328
Component and Thermodynamic Data Keyword Input Manual Volume II: Thermodynamic Data PRO/II 8.1 Edition

Manual de Modelos Termodinamicos

Embed Size (px)

Citation preview

Page 1: Manual de Modelos Termodinamicos

Component and Thermodynamic Data Keyword Input Manual

Volume II:Thermodynamic Data

PRO/II 8.1 Edition

Page 2: Manual de Modelos Termodinamicos

PRO/II 8.1 Component and Thermodynamic Data Keyword Input Manual

Use of the PRO/II program, and its component parts and sub-systems, is governed by the terms and conditions of a separate written agreement between your employer and Invensys Sys-tems, Inc., its subsidiaries or affiliates.

Copyright Notice Copyright © 2007 Invensys Systems, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, broadcast-ing, or by any information storage and retrieval system, without permission in writing from Invensys Systems, Inc.Trademarks.

PRO/II and Invensys SIMSCI-ESSCOR are trademarks of Invensys plc its subsidiaries and affiliates.

AMSIM is a trademark of DBR Schlumberger Canada Limited.

RATEFRAC® is a registered trademark of KOCH - GLITSCH.

BATCHFRAC® is a registered trademark of KOCH - GLITSCH.

Visual Fortran is a trademark of Intel Corporation.

Windows NT, Windows 2000, Windows XP, Windows 2003, and MS-DOS are trademarks of Microsoft Corporation.

Adobe, Acrobat, Exchange and Reader are trademarks of Adobe Systems, Inc.

All other products may be trademarks of their respective owners.

U.S. GOVERNMENT RESTRICTED RIGHTS LEGEND

The Software and accompanying written materials are provided with restricted rights. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data And Computer Software clause at DFARS 252.227-7013 or in subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at 48 C.F.R. 52.227-19, as applicable. The Contractor/Manufacturer is: Invensys Systems, Inc. (Invensys SIMSCI-ESSCOR) 26561 Rancho Parkway South, Suite 100, Lake Forest, CA 92630, USA.

Printed in the United States of America, June 2006.

Page 3: Manual de Modelos Termodinamicos

Table of Contents

Chapter 1 Thermodynamic Data OverviewGeneral Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1Notes Statement (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-13Minimum Required User Input . . . . . . . . . . . . . . . . . . . . . . . . . .1-13

General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-13Order of Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-16Thermodynamic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-17Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-22Predefined Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-26

General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-26Input Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-27

Multiple Thermodynamic Sets. . . . . . . . . . . . . . . . . . . . . . . . . . .1-29General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-29

Free-water Decant Considerations. . . . . . . . . . . . . . . . . . . . . . . .1-32General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-32Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-33

Vapor-liquid-liquid Equilibrium Considerations . . . . . . . . . . . . .1-35General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-35Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-41

Chapter 2 Application GuidelinesGeneral Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1Refinery and Gas Processing Applications . . . . . . . . . . . . . . . . . .2-2

Water Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-2Low Pressure Crude Systems . . . . . . . . . . . . . . . . . . . . . . . . .2-3High Pressure Crude Systems, FCCU, and Main Coker Fractionators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-3Reformers and Hydrofiners. . . . . . . . . . . . . . . . . . . . . . . . . . .2-4Lube Oil and Solvent De-asphalting Units . . . . . . . . . . . . . . .2-4

Natural Gas Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-5Glycol Dehydration Systems. . . . . . . . . . . . . . . . . . . . . . . . . .2-6Sour Water Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-7Amine Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-7

Petrochemical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-8

PRO/II Component and Thermodynamic Data Keyword Input Manual 1

Page 4: Manual de Modelos Termodinamicos

Light Hydrocarbon Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8Aromatic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9Aromatic/Non-aromatic Systems . . . . . . . . . . . . . . . . . . . . . . 2-9Non-hydrocarbon Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10Alcohol Dehydration Systems . . . . . . . . . . . . . . . . . . . . . . . 2-12HF Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Chemical and Environmental Applications. . . . . . . . . . . . . . . . . 2-13Non-Ionic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13Carboxylic Acid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14Environmental Applications . . . . . . . . . . . . . . . . . . . . . . . . . 2-14Solid Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15

Chapter 3 Generalized CorrelationsIdeal and Library Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Grayson-Streed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Chao-Seader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

Modifications to GS and CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12

Curl-Pitzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15

Braun K10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Johnson-Grayson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21

2

Page 5: Manual de Modelos Termodinamicos

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-21General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-21Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-21

Lee-Kesler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-23Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-23General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-23Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-24

API Liquid Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-26Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-26General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-26Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-26

Rackett Liquid Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-28Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-28General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-28Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-28

Costald Liquid Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-30Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-30General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-30Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-30

User-supplied K-value Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-32Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-32General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-32Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-33

Chapter 4 Equations of StateSoave Modified Redlich-Kwong . . . . . . . . . . . . . . . . . . . . . . . . . .4-1

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2

Peng-Robinson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-8

Modified Soave-Redlich-Kwong and Peng-Robinson. . . . . . . . .4-13Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-13General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-13Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-14

UNIWAALS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-23Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-23

PRO/II Component and Thermodynamic Data Keyword Input Manual 3

Page 6: Manual de Modelos Termodinamicos

General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24

Filling in Missing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28

Cubic Equation Of State Alpha Formulations . . . . . . . . . . . . . . . 4-29Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29K-value Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30

Benedict-Webb-Rubin-Starling . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-33General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34

Associating Hexamer Equation Of State . . . . . . . . . . . . . . . . . . . 4-37Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37

Lee-Kesler-Plocker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42

Chapter 5 Special PackagesAlcohols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Glycols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13

Sour Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18

GPA Sour Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22

Amines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24

4

Page 7: Manual de Modelos Termodinamicos

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-24General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-25Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-26

User-added Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-29Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-29General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-29Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-31

CAPE-OPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-32Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-32Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-33

Chapter 6 Liquid Activity MethodsNRTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-1

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-1General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-1Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-2

UNIQUAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-7Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-7General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-7Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-8

UNIFAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-14Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-14General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-15Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-16

Modifications to UNIFAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-22Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-22General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-22Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-23

Wilson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-30Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-30General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-31Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-31

Van Laar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-35Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-35General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-36Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-36

Margules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-41Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-41General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-41

PRO/II Component and Thermodynamic Data Keyword Input Manual 5

Page 8: Manual de Modelos Termodinamicos

Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-42Regular Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-47

Flory-Huggins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-50Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-50General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-50Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-51

Filling in Missing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-57Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-57General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-57Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-58

Henry’s Law for Non-condensible Components . . . . . . . . . . . . . 6-62Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-62General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-62Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-63Henry’s Law Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-66

Hayden-O’Connell Vapor Fugacity . . . . . . . . . . . . . . . . . . . . . . . 6-68Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-68General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-69Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-69

Truncated Virial Vapor Fugacity . . . . . . . . . . . . . . . . . . . . . . . . . 6-72Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-72General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-73Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-73

IDIMER Vapor Fugacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-76Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-76General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-76Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-77

Redlich-Kister, Gamma Heat of Mixing . . . . . . . . . . . . . . . . . . . 6-80Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-80General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-80Input Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-80

Chapter 7 Solid Solubility MethodsVan't Hoff Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

6

Page 9: Manual de Modelos Termodinamicos

Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-2Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-3User-supplied Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-3

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-3General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-3Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-4

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-5

Chapter 8 Transport and Special PropertiesTransport Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-1

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-1General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-1Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-2

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-8Special Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-10

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-10General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-10Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-12

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-25

Chapter 9 Method-specific Pure Component DataMethod-specific Pure Component Data. . . . . . . . . . . . . . . . . . . . .9-1

Typical Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-1General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-1Input Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-2

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-6

Index

PRO/II Component and Thermodynamic Data Keyword Input Manual 7

Page 10: Manual de Modelos Termodinamicos

8

Page 11: Manual de Modelos Termodinamicos

Chapter 1 Thermodynamic Data Overview

This section provides an overview of the Thermodynamic Data Cat-egory. Detailed documentation, along with examples of common usage of all the thermodynamic features, follows in Chapters 2 through 9.

General InformationThe program offers many thermodynamic methods and options ranging from the simple to the very complex. However, the thermo-dynamic data input requirements for most simulations are simple, requiring only a few input statements. For example, to use the Soave-modification to the Redlich-Kwong equation of state in a flowsheet requires only two lines of code in the keyword file:

Note: THERMODYAMIC DATA METHOD SYSTEM=SRK

The first statement “THERMODYNAMIC DATA” declares the beginning of the Thermodynamic Data Category. The second state-ment states that the predefined SRK system of thermodynamic gen-erators be employed. The usage of each thermodynamic generator is fully documented in individual sections.

Thermodynamic methods are packed into “sets” or systems, each containing a group of methods for performing all necessary thermo-dynamic calculations. Most applications require only one set, but complex flowsheets may be modeled best with several. The pro-gram allows a maximum of 100 different sets of thermodynamic methods in each input file.

When an input file includes only one set of methods, all unit opera-tions use that set for all calculations. When an input file contains

PRO/II Thermodynamic Data Keyword Input Manual II-1-1

Page 12: Manual de Modelos Termodinamicos

two or more of these, one set serves as the default. If one set is not explicitly specified as the default, then the program chooses the first thermodynamic set in the input file as the default. Unit operations that do not explicitly specify a set of methods use the default.

The SIMSCI databanks contain an extensive collection of pure component data and binary interaction data for equations of state and liquid activity methods. Additional special databanks for alco-hol and glycol components are available.

Vapor-liquid, rigorous vapor-liquid-liquid, solid-liquid equilibria, and electrolyte calculations can all be handled by the program using suitable thermodynamic methods. In addition, the program can compute enthalpies, entropies, flowing densities, and transport properties.

Special water handling options may be declared locally within each set of methods. Method-specific options apply only to calculations controlled by the set of methods that contains the options.

Usually, all component data are retrieved from the component libraries or are estimated for stream assay cuts and PETRO compo-nents (petroleum pseudocomponents). Other component data, such as for NONLIB components (those components missing from the component databank), are usually supplied in the Component Data Category of input. These data are global, applying to all calcula-tions in the problem. Each set of methods optionally may include additional method-specific data that override the data obtained from other sources such as the SIMSCI databank, but which apply only to calculations controlled by the methods set containing the data. Method-specific data include selected pure component properties (e.g., critical temperature and pressure) and multi-component data such as binary interaction parameters.

II-1-2 Thermodynamic Data Overview

Page 13: Manual de Modelos Termodinamicos

Table 1-1: THERMODYNAMIC DATA Category of Input

Statement Keywords For details see

Category Heading Statement, Required

THERMODYNAMIC DATA None Chapter 1

Notes Statement, Optional

NOTES TEXT = notes line (up to 256 characters) “Notes Statement (optional)” on page 1-13

The METHOD Statement, Required Selecting a Pre-defined System of Methods

METHOD SYSTEM(VLE or VLLE)= option, {KVALUE (SLE)= option}, {L1KEY= i and L2KEY = j}, {KVALUE(VLE or LLE or VLLE)=option, ENTHALPY = option, DENSITY=option, ENTROPY=option}, { RVPMETHOD}, (TVPMETHOD} {PHI=option}, {HENRY}, {PROPERTY = method}, {SET = setid, DEFAULT}

TRANSPORT = NONE orTRANSPORT = PURE or PETRO or TRAPP or TACITE or U1 or U2 or U3 or U4 or U5

“Predefined Systems” on page 1-28

Selecting Individual Methods

METHOD SET= setid, {DEFAULT}KVALUE (VLE) = option, {KVALUE (SLE)= option} {KVALUE (LLE) = option}, {L1KEY = i and L2KEY = j}, {PHI=option}, {HENRY},orKVALUE(VLLE) =option, {L1KEY = i and L2KEY = j}, {KVALUE (SLE) = option}, {PHI = option}, {HENRY},

“Thermodynamic Sets” on page 1-17

ENTHALPY(VL) = option, or ENTHALPY(V) = option and ENTHALPY(L) = option, {RVPMETHOD}, {TVPMETHOD}, {PROPERTY=method}

DENSITY(VL) = option, or DENSITY(V) = option and DENSITY(L) = option

ENTROPY(VL)=NONE or ENTROPY(V)=option, ENTROPY(L)=option,

TRANSPORT = NONE orTRANSPORT = PURE or PETRO or TRAPP or

TACITE or U1 or U2 or U3 or U4 or U5or

( ) = Keyword qualifiers; { } = Optional entries; Values given are defaults; Underlined keywords are defaults.

