacademicandprofessionalcommunitiesmustallcometogetherto

Page 22: Mars North Polar Ice Stratigraphy Project: A Curriculum

17

grownewleadersandbringinfreshperspectivestoremainontheforefront

ofgeoscienceresearchanddevelopment.LookingatthemostrecentGSA

draftedpositionstatement,itiseasilyunderstoodthatteachingearthscience

acrossallgradelevelsiscriticaltothedevelopmentofSTEMeducationand

geosciencesresearch,aswellasservesasaneededframeworkinwhichto

understandandinvestigatehowEarthworksasasystemandhowhumans

interactionswiththeEarthsysteminfluencesfuturesocietaldecisions(GSA,

2011).OrganizationslikeAGIandGSAmustcontinuetodirecttheir

memberstowardsparticipatingineducationaloutreachanddevelopment

opportunities,maintainingthatparticipationbytheacademiccommunityis

criticaltothepromotionofacomprehensiveearthsciencecurriculuminour

schools.Targetingthedeficienciesfromallangles(students,parents,

educators,researchers,professors,communitymembers,etc.)willbethe

quickestandmosteffectivewaytoimprovedeliveryoftheearthscience

content,teacherpedagogicalcontentknowledge,andcross‐discipline

partnershipsacrossalllevelsofeducation.

B.MarsLiteratureReview

Mars,knownalsoas“theredplanet”,whileonlyroughlyhalfthesize

ofourEarth,hascapturedtheimaginationofhumanbeingsonourplanetfor

centuries.Eventheword“Martian”suggeststhelittlegreenextra‐terrestrial

beingssaidtocomefromtheneighboringplanet.Asidefromthecultural

Page 23: Mars North Polar Ice Stratigraphy Project: A Curriculum

18

connectionswecandrawfromtheredplanet,thereisawholeworldof

scientificinformationandinsightwecangainfromstudyingourneighbor.

EventhoughVenusisclosertoEarththanMars,thelatterhasamuchmore

hospitableenvironmentforcontinualstudyandpotentialtravelinthefuture.

Formed~4.6billion(bn)yearsago,Marsisthirdofthefour

‘terrestrial’planetsfromtheSun.With50%oftheMartiansurfaceestimated

tobemorethan3.8bn.yearsold,comparedto99%ofEarth’ssurfacebeing

lessthan2bn.yearsold,whatwefindonMarsisaplanetaryalmanacof

informationthathelpsusunderstandthehistoryofouruniverse,thesolar

system,andofourownplanet’spastandpotentialfuturedirection.

WhileMarsisacloseanalogtoourownplanet,therearemany

characteristicsandphenomenathatmaketheplanetverydifferentfrom

ours.Theplanetlostmostofitswaterandcarbondioxideduringaccretion

andthroughitstumultuous,andstilllargelyunknown,volcanichistory.It

hasalowgravity(~4/10thofEarth’s),lacksamagneticfield,andhassuffered

abombardmentofmeteoricimpacts,towhichwecanlooktothesurfacefor

evidence.OnethingwedoknowisthatMarshasbeenthroughalotof

changeoveritsexistence.Theplanetarysurfacethusactsasapuzzlingroad

maptowhatoccurredinitspast,intermsofMartiangeomorphologyand

Page 24: Mars North Polar Ice Stratigraphy Project: A Curriculum

19

paleo‐climate,whicharebothunderhighlycontentiousdebateamong

scientiststoday.1

TheareaoffocusforthispaperisMarsPlanumBoreum(fig.4),which

isthenameforthenorthernpolaricecapthatsitsupontheVastitasBorealis

Formationinthenorthernplains.Byrne(2009)eloquentlysummarizes

recentadvancesandcurrentresearchonthepolardepositsonMars,and

servestosupporttheuseofthenorthernpolaricedepositsasacloseanalog

forunderstandinggeologicprocessesfoundonEarthwhilelearningabout

thecomplexitiesoftheMartiansystemina“uniqueblendofthefamiliarand

theexotic”(pg.83).

Figure4:MarsPlanumBoreum:NorthernPolarIceCap(ImageCredit:NASA/JPL‐Caltech/MSSS)

1MoredetailedplanetarydataandhistorycanbefoundinF.Forgetet.al.,PlanetMars,StoryofAnotherWorld(Chichester:PraxisPublishing,2008)andW.Hartmann,ATraveller’sGuidetoMars(NewYork:WorkmanPublishing,2003).

