25
Manufactured Solutions for (U)RANS solvers L. Eça M. Hoekstra

Manufactured Solutions for (U)RANS solvers L. Eça M. Hoekstrapowers/vv.presentations/eca.pdf · 2011. 10. 20. · • Build Manufactured Solutions (MS) for Code Verification of (U)RANS

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Manufactured Solutions

    for

    (U)RANS solvers

    L. Eça

    M. Hoekstra

  • Contents

    1. Motivation

    2. Manufactured solutions properties

    3. Examples of manufactured solutions

    4. Check of the manufactured solutions

    5. Final Remarks

  • • Code Verification is the first step of

    Verification & Validation

    • Code Verification requires error evaluation,

    i.e. the knowledge of the exact solution

    • Turbulent flows do not have exact solutions

    • Method of Manufactured Solutions (MMS)

    provides the perfect environment

    Motivation

  • • Build Manufactured Solutions (MS) for

    Code Verification of (U)RANS solvers that

    resemble a near-wall incompressible

    turbulent flow

    • Proposed MS include 2-D and 3-D statistically

    steady (RANS) and periodic (URANS) flows

    • MS defined in simple domains

    Motivation

  • • MS based on eddy-viscosity turbulence

    models

    • The flow field is defined as a function of

    the Reynolds number, allowing the choice

    of values in the range of 106 to 109,

    • Bottom boundary of the domain is a “wall”

    • Velocity field is divergence free

    Manufactured Solutions Properties

    ν

    LURe

    1=

  • • Mean velocity profiles include a “viscous

    sub-layer” in the near wall region

    • Skin-friction coefficient matches an empirical

    correlation for a flat plate boundary-layer

    • Flow field tends to a uniform flow with the

    increase of the “distance to the wall”

    • Pressure field matches typical boundary

    conditions of practical applications

    Manufactured Solutions Properties

  • • Turbulence quantities are defined from

    available expressions for “automatic wall

    functions” combined with an exponential

    decay in the outer region

    • Free-stream values are adjustable

    • Supported turbulence quantities:

    Manufactured Solutions Properties

    Φand,,~ ων k

  • • Supported eddy-viscosity models:

    - One-equation models

    Spalart-Allmaras (SPAL), Menter(MNTR,SKL)

    - Two-equation models

    Wilcox (1998,KWW), TNT, Baseline (BSL)

    and SST k-ω

    (KSKL)