PRO/II Thermodynamic Data Keyword Input Manual II-1-3

Page 14: Manual de Modelos Termodinamicos

VISCOSITY(VL) = NONE or VISCOSITY(VL) = PURE or PETRO or TRAPP or U1 or U2 or U3 or U4 or U5 or VISCOSITY(V) = option, VISCOSITY(L) = optionand/or

CONDUCTIVITY(VL) = NONE or CONDUCTIVITY(VL) = PURE or PETRO or TRAPP or U1 or U2 or U3 or U4 or U5 or CONDUCTIVITY(V) = option, CONDUCTIVITY(L) = optionand/or

SURFACE = NONE or SURFACE = PURE or PETRO or PARACHOR or U1or U2 or U3 or U4 or U5

DIFFUSIVITY(L) = NONE or DIFFUSIVITY(L) = WILKE or DIFDATA

Method-specific Water Handling Options, Optional

WATER DECANT = ON or OFF, {GPSA}, SOLUBILITY = SIMSCI or KEROSENE or EOS, PROPERTY = SATURATED or STEAM

“Free-water Decant Considerations” on page 1-34

Property Statements, Optional Vapor-Liquid Equilibrium Options, Optional

KVALUE(VLE) POYNTING = OFF or ON, MOLVOL = STANDARD or RACKETT or RCK2 or LIBRARY, {BANK = SIMSCI or ALCOHOL or GLYCOL or NONE} or { BANK=PROII_8.0:SIMSCI, PROII_8.0:ALCOHOL, PROII_8.0:GLYCOL LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...} FILL = NONE or UNIFAC or UFT1 or REGULAR or FLORY, AZEOTROPE = SIMSCI or NONE or bankid, {WRITE = fileid}, ALPHA = ACENTRIC or SIMSCI or bankid (default depends on method)<optional data statements> ...

Chapter 5

Note: Only the STANDARD option is available for molar liquid volume (MOLVOL) calculations when the WILSON K-value method is selected.

Table 1-1: THERMODYNAMIC DATA Category of Input

Statement Keywords For details see

( ) = Keyword qualifiers; { } = Optional entries; Values given are defaults; Underlined keywords are defaults.

II-1-4 Thermodynamic Data Overview

Page 15: Manual de Modelos Termodinamicos

Liquid-Liquid Equilibrium Options, Optional Chapter 5

KVALUE(LLE) {BANK = SIMSCI or ALCOHOL or GLYCOL or NONE} or { BANK=PROII_8.0:SIMSCI, PROII_8.0:ALCOHOL, PROII_8.0:GLYCOL LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...}, FILL = NONE or UNIFAC or UFT1 or REGULAR or FLORY, AZEOTROPE = SIMSCI or NONE or bankid, {WRITE = field}, {ALPHA = ACENTRIC or SIMSCI or bankid} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...} (default depends on method)<optional data statements> ...

Solid-Liquid Equilibrium Options, Optional Chapter 7

KVALUE(SLE) SOLUTE SOLDATA(tunit)

FILL = VANTHOFF or ONE or FREE i, j, .... i, j, c1, c2, c3/ ...

Diffusivity Options, Optional Chapter 7

DIFFUSIVITY(L) DIFDATA(tunit)

i, l, c1, c2, c3/ ...

Vapor Fugacity Options, Optional Chapter 5

PHI {BANK= SIMSCI or NONE } or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, DIPPR, bankid...}{ALPHA= ACENTRIC or SIMSCI or bankid} or { {BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid..} <optional data statements> ...

Henry’s Law Options, Optional Chapter 5

HENRY {BANK= SIMSCI or NONE} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...} SOLUTE i, j, ... HENDATA(punit, tunit) i, l, c1, c2, c3, c4 / ...

Density Options, Optional Chapters 4 & 5

Table 1-1: THERMODYNAMIC DATA Category of Input

Statement Keywords For details see

( ) = Keyword qualifiers; { } = Optional entries; Values given are defaults; Underlined keywords are defaults.

PRO/II Thermodynamic Data Keyword Input Manual II-1-5

Page 16: Manual de Modelos Termodinamicos

DENSITY(VL) {BANK = SIMSCI or NONE } or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...} ALPHA = ACENTRIC or SIMSCI or bankid

or DENSITY(V)

{BANK = SIMSCI or NONE} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...} {ALPHA = ACENTRIC or SIMSCI or bankid} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...}

or DENSITY(L)

{BANK = SIMSCI or NONE } or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, DIPPR, bankid...} {ALPHA = ACENTRIC or SIMSCI or bankid} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...}<optional data statements> ...

Enthalpy Options, Optional Chapters 4 & 5

ENTHALPY(VL) {BANK = SIMSCI or NONE } or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, DIPPR, bankid...} {ALPHA = ACENTRIC or SIMSCI or bankid} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...} HMIX = IDEAL or GAMMA or RK1 or RK2

or ENTHALPY(V)

{BANK = SIMSCI or NONE} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, DIPPR, bankid...} {ALPHA = ACENTRIC or SIMSCI or bankid} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...}

and/or ENTHALPY(L)

{BANK = SIMSCI or NONE} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, DIPPR, bankid...} {ALPHA = ACENTRIC or SIMSCI or bankid} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...} HMIX = NONE or GAMMA or RK1 or RK2<optional data statements> ...

Entropy Options, Optional Chapters 4 & 5

Table 1-1: THERMODYNAMIC DATA Category of Input

Statement Keywords For details see

( ) = Keyword qualifiers; { } = Optional entries; Values given are defaults; Underlined keywords are defaults.

II-1-6 Thermodynamic Data Overview

Page 17: Manual de Modelos Termodinamicos

ENTROPY(VL) {BANK = SIMSCI or NONE } or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, DIPPR, bankid...} {ALPHA = ACENTRIC or SIMSCI or bankid} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...}

or ENTROPY(V)

{BANK = SIMSCI or NONE} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, DIPPR, bankid...} {ALPHA = ACENTRIC or SIMSCI or bankid} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...}

and/or ENTROPY(L)

{BANK = SIMSCI or NONE } or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, DIPPR, bankid...} {ALPHA = ACENTRIC or SIMSCI or bankid} or { BANK=PROII_8.0:SIMSCI, LIBRARY1:USER1, LIBRARY1:USER2, LIBRARY1:bankid...}<optional data statements> ...

User-supplied K-value Data, Optional (Use with KVALUE statements)

Chapter 3

KVALUE(VLE or LLE)

KDATA CORR=icorr, LN or LOG or EXPFAC=ipos, PREF(punit)=value DATA=i, tmax, tmin, c1, ... c8/ ...

or KDATA

TABULAR=t1, t2, .../ i, p1, p2, .../ ..., PREF(punit)=value

Binary Interaction Data, Optional (Use with KVALUE, PHI, DENSITY, ENTHALPY, or ENTROPY statements)

Chapters 4 & 5

BWRS Equation of State Data, Optional

BWRS i, j, kij, / ...

HEXAMER Equation of State Data, Optional

HEXA(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji / ...

LKP Equation of State Data, Optional

LKP i, j, kij, / ...

Hayden-O’Connell Data, Optional (For vapor fugacity, vapor density, vapor enthalpy, and vapor entropy)

Table 1-1: THERMODYNAMIC DATA Category of Input

Statement Keywords For details see

( ) = Keyword qualifiers; { } = Optional entries; Values given are defaults; Underlined keywords are defaults.

PRO/II Thermodynamic Data Keyword Input Manual II-1-7

Page 18: Manual de Modelos Termodinamicos

HOCV i, i, nii, / i, j, nij, / ...

Truncated Virial Data, Optional (For vapor fugacity)

TVIRIAL i, ηi

IDIMER Data, Optional (For vapor fugacity, vapor density, vapor enthalpy, and vapor entropy)

IDIMER i, i, Aii, Bii / i, j, Aij, Bij / ...

Redlich-Kister Excess Properties Data, Optional (Currently for heat of mixing only)

RK1 (K or KCAL or KJ)or

i, j, aij, bij, cij, dij, eij, fij, gij, hij / ...

RK2 (K or KCAL or KJ)

i, j, aij, bij, cij, dij, eij, fij, gij, hij / ...

Soave-Redlich-Kwong or Peng-Robinson Equation of State Interaction Parameters, Optional

Chapter 4

SRK(K or R) or PR(K or R)or

i, j, kija, kijb, kijc / ...

SRKKD(K or R)or

i, j, kija, kijb, kijc / ...

SRKP(K or R) or PRP(K or R)or

i, j, kija, kjia, kijb, kjib, kijc, kjic / ...

SRKM(K or R) or PRM(K or R)or

i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji / ...

SRKH (K or KCAL or KJ) or PRH (K or KCAL or KJ)or

i, j, aij, bij, cij, aji, bji, cji, αij, βij / ...

SRKS(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji / ...

Table 1-1: THERMODYNAMIC DATA Category of Input

Statement Keywords For details see

( ) = Keyword qualifiers; { } = Optional entries; Values given are defaults; Underlined keywords are defaults.

II-1-8 Thermodynamic Data Overview

Page 19: Manual de Modelos Termodinamicos

Liquid Phase Activity Binary Interaction Data Chapter 5

NRTL Data, Optional

NRTL3 (K or KCAL or KJ)

i, j, bij, bji, αij / ...

NRTL (K or KCAL or KJ)

i, j, aij, bij, aji, bji, αij / ...

NRTL6 (K or KCAL or KJ)

i, j, aij, bij, aji, bji, α’ij, β’ij / ...

NRTL8 (K or KCAL or KJ)

i, j, aij, bij, cij, aji, bji, cji, α’ij, β’ij / ...

UNIQUAC Data, Optional

UNIQUAC (K or KCAL or KJ)

i, j, aij, aji / ...

UNIQ4 (K or KCAL or KJ)

i, j, aij, aji, bij, bji / ...

Wilson Data, Optional

WILSON (K or KCAL or KJ or NODIME)

i, j, aij, aji / ...

Van Laar Data, Optional

VANLAAR i, j, aij, aji / ...

Margules Data, Optional

MARGULES i, j, aij, aji, dij / ...

Flory-Huggins Data, Optional

FLORY i, j, χij / ...

Other Binary Data for Liquid Activity Methods (For use with liquid activity methods, such as all forms of NRTL, UNIQUAC, Wilson, van Laar, and the Margules methods.)

AZEOTROPE (basis, punit, tunit)

i, j, pres, temp, xi / ... Chapter 5

INFINITE(tunit) i, j, temp, γioo, γj

oo / ... Chapter 5

MUTUAL (basis, tunit)

i, j, temp, xiI, xj

II / ... Chapter 5

IDEAL i, j / ... Chapter 5

Table 1-1: THERMODYNAMIC DATA Category of Input

Statement Keywords For details see

( ) = Keyword qualifiers; { } = Optional entries; Values given are defaults; Underlined keywords are defaults.

PRO/II Thermodynamic Data Keyword Input Manual II-1-9

Page 20: Manual de Modelos Termodinamicos

Henry’s Law Data, Optional Chapter 5

SOLUTE i, {j, ...}

HENDATA (punit, tunit)

i, l, c1, c2, c3, c4 / ...

UNIFAC Group Contribution Data, Optional (For K-value calculations only)

Chapter 5

UNIFAC (K or KCAL or KJ)

l, k, Alk, Akl / ...

UNIFT1(K)or

l, k, alk, akl, blk, bkl, clk, ckl / ...

UNIFT2(K)or

l, k, alk, akl, blk, bkl, clk, ckl / ...

UNIFT3(K) l, k, alk, akl, blk, bkl, clk, ckl / ...

UNFV (K or KCAL or KJ)

l, k, alk, akl / ...

UNIWAALS Modified Group Contribution Interaction Data, Optional Chapter 4

UNIFT1(K) l, k, alk, akl, blk, bkl, clk, ckl / ...

UNIFAC (K or KCAL or KJ)

l, k, Alk, Akl / ...

Table 1-1: THERMODYNAMIC DATA Category of Input

Statement Keywords For details see

( ) = Keyword qualifiers; { } = Optional entries; Values given are defaults; Underlined keywords are defaults.

II-1-10 Thermodynamic Data Overview

Page 21: Manual de Modelos Termodinamicos

Pure Component Alpha Formulations, Optional (Used with PR, SRK, or UNIWAALS methods)

Chapter 4

PA01 or SA01 or VA01

i, c1 / ...

PA02 or SA02 or VA02

i, c1, c2, c3 / ...

PA03 or SA03 or VA03

i, c1, c2 / ...

PA04 or SA04 or VA04

i, c1, c2 / ...

PA05 or SA05 or VA05

i, c1, c2 / ...

PA06 or SA06 or VA06

i, c1, c2, c3 / ...

PA07 or SA07 or VA07

i, c1 / ...

PA08 or SA08 or VA08

i, c1, c2, c3 / ...

PA09 or SA09 or VA09

i, c1, c2, c3 / ...

PA10 or SA10 or VA10

i, c1, c2 / ...

PA11 or SA11 or VA11

i, c1, c2 / ...

Special Property Methods Data, Optional Chapter 8

property(qualifier) {GAMMA=value, REFINDEX=value, REFVALUE(unit)=value}, {NCFILL=ncfill}, {NCBLEND=ncblend}

DATA(unit) i, datvalue / ...

INDEX i, indvalue / ...

Table 1-1: THERMODYNAMIC DATA Category of Input

Statement Keywords For details see

( ) = Keyword qualifiers; { } = Optional entries; Values given are defaults; Underlined keywords are defaults.

PRO/II Thermodynamic Data Keyword Input Manual II-1-11

Page 22: Manual de Modelos Termodinamicos

Method-specific Pure Component Data, Optional Chapter 9

TC(unit) i, value / ...

PC(unit) i, value / ...

VC(unit) i, value / ...

ZC i, value / ...

ACENTRIC i, value / ...

NBP(unit) i, value / ...

MOLVOL(unit) i, value / ...