Page 25: Mars North Polar Ice Stratigraphy Project: A Curriculum

20

Thecurrentresearchfindingsthatformtheunderlyingframeworkfor

understandingthehistoryofMartiansurfacetopographyandaidsinthe

teachingofprinciplesofstratigraphyaredefinitelyinterestingand

informative.2Holt(2009)describesinhisfindingsthatthestratigraphic

recordonMarsshowsthatthroughplanetarylong‐termandlarge‐scale

processes,irregularepisodesofdepositionanderosionhaveledtothe

uniqueformationofthepolaricecap(pg.449).Thoughatthefifthgrade

level,detailingthetechnicallycomplexaspectsofradarstratigraphyand

Martianplanetarygeomorphologyhavebeendeterminedtobeabit

advancedandcouldleadtoconfusionwhentryingtofocusonbasic

principlesofsuperposition.Yet,thereisnodisagreementthatwhenthe

projectisexpandedtohighergradesanddifferentactivities,itisimperative

toincludetopicsofclimate,planetaryobliquity,andcomplexdepositional

anderosionprocesses,towardsunderstandingtheentireMartianstory.

C.ProjectLiteratureReview

Tocreateaprojectthatutilizescurrentscientificresearchinengaging

andinnovativeways,digitaltechnologymustbeembracedinthe21stcentury

classroom,inmuchofthesamewayasitisintheacademicresearchand

professionalenvironments.Whendevisingtheprojectcomponentsitis

2FormoreinformationonthetechnicalaspectsoftheMartianpolardeposits,radarstratigraphy,andcurrentresearchfindingssee:Byrne,2009;Holt,2010;Putziget.al.,2009;Phillipset.al.,2008;NunesandPhillips,2006.

Page 26: Mars North Polar Ice Stratigraphy Project: A Curriculum

21

necessarytothinkaboutthedifferentcapacitiesinwhichstudentslearnas

wellaswhatresourcesweaseducatorshaveaccessibletous.Thus,in

creatingtheprojectIaimtoutilizetechnologyresourcesthatarereadily

availableintheeverydayclassroomenvironment,chiefly:videoanimations,

downloadablehigh‐resolutionimages,informationalvideos,andinternet

web‐quests.TocreatethefullyeffectiveMarsNorthPolarIceStratigraphy

Project,itwillbeimperativetounderstandhowstudentsinterpretabstract

vs.concretemodelsinscience,andhowtheirconstructedrepresentations

influencetheirachievementandunderstandinginearthandspacesciences.

Muchresearchhasbeendoneonthepositiveandnegativeinfluences

oftechnologyinthe21stcenturyscienceclassroom.KaliandLinn(2008)

foundthattechnology‐enhancedvisualizationsgreatlyaidintheprocessof

scientificinquiryintheclassroom,especiallywithrespecttoaccurately

learningcomplexabstractmodels(pg.181).BarakandDori(2011)

quantitativelyshowthatanimationsattractivelyillustrateconcreteand

abstractmodels,enhancingstudentconstructionofinternalscientific

conceptions,fosteringmotivation,exploration,andnaturalinterestinthe

topicstudied.Lastly,incorporatingvisualizationsintospacescience

educationassistsintheteachingofcomplexphenomenainascientifically

correctmanner(Yair,Schur,andMintz,2003).

Page 27: Mars North Polar Ice Stratigraphy Project: A Curriculum

22

III. Methods

A. ProjectActionPlan

InworkingwithDr.HolttocreatetheMarsPolarIceStratigraphy

Projectwefirsthadtodeterminethemainobjectives,outline,and

organizationoftheentireunit.Afterdeterminingthoseaspectsitwas

importanttogatherthephysicalcomponentsandtechnologicalresources

usedtocreatethemodel.Next,itisessentialthattheentireprojectalign

withnationalscienceeducationstandardsaswellasthestatestandards,the

TexasEssentialKnowledgeandSkills(TEKS)[seeAppendixBfortheTAKS

questionusedtobaseunit],andtheAmericanAssociationforthe

AdvancementofScience’s(AAAS)“Project2061.”Theunitwillbetestedin

two5thgradeclassesoverthe2011‐2012academicyear,inaccordancewith

humansubjectsresearchthroughtheInstitutionalReviewBoard(IRB)of

AustinIndependentSchoolDistrictandtheUniversityofTexas,Austin.After

initialtestingincorporatingmethodsfromlessonstudydesignthemodelwill

beevaluatedandimproveduponforitseffectiveness.