    Manufactured Solutions Properties

    Lkk −

  • Manufactured Solutions Properties

    • Two basic solutions are defined for a

    2-D rectangular domain

    • Unsteady and 3-D solutions are obtained

    from the basic solutions

    • For any of the proposed MS, stretched

    grids are required to attain the

    “asymptotic range” with a reasonable

    number of cells

  • Examples of Manufactured Solutions

    y+

    u+

    0 2 4 6 8 100

    2

    4

    6

    8

    10

    Rex=2.8×10

    6

    Rex=5.5×10

    6

    Rex=8.2×10

    6

    • Mimic of a flat plate turbulent boundary-layer

    y+

    u+

    10-1

    100

    101

    102

    103

    104

    105

    1060

    5

    10

    15

    20

    25

    30

    Rex=2.8×10

    6

    Rex=5.5×10

    6

    Rex=8.2×10

    6

    u+=1/0.41ln(y

    +)+5.2

  • Examples of Manufactured Solutions

    • Mimic of a flat plate turbulent boundary-layer

    y+

    u+

    10-1

    100

    101

    102

    103

    104

    105

    1060

    5

    10

    15

    20

    25

    30

    35

    40

    Rex=2.8×10

    7

    Rex=5.5×10

    7

    Rex=8.2×10

    7

    u+=1/0.41ln(y

    +)+5.2

    y+

    u+

    0 2 4 6 8 100

    2

    4

    6

    8

    10

    Rex=2.8×10

    7

    Rex=5.5×10

    7

    Rex=8.2×10

    7

  • Examples of Manufactured Solutions

    • Mimic of a flat plate turbulent boundary-layer

    y+

    u+

    0 2 4 6 8 100

    2

    4

    6

    8

    10

    Rex=2.8×10

    8

    Rex=5.5×10

    8

    Rex=8.2×10

    8

    y+

    u+

    10-1

    100

    101

    102

    103

    104

    105

    1060

    10

    20

    30

    40

    50

    Rex=2.8×10

    8

    Rex=5.5×10

    8

    Rex=8.2×10

    8

    u+=1/0.41ln(y

    +)+5.2

  • Examples of Manufactured Solutions

    • Mimic of a flat plate turbulent boundary-layer

    y+

    ν+

    0 2 4 6 8 10 12 14 16 18 200

    2

    4

    6SPAL

    y+

    ν+

    0 2 4 6 8 10 12 14 16 18 200

    2

    4

    6MNTR

    y+

    ν+

    0 2 4 6 8 10 12 14 16 18 200

    2

    4

    6

    Rex=2.8×10

    6

    Rex=5.5×10

    6

    Rex=8.2×10

    6

    SKL

    y+

    ν+

    101

    102

    103

    104

    105

    1060

    500

    1000

    1500

    2000

    2500

    3000SPAL

    y+

    ν+

    101

    102

    103

    104

    105

    1060

    500

    1000

    1500

    2000

    2500

    3000MNTR

    y+

    ν+

    101

    102

    103

    104

    105

    1060

    500

    1000

    1500

    2000

    2500

    3000

    Rex=2.8×10

    6

    Rex=5.5×10

    6

    Rex=8.2×10

    6

    SKL

  • Examples of Manufactured Solutions

    • Mimic of a flat plate turbulent boundary-layer

    y+

    ν+

    0 2 4 6 8 10 12 14 16 18 200

    2

    4

    6KWW, TNTBSL, SKL

    y+

    ν+

    0 2 4 6 8 10 12 14 16 18 200

    2

    4

    6SST

    y+

    ν+

    0 2 4 6 8 10 12 14 16 18 200

    2

    4

    6

    Rex=2.8×10

    6

    Rex=5.5×10

    6

    Rex=8.2×10

    6

    KSKL

    y+

    ν+

    101

    102

    103

    104

    105

    1060

    500

    1000

    1500

    2000

    2500

    3000KWW, TNTBSL, SKL

    y+

    ν+

    101

    102

    103

    104

    105

    1060

    500

    1000

    1500

    2000

    2500

    3000SST

    y+

    ν+

    101

    102

    103

    104

    105

    1060

    500

    1000

    1500

    2000

    2500

    3000

    Rex=2.8×10

    6

    Rex=5.5×10

    6

    Rex=8.2×10

    6

    KSKL

  • Examples of Manufactured Solutions

    • “Separation bubble” added to the flow field

    x

    y

    0.2 0.4 0.6 0.8 10

    0.05

    0.1

    0.15

    0.2

    0.250 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

    Cp

    71 10==ν

    LURe

  • Examples of Manufactured Solutions

    • “Separation bubble” added to the flow field

    x

    y

    0.2 0.4 0.6 0.8 10

    0.05

    0.1

    0.15

    0.2

    0.25-0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

    Cp

    71 10==ν

    LURe

  • Examples of Manufactured Solutions

    • “Separation bubble” added to the flow field

    x

    y

    0.2 0.4 0.6 0.8 10

    0.05

    0.1

    0.15

    0.2

    0.25-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

    Cp

    81 10==ν

    LURe

  • Examples of Manufactured Solutions

    • “Separation bubble” added to the flow field

    x

    y

    0.2 0.4 0.6 0.8 10

    0.05

    0.1

    0.15

    0.2

    0.250 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24

    Cp

    91 10==ν

    LURe

  • Examples of Manufactured Solutions

    • 2-D periodic flow

    71 10==ν

    LURe

  • Examples of Manufactured Solutions

    • 3-D flow

    71 10==ν

    LURe

  • Examples of Manufactured Solutions

    • 3-D periodic flow

    71 10==ν

    LURe

  • Check of the Manufactured Solutions

    • Finite-differences approximations (2nd order)

    of all manufactured quantities (including the

    source terms of transport equations) in sets of

    21 geometrically similar grids

    (801×801 to 51×51)

    • Convergence of L∞, L1(mean) and L2(RMS)

    norms of the errors checked for four levels

    of grid refinement

  • Check of the Manufactured Solutions

    Equally spaced gridsStretched grids

  • Check of the Manufactured Solutions

    Stretched grids Observed order of accuracy

  • Final Remarks

    • Present Manufactured Solutions provide

    an excellent framework to perform Code

    Verification of (U)RANS solvers based

    on eddy-viscosity models

    • Solution Verification techniques may be

    efficiently tested with current MS due to the

    (desired) difficulty to attain the

    “asymptotic range”