DIPOLE(unit) i, value / ...

RADIUS(unit) i, value / ...

SOLUPARA i, value / ...

RACKETT i, value / ...

WDELT i, value / ...

PARACHOR i, value / ...

PENELOUX i, value / ...

User-added Subroutine Data, Optional (See the PRO/II Data Transfer System and User-added Subroutines User’s Guide)

Chapters 6 & 8

UDATA i, value / ...

Table 1-1: THERMODYNAMIC DATA Category of Input

Statement Keywords For details see

( ) = Keyword qualifiers; { } = Optional entries; Values given are defaults; Underlined keywords are defaults.

II-1-12 Thermodynamic Data Overview

Page 23: Manual de Modelos Termodinamicos

Notes Statement (optional)NOTES TEXT = notes line

The NOTES statement in the Thermodynamic Data Section pro-vides a TEXT keyword that specifies the actual note.

NOTES This statement must be placed along with the METHOD statement of the specific thermodynamic set to which the information pertains. One NOTES statement is allowed per thermodynamic set.

TEXT This entry specifies the actual notes line(s). The Notes Data can be specified in multiple lines, but only the first 256 characters will be scanned and the rest will be discarded.

An example of information added through NOTES statements about the thermodynamic sets used in a simulation follows:

THERMODYNAMIC DATA$Example with Set ID

METHOD SYSTEM=PR, DENSITY(L)=LK, SET=PR01NOTES TEXT= This is the default thermo set used in the &

simulation.$Example without Set ID

METHOD SYSTEM=SRKNOTES TEXT= The SRK method is defined for use with the &

hot key flash in PROVISION.

Minimum Required User Input

General InformationThe program offers a multitude of user choices and data entry options for the Thermodynamic Data Category. However, the input requirements to define the thermodynamic properties for the vast majority of applications are minimal. In most cases, selecting a “predefined system” (see “Predefined Systems” on page 1-28) is sufficient. This takes the form:

THERMODYNAMIC DATA METHOD SYSTEM=system id

Where the “system id” is selected from Table 1-4.

PRO/II Thermodynamic Data Keyword Input Manual II-1-13

Page 24: Manual de Modelos Termodinamicos

Some unit operations require transport properties to be selected on the METHOD statement. This is not defaulted with the SYSTEM selection, and instead must be chosen separately. The simplest way to do this is to use the TRANSPORT keyword which selects a group of consistent property generators for viscosity, thermal conductivity and surface tension. Once the TRANSPORT keyword is supplied, the program uses a suitable default. The choices are given in “Transport Properties” on page 8-1. The input takes the form:

THERMODYNAMIC DATA METHOD SYSTEM=system id, TRANSPORT

orTHERMODYNAMIC DATA

METHOD SYSTEM=system id, TRANSPORT=transport id

Note: The DIFFUSIVITY entry is not included with the TRANSPORT groupings and must be entered separately when the DISSOLVER unit operation is present in the flowsheet and the “Treybal” method is used to calculate the mass transfer coeffi-cient.

ExamplesTypical input file segments based on recommendations given in Chapter 2, Application Guidelines, are provided below. The Ther-modynamic Data Category is highlighted.

1. A petroleum refinery crude fractionator using the Grayson-Streed system :. . .COMPONENT DATA

LIBID 1,H2O / 2,C2 / 3,C3 / 4,IC4 / 5,NC4 / 6,IC5 / 7,NC5THERMODYNAMIC DATA

METHOD SYSTEM=GSSTREAM DATA. . .

II-1-14 Thermodynamic Data Overview

Page 25: Manual de Modelos Termodinamicos

2. A deethanizer using Peng-Robinson. Transport properties are selected to support tray rating calculations:. . .COMPONENT DATA

LIBID 1,N2 / 2,C1 / 3,C2 / 4,C3 / 5,IC4 / 6,NC4 / & 7,IC5 / 8,NC5 / 9,NC6 / 10,NC7THERMODYNAMIC DATA

METHOD SYSTEM=PR, TRANSPORT=PURESTREAM DATA. . .

3. A three phase distillation tower containing MEK, water and tol-uene using NRTL:. . .COMPONENT DATA

LIBID 1,MEK / 2,H2O / 3,TOLUENETHERMODYNAMIC DATA

METHOD SYSTEM(VLLE)=NRTLSTREAM DATA. . .

4. Gas sweetening with MEA:...COMPONENT DATA

LIBID 1,CO2 / 2,H2S / 3,C1 / 4,C2 / 5,C3 / 6, IC4 / 7,NC4 / & 8,IC5 / 9,NC5 / 10,NC6 / 11, NC7 / 12,H2O / 13,MEA

THERMODYNAMIC DATAMETHOD SYSTEM=AMINE

STREAM DATA...

PRO/II Thermodynamic Data Keyword Input Manual II-1-15

Page 26: Manual de Modelos Termodinamicos

Order of InputThe order of appearance of statements in the input file is significant, and the statements should always be given in the order shown in Table 1-1. Some general guidelines are discussed later in this sec-tion. More detailed descriptions of the various statements can be found in later sections.

Table 1-1Thermodynamic Data Order of Input

Statement Comments Chapter

THERMODYNAMIC DATA

Section heading, required as the first statement in the section.

1

METHOD Required as the first statement in defining each set of methods.

1 to 5

WATER Optional. Method-specific water options that apply only to the current method.

<property> Optional. Any KVALUE, ENTHALPY,K ENROPY, DENSITY, TRANSPORT, HENRY, or PHI statement that applies to a method declared on the METHOD statement.

<binary data> Optional. Additional binary interaction data statements associated with the <property> statement.

<alpha data> Optional. Additional alpha data statements associated with the <property> statement.

<component data> Optional. Any pure component data statements (Tc, Pc, etc.) that apply to the current <property> statement.

9

<property> . . .

METHOD . . .

Optional additional sets of thermodynamic methods

The Thermodynamic Data Category must begin with the THER-MODYNAMIC DATA heading statement. This must be followed by the definition of one or more thermodynamic system.

Each system begins with a METHOD statement that declares a method for every thermodynamic property required by the problem. The entries on this statement activate the required property calcula-tions. Available entries include SYSTEM, KVALUE, ENTHALPY, ENTROPY, DENSITY, TRANSPORT, PHI, and HENRY. If a method is not specified for a property, that property will not be cal-culated.

II-1-16 Thermodynamic Data Overview

Page 27: Manual de Modelos Termodinamicos

Most of the property methods have built-in databanks that contain the required data. When desired, the user may supply additional data or overwrite the default SimSci data by including optional property statements and data statements. The property statements (SYSTEM, KVALUE, ENTHALPY, ENTROPY, DENSITY, HENRY, TRANSPORT and PHI) can appear in any order. Each may be followed by optional data statements that supply pure com-ponent data or binary interaction data for that property. These sub-sequent data statements must appear immediately after the property statement they affect and apply only to that property statement.

The exception is that data entered after the KVALUE property state-ment serve as default values for all other properties that use the same method (as the KVALUE method). For example, using SYS-TEM=SRK selects the SRK method for computing K-values, enthalpy, entropy, and vapor density. Binary interaction parameters (Kijs) supplied for calculating K-values also act as default values when calculating enthalpy, entropy, and vapor density.

Thermodynamic SetsIn the program, property generators predicting K-values, enthalpy, density, and, optionally, entropy and transport properties are grouped together to form thermodynamic sets. By fixing the com-position of a stream and two independent stream variables (such as pressure and temperature, or pressure and enthalpy), the program can fully calculate all of the thermodynamic properties for that stream with the generators defined in that set.

Each set is headed by a METHODS statement and continues until the next METHODS or STREAM DATA statement. For example, the following input section defines a thermodynamic set:

...THERMODYNAMIC DATA

METHOD SYSTEM=SRKSTREAM DATA...

It uses the SRK predefined system to calculate all of the stream properties. See “Predefined Systems” on page 1-28 and “Soave Modified Redlich-Kwong” on page 4-1.

PRO/II Thermodynamic Data Keyword Input Manual II-1-17

Page 28: Manual de Modelos Termodinamicos

In the following example, several different generators are assem-bled to create a single set:

. . .THERMODYNAMIC DATA

METHOD KVALUE=NRTL, PHI=SRK, &ENTHALPY(V)=SRK, ENTHALPY(L)=IDEAL, &TRANSPORT=PURE, RVPMETHOD, SET=01

NOTES TEXT= This thermo set is used for RVP calcs.KVALUE

NRTL 1,3,,-51.2,,2216,.200STREAM DATA. . .

In this case, NRTL liquid activity coefficients coupled with SRK vapor phase fugacities are used in combination to establish K-val-ues. Vapor enthalpies are calculated via SRK, liquid enthalpies via pure component saturated liquid enthalpies, and transport properties via pure component blending. This thermodynamic set is defined as “set 01”, and is used for RVP calculations.

Each unit operation that calculates stream properties has at least one associated thermodynamic set. The product streams, internal streams, and external feeds (feed streams defined on a PROPERTY statement rather than from other unit operations) all use that set for calculating the relevant thermodynamic properties. Some units, such as columns and heat exchangers, have multiple internal streams, and provision is made to allow multiple sets to be used within the same unit operation. (See “Multiple Thermodynamic Sets” on page 1-31.)

Table 1-2 shows all of the available thermodynamic property gener-ators. Also given in this table are chapter numbers to refer to for more information on each generator. A complete description of all keywords relevant to that generator is provided in that chapter.

II-1-18 Thermodynamic Data Overview

Page 29: Manual de Modelos Termodinamicos

Table 1-2: Thermodynamic Generators

Method Description K-values Enthalpy

Entropy

Density Phi

Generalized Correlation Methods (see Chapter 3)

IDEAL Ideal VLE VL — VL —

GS Grayson-Streed VLE(fw) — — — —

CS Chao-Seader VLE(fw) — — — —

IGS Improved Grayson-Streed

VLLE VLE(fw)

— — — —

GSE Erbar Improved Grayson-Streed

VLE(fw) — — — —

CSE Erbar Improved Chao-Seader

VLE(fw) — — — —

CP Curl-Pitzer — VL VL — —

BK10 Braun K10 VLE(fw) — — — —

JG Johnson-Grayson — VL — — —

LK Lee-Kesler — VL VL VL —

API API Liquid Density — — — L —

RACKETT

Rackett Liquid Density

— — — L —

COSTALD COSTALD Liquid Density

— — — L —

LIBRARY Library Liquid Entropy

— — — — —

Equation of State Methods (see Chapter 4)

SRK Soave-Redlich-Kwong

VLE1(fw)

VL VL V2 yes

PR Peng-Robinson VLE1(fw)

VL VL V2 yes

SRKKD SRK Kabadi-Danner VLLE VL VL V2 yes

SRKH SRK Huron-Vidal VLLE VL VL V2 yes

SRKP SRK Panagiotopoulos & Reid

VLLE VL VL V2 yes

SRKM SRKP Modified VLLE VL VL V2 yes

PRO/II Thermodynamic Data Keyword Input Manual II-1-19

Page 30: Manual de Modelos Termodinamicos

SRKS SRK Simsci VLLE VL VL V2 yes

PRH PR Huron-Vidal VLLE VL VL V2 yes

PRP PR Panagiotopoulos & Reid

VLLE VL VL V2 yes

PRM PRP Modified VLLE VL VL V2 yes

UNIWAAL

UNIWAALS VLLE VL VL V2 yes

BRWS Benedict-Webb-Rubin-Starling

VLE(fw) VL VL VL yes

HEXAMER

Associating EOS for HF systems

VLLE VL VL VL yes

LKP Lee-Kesler-Plocker VLLE VLE(fw)

VL VL VL yes

Liquid Activity Methods (see Chapter 5)

NRTL NRTL VLLE — — — —

UNIQUAC UNIQUAC VLLE — — — —

UNIFAC UNIFAC VLLE — — — —

UFT1 UNIFAC Lyngby VLLE — — — —

UFT2 UNIFAC Dortmund VLLE — — — —

UFT3 Modified UNIFAC VLLE — — — —

UNFV UNIFAC Free Volume option

VLLE — — — —

WILSON Wilson equation VLE — — — —

VANLAAR

van Laar equation VLLE — — — —

MARGULES

Margules equation VLLE — — — —

REGULAR

Regular solution theory

VLLE VLE(fw)

— — — —

FLORY Flory Huggins VLLE — — — —

HOCV Hayden-O’Connell vapor fugacity

— V V V yes

TVIRIAL Truncated virial vapor fugacity

— — — — yes

Table 1-2: Thermodynamic Generators

Method Description K-values Enthalpy

Entropy

Density Phi

II-1-20 Thermodynamic Data Overview

Page 31: Manual de Modelos Termodinamicos

IDIMER IDIMER vapor fugacity

— V V V yes

Table 1-2: Thermodynamic Generators

Method Description K-values Enthalpy

Entropy

Density Phi

PRO/II Thermodynamic Data Keyword Input Manual II-1-21

Page 32: Manual de Modelos Termodinamicos

Special Packages (see Chapter 6)

ALCOHOL

Alcohol package VLLE — — — —

GLYCOL Glycol package VLLE — — — —

SOUR Sour water package VLLE1 — — — —

GPSWATER

GPA sour water package

VLLE1 — — — —

AMINE Amine package VLLE1 L — — —

U1 - U15 User-supplied subroutines

VLLE VL VL VL —

Additional Thermodynamic Generators

VANTHOFF

van’t Hoff solubilities SLE — — — —

SOLDATA User-supplied solubility data

SLE — — — —

DATA K-value data VLLE — — — —

SymbolsVLLE - Vapor-liquid-liquid equilibrium VLE - Vapor-liquid equilibrium VLE(fw) - Vapor-liquid equilibrium with free water decant SLE - Solid-liquid equilibrium V - Applicable to vapor phase L - Applicable to liquid phase VL - Applicable to both vapor and liquid phases

Notes1 - VLLE available, but not recommended 2 - Liquid density available, but not recommended 3 - GS is preferred to CS

Table 1-2: Thermodynamic Generators

Method Description K-values Enthalpy

Entropy

Density Phi

Table 1-3: Features that Require Entropy

Feature

COMPRESSOR

EXPANDER

GIBBS Reactor

II-1-22 Thermodynamic Data Overview

Page 33: Manual de Modelos Termodinamicos

HCURVE Entropy Tables

EXERGY

Table 1-3: Features that Require Entropy

Feature

PRO/II Thermodynamic Data Keyword Input Manual II-1-23

Page 34: Manual de Modelos Termodinamicos

Input DescriptionMETHOD SYSTEM{VLE or VLLE}=method,

KVALUE(SLE)=method}, {KVALUE(VLE or LLE or VLLE)=method, ENTHALPY=method, DENSITY=method, ENTROPY=method}, {PHI=method}, {HENRY},{RVPMETHOD, TVPMETHOD}, TRANSPORT=option}, {property(qualifier)=method, REFPROP=SIMSCI} SET=setid, {DEFAULT}...