Oncetheprojectistested,evaluatedandimproved,thegoalisto

preparetheprojectfor:

• Presentationatscienceeducationconferences(CAST,NSTA).

• Submissionforpeerreviewinearth/geoscienceseducationjournals.

• GrantdevelopmentforunitproductionwithNASAandNSF.

Page 28: Mars North Polar Ice Stratigraphy Project: A Curriculum

23

B. ProjectObjectivesandUnitOverview

OverallProjectObjectives:

1) Reinforcethecore,underlyingconcept:theprincipleof

superpositioninsedimentarystratigraphy.

2) UsethesurfaceofMarstoexploreandunderstand:

• Fundamentalgeologicalprocesses(deposition,erosion,

weathering)onMarsandEarth.

• ExploreMartianclimatehistoryandiceprocesses

(atmosphericeventsandwind‐drivenmechanisms).

3) Explorecurrentresearchandtechnologyusedtogatherdataon

thesurfaceofMars,suchastheMarsReconnaissanceOrbiter

(MRO).

4) IncorporateprinciplesofUniversalDesign,EarthScience

Literacy,anddigitaltechnologiesthroughoutunit.

ModelUnitOverview:

BeginbyintroducingMarsandnorthernpolaricewithhigh‐

resolution(Hi‐Rise)imageryandwithGoogleEarthandGoogleSky.Explore

theconceptsofdepositionandsuperpositionunderidealconditionsusing

informationalvideosandinteractivewebsiteslikeBrainPop.Leadaclass

Page 29: Mars North Polar Ice Stratigraphy Project: A Curriculum

24

discussionabouttheconnectionswehavehereonEarthbetweenclimate

andregionalvs.globalprocesses.

Introducetheidealstoryofthedome‐likeformationoftheMartianice

capandextendtheactivitywithahands‐onexperimentputtingdifferent

layersofcoloredsandinaclearcup.Discusshoweachgroup’scupmight

looksimilarordifferent.Askwhyonegroup’scupmightbedifferentthan

thenextandmaketheconnectionbetweenepisodesofdepositionand

erosion.Thiscouldevenextendintotheconceptoflarge‐scalecatastrophic

eventsthatmightinfluencethestratigraphiccolumn.Withtheclassreview

theoverallshapeofactualMartianpolaricecap.Whyisitnottheideal

shapeofthepreviousstudieddome?Whatmightthelayerstellusaboutits

uniformorirregularstratigraphyincertainareas?

Introducevisualanimationsandmapexplorationprovidedinthe

projectandbrieflydiscusshowtheradarstratigraphydataiscollectedand

howitgetsfrombeingaradarsignaltotheradargramusedtointerpret

stratigraphichorizons.ThiswouldleadintotheSHARADradargram

interpretationactivityandareviewoftheconceptthatlayersare

“snapshots”intime.Endthismodelunitwithanexperimentexploring

sublimationofCO2iceonMarsandhowsublimationdiffersfrommelting

ofwaterice.Recordallconceptinformation,vocabulary,labworkand

studentconclusionsininteractivesciencenotebook.

Page 30: Mars North Polar Ice Stratigraphy Project: A Curriculum

25

C. ProjectComponents

1. VideoAnimationofMarsPlanumBoreumandtheMars

ReconnaissanceOrbiterfromtheNASAJetPropulsionLaboratory

andfromtheHoltMarsResearchGroup;(alsouseGoogleEarthand

GoogleSkytoprovidecontext).Thiswillaidinthedevelopmentof

understandingandcontextualizingcomplexideasthroughanimated

visualizations,assupportedbyfindingsintheliteraturereview.

Figure5:ScreencapturesofvideoanimationexplaininghowtheMarsReconnaissanceOrbiter(MRO)collectsradarinformationandhowradargramsareproduced(NASA/JPL/Cal‐Tech/EricDeJong)

Page 31: Mars North Polar Ice Stratigraphy Project: A Curriculum

26

2. A3‐D“hands‐on”physicalmodelofthenorthernpolaricecapand

intermediatehorizons,ineffect,peelingbackthevariousepisodes

ofdepositionanderosionthroughMartiangeologictime.Thiswill

providestudentswiththeopportunitytotouchandfeelthehands‐

onmodel,asanotherwayofusingvisualizationstocreate

understanding.

Figure6A:Initial3‐DScaleModel,sampleimageusingFledermaus.(J.Holt)

Figure6B:Secondary3‐DscalemodelimageusingRapidForm. (CourtesyofB.Nachmann)

Page 32: Mars North Polar Ice Stratigraphy Project: A Curriculum

27

3. Find3‐6MarsReconnaissanceOrbiter(MRO)ShallowRadar

(SHARAD)imagesforRadargramInterpretationactivity(see

AppendixAforexampleradargraminterpretationlesson).