NOTES TEXT = Notes line (up to 256 characters)orMETHOD KVALUE{VLE or LLE or VLLE}=method,

KVALUE(SLE)=method}, ENTHALPY=method, DENSITY=method, ENTROPY=method}, {PHI=method}, {HENRY}, {RVPMETHOD, TVPMETHOD}, {TRANSPORT=option}, {property(qualifier)=method, REFPROP=SIMSCI} SET=setid ,{DEFAULT}...

NOTES TEXT = Notes line (up to 256 characters)

SYSTEM This entry selects a predefined system of thermodynamic property methods as tabulated in Table 1-4. There are no default methods. If the SYSTEM entry is missing, the user must select individual methods using the KVALUE, ENTHALPY, ENTROPY, and DENSITY entries described below. SYSTEM property methods may be overridden individually with the additional use of the KVALUE, ENTHALPY, ENTROPY, and DENSITY entries. Methods for other properties usually are optional, but may be required in a specific problem.The optional qualifier on the SYSTEM entry indicates which equilibrium calculations apply to the problem. Omitting the qualifier is the same as specifying VLE.

VLE This qualifier indicates that the methods included in the selected system apply to vapor-liquid equilibrium calculations (normally, a single liquid phase is present). It is the default.

II-1-24 Thermodynamic Data Overview

Page 35: Manual de Modelos Termodinamicos

VLLE Include this qualifier to indicate that the selected system of methods apply to vapor-liquid- liquid equilibria calculations. When used, the program rigorously models the equilibrium between the two liquid phases. If omitted, VLE is the default.

KVALUE(VLE) KVALUE(LLE)

This entry is used to select a method from Table 1-2 to calculate vapor-liquid and liquid-liquid phase equilibrium K-values. The VLE qualifier may be omitted since it is the default. The METHOD statement must include KVALUE(VLE) when the SYSTEM entry is missing.

or

KVALUE(VLLE)

This entry may be used instead of KVALUE(VLE) and KVALUE(LLE) when both use the same generators.

KVALUE(SLE)

When a problem includes solid phase components, this optional entry declares the method (chosen from Table 1-2) used to determine solid-liquid equilibria. Use of this entry does not eliminate the need to declare either a VLE or VLLE K-value method. See Chapter 7, Solid Solubility Methods.

DENSITY This entry is used to select a method from Table 1-2 to perform vapor and liquid density calculations when no SYSTEM entry is present. Omitting the qualifier or specifying VL as the qualifier indicates that the selected method applies to all liquid and vapor phases. To apply different methods for vapor and liquid calculations, use both DENSITY(V) and DENSITY(L). Refer to Chapter 2, Application Guidelines, for recommendations on which density method to use.

Note: Correlations and data for solid phase component density are supplied in the Component Data Category.

PRO/II Thermodynamic Data Keyword Input Manual II-1-25

Page 36: Manual de Modelos Termodinamicos

ENTHALPY This entry is used to select a method fromTable 1-2 to perform vapor and liquid enthalpy calculations when no SYSTEM entry is present. Omitting the qualifier or specifying VL as the qualifier indicates that the selected method applies to all liquid and vapor phases. To apply different methods for vapor and liquid calculations, use both ENTHALPY(V) and ENTHALPY(L).

Note: Correlations and data for solid phase component enthalpy are supplied in the Component Data Category.ENTROPY This entry is used to select the method from Table

1-2 used for vapor and liquid entropy calculations. Specifying VL or omitting the qualifier indicates that the selected method applies to all liquid and vapor phases. Use both ENTROPY(V) and ENTROPY(L) to apply different methods to vapor and liquid calculations. This entry usually is optional, but may be required when a problem includes any of the unit operations or options shown in Table 1-3.

Note: Not all systems available on the SYSTEM entry declare an entropy method, and the ENTROPY entry still may be required. Refer to Table 1-3 to determine which features require an entropy method.PHI This entry specifies the method from Table 1-2

used to compute pure component and mixture vapor fugacity coefficients (φi). It is available only when using a liquid activity method to calculate equilibrium K-values. A fugacity method generally is used for high pressure applications. The default is PHI=IDEAL. See “Hayden-O’Connell Vapor Fugacity” on page 6-69 and “Truncated Virial Vapor Fugacity” on page 6-73.

HENRY The HENRY option applies pre-stored or user-supplied Henry's Law data to model dissolved gases in a liquid solution. This option is available only when using a liquid activity method for K-value calculations. This method employs linear mixing rules to compute ln(H). See “Henry’s Law for Non-condensible Components” on page 6-63.

II-1-26 Thermodynamic Data Overview

Page 37: Manual de Modelos Termodinamicos

RVPMETHOD, TVPMETHOD

These options are used to specify the thermodynamic method to be used for RVP and TVP calculations. If either RVPMETHOD or TVPMETHOD appears, the other method defaults to that method specified. If neither RVPMETHOD nor TVPMETHOD is specified, then the stream RVP and TVP are calculated by the thermodynamic method used in generating that stream.

TRANSPORT This entry requests the calculation of all transport properties, including vapor and liquid viscosities, vapor and liquid thermal conductivities, and liquid surface tension values. Alternatively, use one or more of the options described below to select transport property methods individually. The program does not calculate transport properties unless requested by the presence of these entries. Entering TRANSPORT with no argument is the same as using TRANSPORT=PURE. See “Transport Properties” on page 8-1.

property This entry requests the calculation of special refinery properties. See “Special Properties” on page 8-11.

REFPROP This keyword is used to supply the default methods for calculating special stream refinery properties. The SIMSCI option is used to specify the PRO/II v3.3 calculation methods and v3.3 properties. These properties are KVIS, CLOU, POUR, FLPT, SULF, and CETA.

SET This entry supplies a label that uniquely identifies the method set. When a problem includes more than one method set, each set must have an assigned label. The labels allow each unit operation to select a specific set of thermodynamic methods. The setid is an unique identifier and may contain up to 12 alphanumeric characters, excluding delimiters and embedded blanks. See “Multiple Thermodynamic Sets” on page 1-31.

PRO/II Thermodynamic Data Keyword Input Manual II-1-27

Page 38: Manual de Modelos Termodinamicos

Predefined Systems

General InformationThe use of predefined systems is a convenient, shortcut method of specifying thermodynamic sets. A predefined system may be selected by using the SYSTEM keyword. This option uses a single entry to declare several property methods at once.

In general, each predefined system includes methods for computing K-values, vapor and liquid enthalpies, and vapor and liquid densi-ties. Predefined systems using generalized and equation of state methods and special package systems also include an entropy prop-erty method. Predefined liquid activity systems do not include an entropy method.

As an example, the following METHOD statement uses the SRK system of thermodynamic generators (see “Soave Modified Redlich-Kwong” on page 4-1, for keyword definitions):

METHOD SYSTEM=SRK

From Table 1-4, we can see that this is equivalent to the following METHOD statement:

METHOD KVALUE=SRK, ENTHALPY=SRK, ENTROPY=SRK, & DENSITY(V)=SRK, DENSITY(L)=API

or even more explicitly:

METHOD KVALUE=SRK, & ENTHALPY(V)=SRK, ENTHALPY(L)=SRK, & ENTROPY(V)=SRK, ENTROPY(L)=SRK, & DENSITY(V)=SRK, DENSITY(L)=API

NOTES This statement must be placed along with the METHOD statement of the specific thermodynamic set to which the information pertains. One NOTES statement is allowed per thermodynamic set.

TEXT This entry specifies the actual notes line(s). The Notes Data can be specified in multiple lines, but only the first 256 characters will be scanned and the rest will be discarded.

II-1-28 Thermodynamic Data Overview

Page 39: Manual de Modelos Termodinamicos

Ta

S

I

G

C

I

G

C

B

S

P

S

S

S

S

S

P

P

P

U

B

H

L

1

Input OverviewTable 1-4 shows the predefined systems available and the property methods used for each one.

ble 1-4: Systems of Thermodynamic Methods

Methods for Evaluating Properties

VLE or Enthalpy Density

YSTEM VLLE K-values vapor liquid Entropy vapor liquid

Generalized Correlation Methods

DEAL VLE IDEAL SAT’D SAT’D — IDEAL SAT’D

S VLE1 GS CP CP CP SRK API

S2 VLE1 CS CP CP CP SRK API

GS VLLE1 IGS CP CP CP SRK API

SE VLE1 GSE CP CP CP SRK API

SE VLE1 CSE CP CP CP SRK API

K10 VLE1 BK10 JG JG CP IDEAL API

Equation of State Methods

RK VLE1,3 SRK SRK SRK SRK SRK API

R VLE1,3 PR PR PR PR PR API

RKKD VLLE SRKKD SRKKD SRKKD SRKKD SRKKD

API

RKH VLLE SRKH SRKH SRKH SRKH SRKH API

RKP VLLE SRKP SRKP SRKP SRKP SRKP API

RKM VLLE SRKM SRKM SRKM SRKM SRKM API

RKS VLLE SRKS SRKS SRKS SRKS SRKS API

RH VLLE PRH PRH PRH PRH PRH API

RP VLLE PRP PRP PRP PRP PRP API

RM VLLE PRM PRM PRM PRM PRM API

NIWAAL VLLE UNIWAAL UNIWAAL UNIW UNIW UNIW API

RWS VLE1 BRWS BRWS BRWS BRWS BRWS BRWS

EXAMER VLLE HEXAMER HEXA HEXA HEXA HEXA API

KP VLLE1 LKP LKP LKP LKP LKP API

May decant free water 2 GS preferred to CS 3 VLLE available, but not recommended

PRO/II Thermodynamic Data Keyword Input Manual II-1-29

Page 40: Manual de Modelos Termodinamicos

N

U

U

U

U

U

U

W

V

M

R

F

A

G

S

G

A

Ta

S

1

Liquid Activity Methods

RTL VLLE NRTL SAT’D SAT’D — IDEAL SAT’D

NIQUAC VLLE UNIQUAC SAT’D SAT’D — IDEAL SAT’D

NIFAC VLLE UNIFAC SAT’D SAT’D — IDEAL SAT’D

FT1 VLLE UFT1 SAT’D SAT’D — IDEAL SAT’D

FT2 VLLE UFT2 SAT’D SAT’D — IDEAL SAT’D

FT3 VLLE UFT3 SAT’D SAT’D — IDEAL SAT’D

NFV VLLE UNFV SAT’D SAT’D — IDEAL SAT’D

ILSON VLE WILSON SAT’D SAT’D — IDEAL SAT’D

ANLAAR VLLE VANLAAR SAT’D SAT’D — IDEAL SAT’D

ARGULES VLLE MARGULES SAT’D SAT’D — IDEAL SAT’D

EGULAR VLLE REGULAR SAT’D SAT’D — IDEAL SAT’D

LORY VLLE FLORY SAT’D SAT’D — IDEAL SAT’D

Special Packages

LCOHOL VLLE NRTL SRKM SAT’D SRKM SRKM SAT’D

LYCOL VLLE SRKM SRKM SRKM SRKM SRKM API

OUR VLLE3 SOUR SRKM SAT’D SRKM SRKM SAT’D

PSWATER VLLE3 GPSWATER SRKM SAT’D SRKM SRKM SAT’D

MINE VLLE3 AMINE SRKM AMINE SRKM SRKM SAT’D

ble 1-4: Systems of Thermodynamic Methods

Methods for Evaluating Properties

VLE or Enthalpy Density

YSTEM VLLE K-values vapor liquid Entropy vapor liquid

May decant free water 2 GS preferred to CS 3 VLLE available, but not recommended

II-1-30 Thermodynamic Data Overview

Page 41: Manual de Modelos Termodinamicos

Multiple Thermodynamic Sets

General InformationIn most cases, each problem includes a single set of methods for calculating all thermodynamic properties. However, a flowsheet may contain widely varying process conditions that dictate the use of more than one set. To facilitate this, the program allows up to 100 methods in each problem.

All method sets defined in the Thermodynamic Data Category are available for use in the remainder of the problem. When a single method set is present, all unit operations use that set. When two or more sets appear, each unit operation may select any of the defined sets. Some units may use more than one set. For example, in PRO/II:

l A rigorous heat exchanger may use one method set for the shell side and a second for the tube side.

l A chemicals column is known to have two liquid phases on only two trays. To prevent the CHEMDIST algorithm from performing CPU intensive three phase calculations on all trays, a VLLE set is declared on those two trays, and a VLE set is declared for the remainder.

The following hierarchy of defaulting governs the selection of ther-modynamic methods applied to stream calculations.

1. Product streams use the thermodynamic methods of the unit operation from which they flow.

2. Feed streams that are not products of unit operations use the thermodynamic methods of the unit operations they feed.

3. In all other cases, a stream use either the default methods set or the set assigned to it in the input file.

The Default Method SetOne set of thermodynamic methods serves as the default set. When an unit operation does not explicitly specify a method set, the default set prevails. Normally, the program assumes the first set declared in the Thermodynamics Data Category is the default set; however, the use may declare any set as the default by including the DEFAULT keyword on the METHOD statement of that set.

Note: Only one default set may exist in each problem.

PRO/II Thermodynamic Data Keyword Input Manual II-1-31

Page 42: Manual de Modelos Termodinamicos

Method Set RequirementsWhen an input file contains two or more thermodynamic method sets, each set must be assigned a unique label (identifier). The label allows individual unit operations to select a desired set.

Each method set is a complete set; that is, it contains declared meth-ods for all required properties.

Avoiding Inconsistent MethodsImproper use of multiple thermodynamic methods can cause seri-ous discontinuities that produce erroneous results. For example, both the SRK and Curl-Pitzer methods are based on deviations from ideal gas values. However, they predict different enthalpy values for a mixture at any given temperature and pressure. Thus, an adiabatic flash using the SRK method predicts an incorrect temperature value for a feed stream with a Curl-Pitzer enthalpy. The stream enthalpy first should be reset by performing an isothermal, dew point, or bubble point flash calculation (as appropriate) using the new enthalpy method. The RESET unit operation in PRO/II is provided just for that purpose.

Multiple Method Sets in Distillation ColumnsFor rigorous column calculations, provision exists to consider the column as comprised of sections, with different method sets used in the sections. This option requires great care to ensure that the data sets interface smoothly, without discontinuities when moving from one section to another. Changes in enthalpy methods will nearly always cause unrealistic temperature and flow profiles.

II-1-32 Thermodynamic Data Overview

Page 43: Manual de Modelos Termodinamicos

Examples1.1: A hydrocarbon-water mixture is modeled using both VLE

and rigorous VLLE thermodynamics.

TITLE PROB=SETSCOMPONENT DATA

LIBID 1,C3/2,NC4/3,H2O THERMODYNAMIC DATA

METHOD SYSTEM(VLE)=SRK, SET=2PHASE, DEFAULT METHOD SYSTEM(VLLE)=SRKM, SET=3PHASE

STREAM DATAPROP STREAM=1, TEMP=60, PRES=250, COMP=50/40/10

UNIT OPERATIONFLASH UID=F1

FEED 1PROD V=2, L=3TPSPEC PRES=160SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5METHOD SET=2PHASE

FLASH UID=F1FEED 1PROD V=4, L=5, W=6TPSPEC PRES=160SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5METHOD SET=3PHASE

END

The first thermodynamic set, identified as “2PHASE”, uses the pre-defined SRK set to calculate all thermodynamic properties. The use of the “VLE” argument (which is the default) implies that, although you can decant a pure water phase, you cannot perform rigorous liq-uid-liquid equilibrium calculations.

The second set, identified as “3PHASE”, uses the predefined SRKM set. This method is better suited than SRK for rigorous three phase calculations. The “VLLE” argument implies that all equilib-rium calculations using this set will attempt to find two liquid phases.

PRO/II Thermodynamic Data Keyword Input Manual II-1-33

Page 44: Manual de Modelos Termodinamicos

Free-water Decant Considerations

General InformationFree-water decant is useful when handling mixtures that form water as a nearly pure immiscible phase. Such systems are common in hydrocarbon-water mixtures in refinery and gas processing plants. For engineering purposes, it may be assumed that the water phase is pure. This reduces the computational time required to solve these problems with rigorous VLLE models. See Table 1-2 for K-value generators that support free-water decant. When free-water decant is not supported for a particular thermodynamic set, the WATER statement is disregarded by the program.

When the free-water decant option is turned on, water properties except transport are calculated from the Keenan and Keyes steam tables. By default, all values are calculated as if the water were at saturated conditions, which saves a significant amount of CPU time. If superheated steam is present, the PROPERTIES=STEAM option should be selected. This will calculate steam properties based on the full Keenan and Keyes equation of state for water.

The GPSA method is based on the GPSA Data Book, Figure 20-3. This option is useful for natural gas mixtures at pressures above 2000 psia.

When the free-water decant option is turned off, water properties are calculated from the prevailing property generators. Beware that many of the standard generators (i.e., SRK, PR and GS), are poorly suited for calculating properties of highly polar, non-hydrocarbons such as water.

Note: A WATER statement may appear only after a METHOD statement. Therefore water properties apply only to that thermo-dynamic set.

For example, in the following thermodynamic data section the water solubility in hydrocarbon is calculated via the API kerosene solubility curve for thermodynamic set SRK only:

THERMODYNAMIC DATAMETHOD SYSTEM=SRK, SET=SRK

WATER SOLUBILITY=KEROSENEMETHOD SYSTEM=GS, SET=GS

II-1-34 Thermodynamic Data Overview

Page 45: Manual de Modelos Termodinamicos

Input Description

Water Handling Statement WATER DECANT=ON or OFF, GPSA,

SOLUBILITY=SIMSCI or KEROSENE or EOS,PROPERTY=SATURATED or STEAM

DECANT This turns the water decant option on or off.

ON This is the default when SRK, PR, GS, CS, GSE, CSE, IGS, LKP, BK10 or BWRS methods are used. Water is treated as a non-rigorous component that may be decanted as a pure aqueous phase. The hydrocarbon phase has some water dissolved in it according to the calculated solubility. K-values for water are computed from:

Kw = P0 / (XΘ π)

where: P0 is the partial pressure of water,

XΘ is the solubility of water in the liquid hydrocarbon phase,

π is the system pressure.

OFF Water is treated as a regular component and all other entries on the WATER statement are ignored.

GPSA When DECANT=ON is selected, the presence of this keyword requests the calculation of water partial pressures based on the GPSA Data Book, Figure 20-3, instead of the steam tables. This option is useful for natural gas mixtures at pressures above 2000 psia.

SOLUBILITY

This statement selects the method for computing water solubility in the hydrocarbon phase.

PRO/II Thermodynamic Data Keyword Input Manual II-1-35

Page 46: Manual de Modelos Termodinamicos

SIMSCI This is the default. Water solubility calculations are based on the solubility of water in the following individual components:

Library components in the Paraffin, Naphthalene, Unsaturated and Aromatic classes, carbon disulfide, methyl mercaptan, ammonia, argon, carbon dioxide, helium, hydrogen chloride, hydrogen sulfide, nitrogen, nitrous oxide, oxygen, sulfur dioxide, and air.

For pseudocomponents, the water solubility is calculated as a function of the Watson K-factor.

Note: When the SIMSCI option is used in a problem containing components other than those listed above, or containing NONLIB components, the program estimates the correlation parameters for these components and prints a warning message.

KEROSENE Water solubility calculations are based on the data for the solubility of water in kerosene, as presented in the API Technical Data Book, Figure 9A1.4.

EOS The water solubility in the hydrocarbon phase is calculated from the water K-value computed by the equation of state method. Water-hydrocarbon interaction parameters are retrieved from the databanks or estimated using the Kabadi-Danner method.

PROPERTY

This option allows for the selection of the water properties calculation basis.

SATURATED This is the default. Water properties are based on vapor/liquid curves. This option is adequate for most problems, and requires the least computing time.

STEAM The basis for computing water properties is the Keenan and Keyes equation of state for water. It is recommended when water is present as a superheated vapor.

II-1-36 Thermodynamic Data Overview

Page 47: Manual de Modelos Termodinamicos

Examples1.2: SRK is used to model the phase behavior of a

hydrocarbon/water mixture.

TITLE PROJECT=MANUAL, USER=SIMSCI, PROB=HC-WATERCOMPONENT DATA

LIBID 1,H2O/ 2,C3/ 3,NC4/ 4,NC5/ 5,NC6THERMODYNAMIC DATA

METHOD SYSTEM=SRKSTREAM DATA

PROP STREAM=1, TEMP=100, PRES=100, COMP=20/20/20/20/20UNIT OPERATION

FLASH UID=F1FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

Vapor-liquid-liquid Equilibrium Considerations

General Information

Declaring a VLLE setThe program provides a number of methods that can rigorously cal-culate vapor-liquid-liquid equilibrium. Most unit operation modules support this capability. The user must specifically request VLLE calculations on the METHOD statement in one of three ways:

l by including the VLLE qualifier when using the SYSTEM entry (Table 1-5).

Note: If the WATER option is used, the predefined system or K-value method in use must be able to handle free water decant, or else the WATER statement is ignored. When any of the predefined or K-value generators SRK, PR, GS, CS, GSE, CSE, IGS, LKP, BK10 or BWRS are selected, free water decant is automatically activated. If water is to be treated as any other component, or in a rigorous manner, WATER DECANT=OFF must be selected. The WATER statement applies only for that particular METHOD state-ment.

PRO/II Thermodynamic Data Keyword Input Manual II-1-37

Page 48: Manual de Modelos Termodinamicos

l by including the VLLE qualifier when using the KVALUE entry to declare the method used to calculate equilibrium K-values (Table 1-5).

l by including both a KVALUE(VLE) and KVALUE(LLE) entry to declare the method used to calculate equilibrium K-values (Table 1-5).

When entering K-value data, VLE and LLE data are entered on sep-arate KVALUE(VLE) and KVALUE(LLE) property statements respectively. See Chapters 3 and 4. All other input requirements for VLLE are the same as for VLE method sets. Table 1-5 lists the method systems that support rigorous VLLE modeling.

Often, not all the unit operations in a problem perform VLLE calcu-lations, making it desirable to include both VLE and VLLE meth-ods sets in a single problem. The user may define separate method sets for the VLE and VLLE methods. Unit operations that use the VLE method will not attempt VLLE calculation, substantially reducing computational time.

Table 1-5: VLLE Predefined Systems and K-value Generators

K-value Method System

SRK1 AMINE SRK1 NRTL

SRKM NRTL SRKM UNIQUAC

SRKKD UNIQUAC SRKKD UNIFAC

SRKH UNIFAC SRKH UFT1

SRKP UFT1 SRKP UFT2

SRKS UFT2 SRKS UFT3

PR1 UFT3 PR1 UNFV

PRM UNFV PRM VANLAAR

PRP MARGULES PRP REGULAR

UNIWAALS REGULAR UNIWAALS FLORY

IGS FLORY IGS ALCOHOL

LKP SOUR LKP GLYCOL

HEXAMER GPSWATER HEXAMER SOUR

AMINE GPSWATER1 VLLE available, but not recommended.

II-1-38 Thermodynamic Data Overview

Page 49: Manual de Modelos Termodinamicos

Liquid-liquid equilibrium (LLE) calculations are a subset of VLLE. For example, a VLLE methods set must be declared when modeling a liquid-liquid extraction (LLEX) unit operation.

PRO/II Thermodynamic Data Keyword Input Manual II-1-39

Page 50: Manual de Modelos Termodinamicos

The following example shows three equivalent input sections that declare VLLE phase behavior. Each of these files uses the NRTL binary interaction parameters as supplied in the SIMSCI databank.

THERMODYNAMIC DATAMETHOD SYSTEM(VLLE)=NRTL

THERMODYNAMIC DATAMETHOD KVALUE(VLLE)=NRTL, ENTHALPY=LIBRARY

THERMODYNAMIC DATAMETHOD KVALUE(VLE)=NRTL, KVALUE(LLE)=NRTL, & ENTHALPY=LIBRARY

Table 1-6: Available Databanks

BANK= Method Type of Data

SIMSCI NRTL VLE and LLE interaction coefficients

UNIQUAC VLE and LLE interaction coefficients

SRK

PRbinary interactions and pure component alpha values

SRKH

PRH

SRKM

PRM

SRKP

PRP

SRKK

SRKS

BWRS binary interactions

RK1 / RK2 interaction coefficients

COSTALD component critical properties

RACKETT component Rackett properties

HENRY Henry’s Law solubility data

II-1-40 Thermodynamic Data Overview

Page 51: Manual de Modelos Termodinamicos

The user may specify any number of the available databanks by using the BANK option on each property statement or the AZEO-TROPE option for azeotropic data. BANK=SIMSCI is the default specification for all properties except for GLYCOL and ALCOHOL package K-values. The program searches the databanks in the order they appear on the PROPERTY statement, and automatically retrieves any data required for the property method (specified on the METHOD statement).