Figure7:SHARADDepthCorrectedImage,sampleradargramforuseinactivity(seeappendixA).(SHARADTeam)

4. CreatetheDryIcevs.WaterIceSublimationexperimentaligned

withnationalandstatestandardsandcreatedusingtheGEMS“Dry

IceInvestigations:forGrades6‐8”manualfromtheUniversityof

California,Berkeley,LawrenceHallofScience.Thiswillaidinthe

learningabouttheprinciplesofsublimationandallowthestudent

tounderstandthatCO2icehasdifferentpropertiesthanwaterice.

Figure8:ExampleofDryIceSublimationvs.MeltingWaterIceExperiment(SurfingScientist;ABCScience)

Page 33: Mars North Polar Ice Stratigraphy Project: A Curriculum

28

IV. ReportandProjectResults

Byprovidingengaging,technology‐rich,collaborativeandhands‐on

activities,baseduponreal‐worldapplicationsofcurrentscienceresearch,

educatorscanfosterstudentinterestandnurturepotentialfuture

geoscientists.Teacherimplementationofcurricularmodels,suchastheone

proposed,aswellasparticipationinprofessionaldevelopmentprograms

integratinggraduate‐levelresearchinthe‘everydaypre‐collegescience

classroom,’increasespedagogicalcontentknowledgeandconfidencein

teachingearthandspacescienceconcepts(TrautmanandKrasny,2006;

PomboandCosta,2009).

Thismodelunitprovidesafundamentallydifferentapproach,

representingthefutureofcurriculumdevelopmentinthesciencesandthe

switchtowardstechnology‐drivencurriculumunitstoexplainbothconcrete

andabstractmodels.Itwasdeemedabsolutelynecessarytomakesurethe

modelunitisclassroom‐tested,withtwosubjectgroups(N=60)toprovide

credibilityandalignmentwithIRBprotocolandquantitativeanalysis

methods.Evaluationandimprovementswillbemadeundertheguidanceof

Dr.Holtandpotentialcontactswithotherteacherstestingthemodeland

expertsintheresearchlab.

Thegoalfortheentireprojectremainspresentationandsubmission

toNASAforfundingundertheirEducation/PublicOutreach(E/PO)grants

programaswellastotheNationalScienceFoundationfordisseminationto

Page 34: Mars North Polar Ice Stratigraphy Project: A Curriculum

29

theeducationalcommunityandpublicatlarge.Effortsmustalsobeguided

towardseducationandoutreachwiththeaimatofferingthecurriculumto

schoolsacrossthecountryinconjunctionwiththeUTJacksonSchoolandthe

UniversityofTexasInstituteforGeophysics(UTIG)andthroughparticipating

partnerinstitutions.

Page 35: Mars North Polar Ice Stratigraphy Project: A Curriculum

30

V. ConclusionsandSuggestedImprovements

Inorderforthisprojecttofullybeeffectivetheremustbean

expansionofactivitiesthatcanbeutilizedbystudentsindifferentgradesand

withdifferentlevelsofdifficultyandcomplexity.Inaccordancewith

UniversalDesignPrinciples,nationalandstatestandards,aswellascurrent

bestpractices,differentiatedinstructionalactivitiesmustbeincorporatedto

provideactivitiesaccessibletoarangeoflearners,fromEnglishLanguage

Learners(ELLs)toGiftedandTalentedstudents.

IdeasforConsiderationinFutureIterations:

1. 5th‐8thGradefocus:StratigraphyandSublimationexpansion

2. HighSchool:Stratigraphy,SublimationandCO2IceMigration,MRO

SignalReturnTime/Distance(MathIntersection),ClimateActivities,

ComplexRadargramInterpretation,complexNPLDGeomorphology

studies,erosionanddepositionmechanisms,labvisits/partnerships

3. IncorporatingactivitiesfromNASA,theJetPropulsionLaboratory

andArizonaStateUniversity(ASU)toprovideacross‐subject

interdisciplinarycomponent,who

Page 36: Mars North Polar Ice Stratigraphy Project: A Curriculum

31

VI. ApplicationsToPractice

Thespecificapplicationtopracticeofthisunitistodesignatangible,

standardsandresearch‐basedunit(withroomforexpansion)forstudentsto

learninanengagingandhands‐onwayaboutfundamentalconceptsin

stratigraphyusingtheMarsNorthPolarLayeredDeposits.Withpotential

fundingfromNASAeducationgrants,thegoalistopresentthiskitoutat

conferencesandtoteachers.AnothergoalistoprovideDr.Holt’slabwith

educationaloutreachresourcesthattheycanusetoteachk‐12students

abouttheirworkonMars.