Any data supplied in the Component Data Category of input or on data statements in the Thermodynamic Data Category of input are used instead of the data retrieved from the databanks. The BANK=NONE entry suppresses all databank operations.

The following thermodynamic data section,

METHOD KVALUE=NRTL, ...KVALUE BANK=SIMSCI, ALCOHOL

searches the SIMSCI databank, then the ALCOHOL databank for VLE interaction parameters.

ALCOHOL NRTL binary coefficients for specific components

GLYCOL SRKM binary interactions and pure component alphas

NONE omit all databank data

AZEOTROPE= Method Type of Data

SIMSCI All liquid activity methods

azeotropic data for pairs of components

NONE omit all azeotropic databank data

Table 1-6: Available Databanks

BANK= Method Type of Data

PRO/II Thermodynamic Data Keyword Input Manual II-1-41

Page 52: Manual de Modelos Termodinamicos

Specifying Key ComponentsSpecifying VLLE equilibrium on the METHOD statement allows the use of the two optional entries, L1KEY and L2KEY. These two entries allow the user to specify the dominant component in the L1 and L2 phases. If these entries are missing, the program estimates the key components during each K-value evaluation. The most dense stream forms the L2 or W phase. If one of the liquids is an aqueous phase, water will (in the majority of cases) be designated as the L2KEY component.

Specifying Separate VLE and LLE ModelsWhen specifying different K-value methods for VLE and LLE cal-culations, or supplying different interaction parameters for VLE and LLE calculations using the same method, some thermodynamic inconsistency is necessarily introduced. Unfortunately, model parameters regressed to VLE data seldom do an adequate job of modeling LLE, and vice-versa. Using different VLE and LLE meth-ods of data can overcome this problem. The user should be aware, however, that for a system that exists in all three phases, V, L1, L2, the L1 and L2 phases will be in equilibrium according to the LLE method data. The V-L1 and V-L2 equilibria, according to the VLE method/data, are averaged to give compromise V-bulk L equilib-rium. Each L phase may not necessarily be at its bubble point, or in equilibrium with the vapor phase, at the final conditions of pressure, temperature and individual phase composition.

In the following example, the first thermodynamic set uses the SRKM equation of state. The second set uses conventional SRK.

... THERMODYNAMIC DATA

METHOD SYSTEM=SRK, SET=SRK_VLE METHOD SYSTEM=SRKM, SET=SRK_VLLE

STREAM DATA ...

When retrieving interaction parameters from the SIMSCI databank, the program follows some special rules to minimize these inconsis-tencies:

If no KVALUE(VLE) or KVALUE(LLE) statements are given (i. e., all data are retrieved from the SIMSCI databank), the program searches the LLE databank for interaction parameters first, and the

II-1-42 Thermodynamic Data Overview

Page 53: Manual de Modelos Termodinamicos

VLE databank second for all data. Thus all phases will be governed by the same set of coefficients as follows:

VLE Interface LLE Interface

LLE databank LLE databank

VLE databank VLE databank

Set interaction parameter to zero

Set interaction parameter to zero

If a KVALUE(VLE) statement is given, but KVALUE(LLE) is not given, the interaction parameters for the VLE and LLE interfaces are searched for in the following order:

VLE Interface LLE Interface

KVALUE (VLE) statement KVALUE (VLE) statement

LLE databank LLE databank

VLE databank VLE databank

Use FILL option for missing parameters if requested

Use FILL option for missing parameters if requested

Set interaction parameter to zero

Set interaction parameter to zero

If a KVALUE(LLE) statement is given, the interaction parameters are searched for in the following order:

VLE Interface LLE Interface

KVALUE (VLE) statement KVALUE (VLE) statement

VLE databank LLE databank

Use FILL option for missing parameters if requested

VLE databank

Set interaction parameter to zero

Use FILL option for missing parameters if requested

Set interaction parameter to zero

For more information on the use of the FILL option, see “Filling in Missing Parameters” on page 4-27 for equations of state and “Fill-ing in Missing Parameters” on page 6-57 for liquid activity meth-ods.

PRO/II Thermodynamic Data Keyword Input Manual II-1-43

Page 54: Manual de Modelos Termodinamicos

Input Description

The METHOD Statement METHOD SYSTEM(VLLE)=method, {L1KEY=i, L2KEY=j,}...

orMETHOD KVALUE(VLLE)=method, {L1KEY=i, L2KEY=j}, ...orMETHOD KVALUE(VLE)=method, and

KVALUE(LLE)=method, {L1KEY=i, L2KEY=j,}...

SYSTEM(VLLE) or KVALUE(VLLE)

This selects the VLLE predefined thermodynamic system or K-value generator to be used in the problem. The VLLE systems and K-value generators available are given in Table 1-5.

L1KEY and L2KEY

The L1KEY and L2KEY optional entries identify the most prevalent components expected in the first liquid phase and in the second liquid phase. These entries are optional, and the program will estimate the key components if they are not given. In the majority of cases, water (when present) is designated as the L2KEY component. Designation of the two key components is suggested for partially miscible systems containing little or no water.

Note: While it is not necessary to designate the key components, it is strongly recommended. Three-phase calculations are time consuming. The algorithm uses an immiscible pair of components to initialize the distribution of components between liquid phases. Specifically declaring the key components instead of relying on the calculations to find an appropriate pair significantly reduces the time required to reach a solution.

K-value Data (Optional)

KVALUE(VLE) BANK=SIMSCI or NONE, ...and

KVALUE(LLE) BANK=SIMSCI or NONE, ...

Note: When used for entering K-value data, VLE and LLE data must be entered on separate property statements. See Chapters 3 through 6 for details on format and definition of the data entries.

II-1-44 Thermodynamic Data Overview

Page 55: Manual de Modelos Termodinamicos

Examples1.3: A mixture of furfural, cyclohexane, heptane and nonane at

85 F and 1.5 atmospheres is to be modeled using NRTL thermodynamics. This system forms two liquid phases. To avoid arbitrary allocation of key components by the calculation algorithm, the key components are designated by the user. The explicit declaration of the dominant components ensures that the Liquid2 stream contains the cyclohexane-rich phase, while the Liquid1 stream contains the furfural-rich liquid.

TITLE PROB=VLLECOMPONENT DATA

LIBID 1,FURFURAL/2,CYHEXANE/3,HEPTANE/4,NONANETHERMODYNAMIC DATA

METHOD SYSTEM(VLLE)=NRTL, L1KEY=1,L2KEY=2STREAM DATA

PROP STREAM=1, TEMP=85, PRES(ATM)=1.5, & COMP=35/25/20/10UNIT OPERATION

FLASH UID=F1FEED 1PROD V=2, L=3, W=4ADIA DP=0.0

END

1.4: A small amount of formic acid and benzene is present in an aqueous stream. Note that, as the key components are not specified by the user, the L2KEY component (i.e., the dominant component in the second liquid product) is designated to be water.

TITLE PROBLEM=VLLE COMPONENT DATA

LIBID 1,BENZENE/2,FORMIC/3,H2O/4,BENZOIC THERMODYNAMIC DATA

METHOD SYSTEM(VLLE)=NRTL, TRANS=PURE, PHI=HOCVKVALUE(VLE) FILL=UNIFKVALUE(LLE) FILL=UNIF

STREAM DATAPROP STREAM=1, TEMP=86, PRES=21.3, RATE(M)=162.6, &

COMP(M)=1,0.1001/2,1.9059/3,160.6/4,0.0002, NORMALIZE

PRO/II Thermodynamic Data Keyword Input Manual II-1-45

Page 56: Manual de Modelos Termodinamicos

UNIT OPERATIONFLASH UID=F1

FEED 1PROD V=2, L=3, W=4ADIA DP=0.0

END

1.5: A mixed alcohol/water feed is modeled using the VLE NRTL method. The NRTL binary interaction data are obtained from the ALCOHOL databank.

TITLE PROBLEM=VLLECOMPONENT DATA

LIBID 1,DIPE/ 2,IPA/ 3,H2O/ 4,BUTANOLTHERMODYNAMIC DATA

METHOD KVALUE(VLE)=NRTL, ENTH(V)=SRKM, ENTH(L)=IDEA, DENS(V)=SRKM, DENS(L)=IDEA, &SET=SET01, DEFAULT

KVALUE(VLE) BANK=ALCOHOL, SIMSCI STREAM DATA

PROP STREAM=1, PRES=20, TEMP=150, RATE(M)=1000, &COMP(M)=1,20/2,60/3,900/4,20, NORMALIZE

UNIT OPERATIONFLASH UID=F1

FEED 1PROD V=2, L=3ADIA DP=0.0

END

II-1-46 Thermodynamic Data Overview

Page 57: Manual de Modelos Termodinamicos

Chapter 2 Application Guidelines

This section presents simple heuristic rules for selecting suitable methods for performing thermodynamic property calculations.

Note: Although these rules were developed specifically for the PRO/II program, the general guidelines still apply to fluid flow applications. However, the examples at the end of this section were developed specifically for this program.

General InformationUsually, there are several thermodynamic methods suitable for any given application. The user always should try to determine which methods give the best representation of the whole flowsheet, while trying to select the simplest, most appropriate thermodynamic options. The user should bear in mind that the best thermodynamic method is the one that gives the best agreement with reality. When laboratory or actual operating data are available, it may be neces-sary to try several options and compare the results to obtain the best possible model.

The following guidelines are divided into four basic categories of applications. These are:

l Refinery and Gas Processing

l Natural Gas

l Petrochemical

l Chemical and Environmental

PRO/II Thermodynamic Data Keyword Input Manual II-2-1

Page 58: Manual de Modelos Termodinamicos

For each application, the various types of unit operations encoun-tered have recommended thermodynamic methods.

Refinery and Gas Processing Applications

Water HandlingFor most systems containing water, it is perfectly satisfactory to use the default water decant option with the simpler hydrocarbon ther-modynamic methods. These are:

SRK, PR, CS, GS, CSE, GSE, IGS, BK10, BWRS.

For each of these methods, the amount of water dissolved in the hydrocarbon phase is calculated using either the SIMSCI or the KEROSENE correlation. The SIMSCI method is based on the solu-bility of water in the pure components, while the KEROSENE cor-relation is based on the solubility of water in kerosene, given in the API Technical Data Book, Figure 9A1.4. In addition, SRK and PR can use the EOS method for calculating the water solubility.

The remaining water may be decanted as a pure liquid water stream. The properties of this pure water stream can be calculated using sat-urated water properties or by using the full Keynan and Keyes equa-tion of state for water. The Keynan and Keyes equation should be used if water is present as super-heated vapor.

The program uses the vapor pressure of water at the temperature of the system to calculate the amount of water in the vapor phase. The user can select either the (default) built-in steam tables or the GPSA Data Book, Figure 20-3 for the water vapor pressure. The GPSA values should be used for natural gas systems above 2000 psia (136 atmospheres).

For systems where the solubility of hydrocarbon in water is signifi-cant, a more accurate method should be used. The Kabadi-Danner modification to the SRK equation of state (SRKKD) is recom-mended. This method may be selected by using either SYSTEM(VLLE)=SRKKD or KVALUE(VLLE)=SRKKD on the METHOD statement. The SRKKD method performs rigorous vapor-liquid-liquid equilibrium calculations to predict the amount of water in the hydrocarbon phase and the amount of hydrocarbon in the water phase. It uses interaction parameters for the water and hydrocarbons based on the amount of water present in each phase.

II-2-2 Application Guidelines

Page 59: Manual de Modelos Termodinamicos

Low Pressure Crude SystemsVacuum towers and atmospheric crude towers are representatives of low pressure crude systems. These units generally exhibit nearly ideal behavior, and simpler methods can be used very successfully. The accuracy of the results depends much more on the characteriza-tion of the crude feed than on the thermodynamic method chosen. The BK10 method usually is adequate and quicker than more com-plex general hydrocarbon methods such as GS, SRK or PR. The user may wish to solve the unit with BK10 as a first attempt, and then use a more complex method if the results are not satisfactory. If the results do not agree with plant data, the user should try differ-ent assay and characterization methods before employing other thermodynamic methods. The API method should be used for cal-culating the liquid density.

Thermal cracking is a common source of error when modeling vac-uum units. A laboratory analysis of the vacuum tower overhead product can be used to estimate the amount of light ends to be added to the feed stream in order to correctly model the column. In lieu of a direct analysis, methane can be added to the feed and adjusted until the temperature profiles match the plant data.

Recommended Methods Comments

BK10 Fast and easy to use, and gives acceptable answers.

GS / IGS / GSE Comparable to BK10 for low pressure systems. Substituting LK for CP enthalpies may improve answer.

SRK / PR The results will be somewhat better than with BK10 near the top of the tower where light ends may predominate. May require more CPU time than BK10.

High Pressure Crude Systems, FCCU, and Main Coker FractionatorsTowers above atmospheric pressure usually contain greater concen-trations of lighter components and therefore require more complex thermodynamic methods. BK10 has been used extensively in the past for these types of applications, but PR, SRK, GSE, IGS, and GS can be expected to give better answers. The user should remem-ber that the characterization of the petroleum fractions is more important than the thermodynamic method for obtaining good

PRO/II Thermodynamic Data Keyword Input Manual II-2-3

Page 60: Manual de Modelos Termodinamicos

agreement with plant data. The API method should be used for the liquid density.

For Fluidised Catalytic Cracker Unit (FCCU) main fractionators, the petroleum fractions are much more hydrogen deficient than are crude fractions. Since most characterization correlations are derived from crude petroleum data, it is expected that the results will be less accurate than for crude fractions.

Recommended Methods Comments

GS / GSE / IGS Usually faster than SRK or PR, but less accurate in the presence of a high concentration of light components. Substituting LK for CP enthalpies may improve the answers.

SRK / PR Use SRK or PR if light crudes dominate the top of the tower.

Reformers and HydrofinersThese units contain streams with a high hydrogen content. For the SRK and PR methods the component databanks contain extensive binary interaction parameters for component pairs involving hydro-gen. The API method should be used for the liquid density.

Historically, GS has been used successfully with hydrogen rich sys-tems. In general, SRKM and PRM should give better results with the improvement in interaction parameters over previous versions.

Recommended Methods Comments

SRKM / PRM Recommended because of the high concentration of hydrogen present.

Lube Oil and Solvent De-asphalting UnitsThese units generally have non-ideal components present and require a more complex thermodynamic method. SRKM or PRM is recommended, but the answers will only be as good as the interac-tion parameters supplied by the user for the non-ideal components. This complex method should not be used unless such data are avail-able. If no specific data are available, SRKM yields results compa-rable to SRK, and the general SRK or PR method should be used. The API method should be used for the liquid density.

II-2-4 Application Guidelines

Page 61: Manual de Modelos Termodinamicos

Recommended Methods Comments

SRKM / PRM Recommended when using user-supplied interaction data for non-ideal components.

SRK / PR Use in place of SRKM or PRM when no user-supplied interaction data are available. These methods require less CPU time than SRKM or PRM.

Natural Gas SystemsFor systems with less than 5 percent N2, CO2 or H2S, general equa-tions of state such as SRK, PR, or BWRS provide excellent answers. The interaction parameters for hydrogen, carbon dioxide, nitrogen, and hydrogen sulfide are estimated using general correla-tions when user-supplied interaction parameters are not available. The BWRS method should be used with more caution, since it does not extrapolate as well as SRK or PR into the supercritical region.

For systems with higher concentrations of the sour gases, the default interaction parameters may not produce the best possible answers. A general equation of state should still be used, but the user should supply better interaction parameters to obtain good results.

The default water decant option is usually acceptable. However, for high pressure systems where the solubility of hydrocarbon in water is significant and the solubility correlations of water in hydrocarbon break down, the Kabadi-Danner modification to SRK should be used with the VLLE option. The Kabadi-Danner option as imple-mented has been extended to include nitrogen, hydrogen, carbon dioxide, carbon monoxide, and hydrogen sulfide as specific compo-nents. Petroleum fraction components are approximately identified as paraffins, olefins, aromatics, or naphthenes, according to their Watson characterization parameters, when suitable interaction parameters are supplied by the user.

For systems containing non-hydrocarbon components (such as methanol and glycol acting as inhibitors), more complex mixing rules must be used to obtain good results. The SRKM and PRM methods work well for these systems, but the user must ensure that all the relevant interaction data are entered. These methods auto-matically access the SIMSCI databank to retrieve all available inter-action data, but the user may have to supply additional data if the

PRO/II Thermodynamic Data Keyword Input Manual II-2-5

Page 62: Manual de Modelos Termodinamicos

data for a component pair are not in the bank. The VLLE option must be specified on the METHOD statement if two liquid phases are expected.

Use the COSTALD method to calculate the liquid density for Tr < 0.95. This option is not the default method and must be specif-ically requested.

Recommended Methods Comments

SRK / PR / BWRS

These methods give good results for most hydrocarbon and hydrocarbon-water systems.

SRKKD Use SRKKD(VLLE) for high pressure systems containing hydrocarbons and water. SRKKD uses more CPU time than SRK. Do not use SRKKD if other polar components, such as methanol, are present.

SRKM / PRM /SRKS

Use these methods for systems containing water and other polar components, such as methanol. Always use the VLLE option with these methods for this type of system.

SRKP / PRP Simpler versions of SRKM and PRM. These methods are not as good as SRKM or PRM and do not significantly reduce CPU time.

Glycol Dehydration SystemsThe GLYCOL bank of interaction parameters for the SRKM method has been created for these systems. This bank is a sub-sec-tion of the general SRKM interaction bank, and the data have been fitted over a narrow range of typical temperatures and pressures for TEG, and, to a lesser extent, EG, and DEG dehydration systems. Invoking the GLYCOL system automatically retrieves the GLY-COL interaction parameters.

Recommended Methods

Comments

GLYCOL The program includes special interaction coefficients for typical TEG, and, to a lesser extent, EG, and DEG dehydration systems.

II-2-6 Application Guidelines

Page 63: Manual de Modelos Termodinamicos

Sour Water SystemsThere are two methods available for the prediction of vapor-liquid equilibrium. They are identified on the METHODS statement as SOUR and GPSWATER.

SOURThis method is based on a combination of the API/EPA SWEQ (Sour Water EQuilibrium) model for sour water components (H2O, H2S, CO2 and NH3) and SRKM for all other components. The rec-ommended range of application is:

Temperature (F) 68 < T < 300 F

Pressure P < 1500 psia

Composition xwtNH3 + xwt

CO2+ xwtH2S< 0.30

where xi is the weight fraction in the aqueous phase.

In general, this method is recommended over the GPSWATER when CPU time is a consideration.

GPSWATERThis method is based on the GPSWAT program for calculating sour water equilibrium. The GPSWAT method is used for generating K-values for sour water components (H2O, H2S, CO2, NH3, CO, CS2, COS, MeSH and EtSH). All other components are calculated using SRKM. The recommended range of application is:

Temperature (F) 68 < T < 600 F

Pressure P < 2000 psia

Composition xwtNH3 < 0.40

Sour gas partial pressure PCO2+ PH2S < 1200 psia

The GPSWATER method is valid for a broader range of applica-tions than the SOUR method, but requires significantly more com-putation time.

Amine SystemsThe AMINE package is used for generating K-values for aqueous amine systems and sour gases including H2S, CO2, H2O, MEA, DEA, DGA, DIPA, and MDEA. All other component K-values are calculated using SRKM. Water and exactly one amine must be present when using the package.

PRO/II Thermodynamic Data Keyword Input Manual II-2-7

Page 64: Manual de Modelos Termodinamicos

Data for the equilibrium constants are provided for MEA, DEA, DGA, DIPA, and MDEA. However, the DIPA data are not recom-mended for use in final designs. For MDEA, the model is modified to include composition effects.

be specified by the user. These corrections are only appropriate for systems involving MDEA or DGA. For all other amines, the entry is ignored if it appears. The user can override the default value of 0.3 under the KVALUE keyword in the THERMO DATA section in order to better fit the plant data. A RESI value of 1.0 corresponds to an equilibrium model.

The data package may be used over the ranges of concentrations and acid gas loadings typically encountered in gas processing. This includes the temperatures and pressures for the contactor and regen-erator. MEA processes have been successfully applied in the 25-100 psig operating range. However, DEA does not perform well under these conditions and is generally used at higher pressures. Typi-cally, contactor pressures for MEA contactors may range from 100 to 500 psig, with DEA systems ranging from 100 to 1000 psig. The amine regenerators are generally operated at temperatures less than 275 F, with a typical temperature being 255 F. Amine solution strengths for MEA and DEA are generally within 15-25 wt% and 25-35 wt%, respectively.

The AMINE package accounts for heats of reactions by applying a correction to IDEAL saturated liquid enthalpies. SRKM is also used for actual vapor densities and IDEAL values are used for liquid densities.

Petrochemical Applications

Light Hydrocarbon SystemsSRK, PR, or BWRS is recommended for most light-hydrocarbon, petrochemical applications.

When solubility of water in hydrocarbon and hydrocarbon in water becomes important, as it would at high pressure, SRKKD(VLLE) is recommended.

Use the COSTALD method for liquid density. This option is not the default and must be requested specifically.

II-2-8 Application Guidelines

Page 65: Manual de Modelos Termodinamicos

Recommended Methods

Comments

SRK / PR / BWRS

Good for systems containing only similar hydrocarbon types (e.g., all paraffins). Water may be decanted as a pure aqueous phase.

SRKKD Use SRKKD for more accurate results with hydrocarbon-water systems. SRKKD uses more CPU time than SRK.

Aromatic SystemsFor systems containing all aromatic components, use the ideal method at low pressures as these systems are very close to ideal. For systems at pressures above 2 atmospheres, use GS, SRK, or PR for a more accurate result.

The liquid density can be calculated using the ideal, the default API, or the COSTALD methods. The COSTALD method has data for many aromatic components, will give good results at higher tem-peratures, and is better than API if any light components such as methane are present. For systems at high temperatures with all aro-matic components, the API method is as good and uses less CPU time. The ideal method is best at lower temperatures and should not be used if the temperature is significantly higher than the boiling point of any one component.

RecommendedMethods

Comments

IDEAL Recommended for systems at low pressures below 2 atm.

GS / SRK/ PR Recommended for systems at pressures above 2 atm.

IDEAL / API /COSTALD

Recommended for liquid density.

Aromatic/Non-aromatic SystemsTraditionally, these systems are difficult to model accurately.How-ever, new equation-of-state mixing rules and alpha formulations can give excellent results when appropriate interaction parameters and alpha parameters are available. The SIMSCI databank includes a large number of interaction parameters, but the user should verify

PRO/II Thermodynamic Data Keyword Input Manual II-2-9

Page 66: Manual de Modelos Termodinamicos

the availability of all critical parameters to ensure getting good results. It is not necessary to use the VLLE option unless polar com-ponents, such as water, are present.

For aromatic / non-aromatic extraction systems (e.g., DMF extrac-tion of butadiene), use a liquid activity method such as NRTL. Equations of state using the advanced mixing rules can model this system as well but require more CPU time to obtain the same results. As with all systems of this type, the results are only as good as the supplied data. The SIMSCI databank has a large amount of interaction data stored for the advanced mixing rules and the NRTL and UNIQUAC liquid activity methods. However, the user must ensure that all important interactions are covered in order to get good results. The liquid activity methods have an advantage over equations of state, since they can use the UNIFAC FILL option to estimate any missing binary interaction parameters.

Systems that include light gases can be modeled using the HENRY option in conjunction with the liquid activity methods. This is acceptable when the light gases are present in small quantities. However, if the gases are present in large quantities, it is better to employ an equation of state using one of the advanced mixing rule methods. These calculate the solubilities of the gases more rigor-ously.

Recommended Methods

Comments

SRKM / PRM /SRKH / PRH

Use any of these methods for aromatic / non-aromatic systems. Also use them for extraction systems at high pressure, or when large quantities of supercritical gases are present.

NRTL / UNIQUAC

Use these liquid activity methods for extraction systems, such as the extraction of butadiene using DMF. Use the Henry option to model any supercritical gases present in small quantities. Use the UNIFAC FILL option to estimate missing binary pairs.

Non-hydrocarbon SystemsThese systems typically contain oxygen, halogen, or nitrogen deriv-atives of hydrocarbon components and tend to be highly non-ideal. For low pressure systems, use a liquid activity coefficient method. For single phase systems, the WILSON, NRTL, and UNIQUAC methods are equally good. The Wilson method is the simplest and

II-2-10 Application Guidelines

Page 67: Manual de Modelos Termodinamicos

requires the least amount of computer time. Simpler methods, such as VANLAAR and MARGULES, are not as good, since they often do not model the more non-ideal systems accurately.

For systems containing two liquid phases, the NRTL or UNIQUAC method should be used. The SIMSCI databank contains a large number of binary interaction coefficients for both VLE and LLE systems. In order to get good results, the user must ensure that all significant binaries are supplied in the input. The UNIFAC FILL option can be used to fill in any missing binary data, but should be used only if interaction data are available for most of the binary pairs. If the user has no data, the SYSTEM= UNIFAC option can be used, since it has group interaction data available for both VLE and LLE applications.

For high pressure systems, the program offers several methods for modeling the vapor phase fugacity. These methods should be used only if the system pressure is significantly higher than the pressure at which the interaction coefficients were regressed. Interaction coefficients regressed from high pressure data may already include any vapor phase non-ideality in the liquid phase interaction coeffi-cients. The user should always determine whether or not any user-supplied interaction parameters include vapor phase fugacity. All of the parameters in the SIMSCI databank except for components such as carboxylic acids were regressed without a vapor phase fugacity method. For systems with carboxylic acids such as acetic acid, it would therefore be appropriate to use PHI=HOCV.