Theopportunitytodevelopthisprojectintoafullyfunctioningunit

thatcaneffectivelyteachconceptsinearthandspacescienceinanengaging

wayisadreamcometruetome.WhenIfirststartedthisprogramthree

yearsago,IneverthoughtIwouldabletoparticipateandlearnfromDr.Holt

andhisresearchteam.WorkingintheUTeachprogramhasgivenan

‘everydayclassroomteacher’likemeaonceinalifetimechancetoworkina

graduatelaboratoryconductingreal‐world,cutting‐edgeresearch.Even

thoughIcan’tdirectlycontributetothegraduateresearch,ithasbeensucha

fantasticlearningexperiencetobeexposedtocurrentfindings,fromgracious

andsupportivegraduatestudentsandmyhelpfulsupervisor.

NowitismyturntotakewhatIhavelearnedandapplyittothe

classroom.Iwillworktowardstakingmyexperienceinthisprogramand

sharingitwithmycolleaguesandstudents.Creatingthismodelunitisonly

Page 37: Mars North Polar Ice Stratigraphy Project: A Curriculum

32

thebeginningofthescopeofthisproject.Whathasstartedasaninitialidea

hasnowturnedintoapassionandaprojectthatIwillworkon

independently,evenafterIgraduate.Beingateacher,youdon’tjust

influenceonegroupofstudents,butyouhavetheabilitytoreachsomany

morepeopleovertime.Ihavebeenfortunateenoughtobeabletotakethe

timetoinvestinmyownlearninginordertoshareitwithothersandItruly

feellikethisexperienceintheUTeachprogramhashelpedmebecomea

bettereducatorinallsubjects,withrespecttobothcontentandpedagogy.

Page 38: Mars North Polar Ice Stratigraphy Project: A Curriculum

33

Appendices

Page 39: Mars North Polar Ice Stratigraphy Project: A Curriculum

34

AppendixASampleRadargramInterpretationLessonRadargramLessonDraftOutline

1) Lookatthefullradargram(samplebelow)

(actualversionswillbe11”x14,”whereeachgroupwillhaveadifferent

radargram(uptosixversions),somewithhigherresolutionthanothersto

encouragethinkingaboutwhysomemighthaveclearerreturnsignatures.

2) Interpretthesurfacelayerusingaredtransparencymarker.

Page 40: Mars North Polar Ice Stratigraphy Project: A Curriculum

35

3) Interpretbasalunitusingagreentransparencymarker,wherepossible.

4) Interpret3‐6(orasmanyaspossible)horizons/layersin‐betweenthebasal

andsurface(usingdifferentcolorsbetweenlayers).

Page 41: Mars North Polar Ice Stratigraphy Project: A Curriculum

36

5) Oncealllinesarepicked,lookatzoomed‐inviewofareatoconfirmlinesare

notbeingtruncated.(reviewstep,removeifnecessary)

6) Overlayradargramwithcluttersimulation(possiblyontransparencypaper

toseebest.)andcompare.

7) Compareinterpretationstoclutterandassessiflinesarerealorinterference.

Discussresultsandconclusionswithpartner,thensharewithtablegroup,

andtheneachtablegroupshareresultsandconclusionswithclassonlarge

radargramdisplayedonprojector.

8) Assess(asagroup)iflinesarerealorareclutterandthenre‐drawyourline

horizons.(Completesteps1‐4again)

9) Oncecompleted,showandcomparetothecorrectly‐interpreted

radargram(s).

Page 42: Mars North Polar Ice Stratigraphy Project: A Curriculum

37

Questionstodiscusswithyourpartnerandtablegroup.

Answerquestionsbelowincompletesentencesinyourscienceinteractive

notebook:

1. Whichlayersappearolderthanotherothers?Howcanyoutell?

2. Doyounoticeanythingoddaboutcertainareasofradargram?(tails,

clutteraroundtroughareas,reflections/clutterthatcomeoutof

nowhere,etc.)

3. Doyouseeanyareaswherelayersarebeingtruncated?Canyoupoint

themouttoyourtablegroup?Whatdoyouthinkthatmeans?

4. Canyoushowwhichlayersappeartobeolderthanothersusing

scientificlanguage?

5. Whatmightbesomeotherwaystosupportordefendyourfindings?

ForWholeClass:Withyourgroup,preparetodefendoneinterpretedlineon

yourradargramandpresentyourfindingstotheclass.Explainwhatyoudid

tointerpretthelineandtalkaboutyourfindings.

Page 43: Mars North Polar Ice Stratigraphy Project: A Curriculum

38

AppendixB

TAKSQuestionusedasbasisforproject:

Page 44: Mars North Polar Ice Stratigraphy Project: A Curriculum

39

References

AmericanGeologicalInstitute.(2009).StatusoftheGeoscienceWorkforce:ReportSummary.<http://www.agiweb.org/workforce/reports/2009‐StatusReportSummary.pdf>(Accessed07/10/11)

Balmford,A.et.al.(2002).WhyConservationistsShouldHeedPokémon.Science,

295(5564):2367Barak,M.andDori,Y.J.(2011).ScienceEducationinPrimarySchools:Isan

AnimationworthaThousandPictures?.J.ScienceEducationandTechnology,OnlineFirst™.DOI:10.1007/s10956‐011‐9315‐2

Byrne,S.(2009).ThepolardepositsofMars.Annu.Rev.EarthPlanet.Sci.

37:8.1‐8.26.Davis,E.andPetish,D.(2005).Real‐WorldApplicationsandInstructional

RepresentationsAmongProspectiveElementaryScienceTeachers.J.ScienceTeacherEducation,16:263‐286

Eshach,H.andFried,M.(2005).ShouldSciencebeTaughtinEarlyChildhood?J.

ScienceEducationandTechnology,14(3):315‐336GeologicalSocietyofAmerica.(2011)TheImportanceofTeachingEarth

Science,(GSAPositionStatementDraft).GSAToday.21(6):46‐47Hartshorne,R.(2005).EffectsofIntegratingHypermediaintoElementaryScience

ProfessionalDevelopmentonScienceContentKnowledge.J.ScienceEducationandTechnology,14(4):415‐424.

Holbrook,J.(1997).CareerPotentialintheSciences,GeologyintheHighSchools,

andWhyWouldAnyoneMajorinGeologyAnyway?.PALAIOS,12(6):503‐504.

Holt,J.W.et.al.(2010).TheconstructionofChasmaBorealeonMars.Nature.Letters.465.Doi:10.1038/nature09050.

Jones,G.,Taylor,A.&Forrester,J.(2011).DevelopingaScientist:Aretrospectivelook.InternationalJournalofScienceEducation33(12):1653‐1673

Kali,Y.andLinn,M.(2008).EffectiveVisualizationsforElementarySchoolScience.

TheElementarySchoolJournal.,109(2):181‐198.

Page 45: Mars North Polar Ice Stratigraphy Project: A Curriculum

40

Lowman,M.(2006).NoChildLeftIndoors.FrontiersinEcologyandthe

Environment,4(9):451Louv,R.(2008).LastChildIntheWoods:SavingOurChildrenFromNature‐

DeficitDisorder.ChapelHill.AlgonquinBooksofChapelHill.NationalCenterforEducationalStatistics.(2010)DigestofEducational

Statistics2010.U.S.DepartmentofEducation,Washington,D.C.<http://nces.ed.gov/programs/digest/d10>

Nunes,D.C.&Phillips,R.J.(2006).Radarsubsurfacemappingofthepolarlayered

depositsonMars.J.Geophys.Res.,111E06S21.

Pombo,L.&Costa,N.(2009).Theimpactofbiology/geologyschoolteachersmasterscoursesontheimprovementofscienceeducationqualityinPortugal.ResearchinScienceandTechnologicalEducation,27(1):31‐44

Putzig,N.E.et.al.(2009).SubsurfacestructureofPlanumBoreumfromMars

ReconnaissanceOrbitershallowradarsoundings.Icarus,204:443‐457.

Shulman,L.(1986).ThoseWhoUnderstand:KnowledgeGrowthinTeaching.EducationalResearcher,15,(2):4‐14.

VanNordern,W.(2002).ProblemsinGeologyEducation:OurHighSchools

aretheWeakestLink.PALAIOS,17(1):1‐2

Yair,Y.,Schur,Y.,andMintz,R.(2003).A“ThinkingJourney”tothePlanetsUsingScientificVisualizationTechnologies:ImplicationstoAstronomyEducation.J.ScienceEducationandTechnology,12(1):43‐49