Supercritical gases present in small quantities can be modeled using the Henry option. If they are present in large quantities, or if the system is at high pressures (usually greater than 10 atmospheres), an equation of state using one of the advanced mixing rules should be selected. These are the SRKH, PRH, SRKM, PRM, SRKS, SRKP and PRP methods. The SRKM, SRKS or PRM methods are recommended for the non-hydrocarbon systems discussed here.

PRO/II Thermodynamic Data Keyword Input Manual II-2-11

Page 68: Manual de Modelos Termodinamicos

Recommended Methods

Comments

WILSON Use WILSON for slightly non-ideal systems. Use the HENRY option to model small amounts of non-condensible gases. Use the UNIFAC FILL option to fill in missing binary interaction data.Do not use WILSON for VLLE systems.

NRTL / UNIQUAC

Use either of these methods for all non-ideal systems. Use the Henry option to model small amounts of non-condensible gases. Both methods model VLLE systems as well as VLE systems. Use the UNIFAC FILL option to fill in missing binary interaction data.

SRKM / PRM /SRKS

Use for systems at higher pressure or when large quantities of non-condensible gases are present. Can be used for VLE and VLLE systems.

SRKH / PRH Can be used as comparable alternatives to SRKS, SRKM and PRM.

SRKP / PRP SRKS / SRKH / PRH / SRKM / PRM normally yield better results than SRKP and PRP in these applications.

Alcohol Dehydration SystemsA special bank of interaction coefficients for the NRTL method has been created for alcohol dehydration systems. The coefficients are applicable over a much narrower range than the general NRTL bank coefficients. The user may specify either BANK=ALCOHOL on the KVALUE statement or SYSTEM=ALCOHOL on the METHOD statement. The SYSTEM=ALCOHOL option calculates the vapor enthalpy and density using the SRKM method.

RecommendedMethods

Comments

ALCOHOL Use for all alcohol dehydration systems.

NRTL / UNIQUAC

Use when valid user-supplied interaction data are available.

HF SystemsA special equation of state, HEXAMER, has been created for sys-tems containing molecules that hexamerize in the vapor phase. This

II-2-12 Application Guidelines

Page 69: Manual de Modelos Termodinamicos

method is recommended for HF systems such as the HF alkylation process, and for the manufacture of refrigerants and other haloge-nated compounds using HF.

Chemical and Environmental Applications

Non-Ionic SystemsNon-ionic systems typically contain oxygen, halogen, or nitrogen derivatives of hydrocarbon components and tend to be highly non-ideal. For low pressure systems, use a liquid activity coefficient method. For single liquid phase systems, the WILSON, NRTL, and UNIQUAC methods are equally good. The Wilson method is the simplest and requires the least amount of computer time. Simpler methods such as VANLAAR and MARGULES are less applicable, since they often do not model the more non-ideal systems accu-rately.

The NRTL or UNIQUAC method should be used for systems con-taining two liquid phases. The SIMSCI bank contains a large num-ber of binary interaction coefficients for both VLE and LLE systems. In order to get good results, the user must ensure that all significant binaries are included in the input. The UNIFAC FILL option can be used to estimate any missing binary data but should be used only if interaction data are available for most of the binary pairs. If the user has no data, the SYSTEM=UNIFAC option can be used, since it has group interaction data available for both VLE and LLE systems.

The program offers several methods for modeling the vapor phase fugacity in high pressure systems. These should be used only if the system pressure is significantly higher than the pressure at which the interaction coefficients were regressed. Interaction coefficients regressed from high pressure data may already include any vapor phase non-ideality in the liquid phase interaction coefficients.

Supercritical gases present in small quantities may be modeled using the Henry option. If they are present in large quantities or if the system is at high pressures, an advanced equation of state such as SRKH, PRH, SRKM, PRM, SRKS SRKP, and PRP should be selected

PRO/II Thermodynamic Data Keyword Input Manual II-2-13

Page 70: Manual de Modelos Termodinamicos

.

RecommendedMethods

Comments

WILSON Use WILSON for slightly non-ideal systems. Use the Henry option to model small quantities of non-condensible gases.Do not use WILSON for VLLE systems.

NRTL / UNIQUAC

Use either of these methods for all non-ideal systems. Use the Henry option to model small quantities of non-condensible gases. Both methods model VLLE systems as well as VLE systems. Use the UNIFAC FILL option to estimate missing binary interaction data.

SRKM / PRM /SRKS

Use at higher pressures or when large quantities of non-condensible gases are present. All three of these methods can be used for VLE and VLLE systems.

SRKP / PRP These methods often yield less satisfactory results than the SRKH, PRH, SRKM, SRKS, and PRM methods in these applications.

Carboxylic Acid SystemsCarboxylic acids form dimers in the vapor phase. To obtain accu-rate values for vapor fugacity, enthalpy, and density, use the Hay-den-O'Connell method to calculate the vapor phase properties. Note that HOCV vapor phase fugacities must be used in conjunction with a liquid activity method.

RecommendedMethods

Comments

HOCV The Hayden-O'Connell method produces the best values for vapor phase properties in these applications. Use the PHI=HOCV, ENTHALPY(V)=HOCV, DENSITY(V)=HOCV options on the METHOD statement.

Environmental ApplicationsThese systems usually involve stripping dilute pollutants out of water. The normal liquid activity methods, such as NRTL, do not usually model these very dilute systems with sufficient accuracy. A better approach is to use Henry's Law data for the components in water. The Henry's Law data can be obtained from data sources,

II-2-14 Application Guidelines

Page 71: Manual de Modelos Termodinamicos

such as the U.S. Environmental Protection Agency( EPA), or are often available in the SIMSCI databank. In order to model the sys-tems accurately, the user should supply temperature-dependent val-ues for the Henry data whenever possible. Non-temperature dependent data often over-predict the required amount of stripping steam.

Solid ApplicationsSolid-liquid equilibria for most systems can be represented by the van't Hoff (ideal) solubility method or by using user-supplied solu-bility data. In general, for those systems where the solute and sol-vent components are chemically similar and form a near ideal solution, the van't Hoff method is appropriate. For non-ideal sys-tems, solubility data should be supplied. For most organic crystalli-zation systems, which are very near ideal in behavior, the van't Hoff SLE method provides good results. The VLE behavior can usually be adequately represented by IDEAL or VANLAAR methods.

Examples2.1: You are required to model a hydrocarbon-water mixture

which contains less than 10% of water. The SRK method is chosen.

TITLE PROB=HC-WATERPRINT INPUT=ALL

COMP DATALlBID 1,H2O/2,C2/3,NC4/4,NC5/5,NC6

THERMO DATAMETHOD SYSTEM=SRKWATER DECANT=ON

STREAM DATAPROP STREAM=1,TEMP=100,PRES=100, &

COMP=40/100/100/100/100UNIT OPERATIONS

FLASHFEED 1PROD V=2,L=3,W=4ISOT TEMP=100,PRES=100

END

PRO/II Thermodynamic Data Keyword Input Manual II-2-15

Page 72: Manual de Modelos Termodinamicos

2.2 Refinery Application: A mixture of topped crude and dissolved steam is to be modeled. The BK10 method gives satisfactory results for this low pressure crude application.

TITLE PROB=VACUUMDIMEN METRIC, PRES=MMHG

COMP DATALIBID 1,H2O/ 2,C2/ 3,C3

THERMO DATAMETHOD SYSTEM=BK10

STREAM DATAPROP STREAM=1, TEMP=330, PRES=8000, RATE(V)=99.37, &

ASSAY=LVTBP STREAM=1, PRES(MMHG)=760, &

DATA=0,257/ 5,324/ 10,380/ 20,399/ 30,435/ 40,455/ & 50,505/ 60,541/ 70,596/ 75,634

SPGR AVERAGE=0.9833, STREAM=1PROP STREAM=2, TEMP=30, PRES=8000, RATE(V)=3.0, &

COMP=2,75/ 3,25PROP STREAM=3, TEMP=330, PRES=8000, RATE(W)=318, &

COMP=1,100PROP STREAM=4, TEMP=355, PRES=8500, PHASE=V, &

RATE(W)=908, COMP=1,100UNIT OPERATIONS

MIXERFEED 1,2,3PROD L=5

COLUMNPARA TRAY=2FEED 5,1/ 4,2PROD OVHD=6, BTMS=7,100VAPOR 1,300/ 2,50TEMP 1,355/ 2,371HEAT 1,1PRES 1,98/ 2,115SPEC STREAM=7, RATE(V), VALUE=50.88VARY HEAT=1

END

2.3 Sour Water Application: A sour water stream containing CO2, H2S, NH3 and HCN is to be modeled. The amount of HCN in the feed is small, and its distribution between the liquid and vapor phases is not important. Either the SOUR or GPSWAT methods could be used. However, an examination of the feed shows that the sum of the weight fractions of the sour gases exceeds 0.30. The GPSWAT method is therefore preferred over the SOUR method.

II-2-16 Application Guidelines

Page 73: Manual de Modelos Termodinamicos

TITLE PROB=SOURPRINT INPUT=ALL

COMPONENT DATALIBID 1,N2/ 2,CH4/ 3,H2S/ 4,NH3/ &

5,CO2/6,HCN/7,H2OTHERMODYNAMIC DATA

METHODS SYSTEM=GPSWATSTREAM DATA

PROP STREAM=1, TEMP=120, PRES=25, PHASE=L, &COMP(W)=1,2/ 2,3/3,8000/4,4000/ &

5,1200/6,0.238/7,25584.7PROP STREAM=2, PRES=50, PHASE=V, COMP(M)=7,2000

UNIT OPERATIONSCOLUMN

PARA TRAY=7, IO=25, DAMP=0.5FEED 1,1/ 2,7, NOTSEPPROD OVHD=3, BTMS=4,24446PSPEC TOP=20.8, DPCOL=2.1678ESTI MODEL=CONV

END

2.4 Natural Gas Application: You wish to study a natural gas stream that contains less than 1 percent of N2. Therefore, the SRK equation of state method is used along with the COSTALD liquid density method to model this application.

TITLE PROB=LNGPRINT INPUT=ALL

COMPONENT DATALIBID 1,N2/ 2,CH4/ 3,C2/ 4,C3/ &

5,NC4/ 6,NC5/ 7,NC6THERMODYNAMIC DATA

METHODS SYSTEM=SRK, DENSITY(L)=COSTALDSTREAM DATA

PROP STREAM=1, TEMP=10, PRES=50, PHASE=V, &COMP(M)=1,2.6/2,93.7/3,1.94/4,0.95/ &

5,0.38/6,0.23/7,0.2UNIT OPERATIONS

PHASE ENVELOPEEVALUATE STREAM=1, LFRAC=0.90, IPLOT=OFF

END

PRO/II Thermodynamic Data Keyword Input Manual II-2-17

Page 74: Manual de Modelos Termodinamicos

2.5 Petrochemical Application: A binary aromatic mixture of n-methyl-formamide (NMF) and tert-butylformamide (TBUTFORM) is to be modeled at a pressure of 3 atmospheres. The SRK K-value method provides good results for aromatic systems above 2 atmospheres. The COSTALD liquid density method provides good results for aromatic systems at low temperatures.

TITLE PROB=AROMPRINT INPUT=ALL

COMP DATALIBID 1,NMF/ 2,TBUTFORM

THERMO DATAMETHOD SYSTEM=SRK, DENS(L)=COSTALD

STREAM DATAPROP STREAM=1, TEMP=80, PRES(ATM)=1, RATE(W)=1000, &COMP=1,25/ 2,75

UNIT OPERATIONSCOLUMN

PARA TRAY=10, CHEM=40, DAMP=0.6FEED 1,5PROD OVHD=2, BTMS=3,700COND TYPE=BUBB, PRES(ATM)=3PSPEC PTOP(ATM)=3, DPCOL=0.5DUTY 1,1,10/ 2,10,10SPEC RRATIO, VALUE=5SPEC STREAM=3, COMP=2, FRAC, VALUE=0.9VARY DUTY=1,2ESTI MODEL=CONV

END

2.6 Chemical and Environmental Application: A water-hydrocarbon stream is to be flashed at 1 atmosphere. The presence of acetic and acrylic acids in the stream necessitates the use of the Hayden-O'Connell vapor fugacity method to account for the vapor phase dimer formation. The NRTL method will be used to calculate VLE equilibria. The HENRY option is selected to model the supercritical components.

TITLE PROB=ACIDSPRINT INPUT=ALL

COMP DATALIBID 1,H2O/ 2,O2/ 3,N2/ 4,C3/ 5,IC4/ 6,NC4/ &

7,NC5/ 8,ACETIC/ 9,ACRYLIC

II-2-18 Application Guidelines

Page 75: Manual de Modelos Termodinamicos

THERMO DATAMETHOD SYSTEM=NRTL, PHI=HOCV, ENTH(V)=HOCV , &DENS(V)=HOCV, HENRYKVALUE BANK=SIMSCI, POYNTING=YES, FILL=IDEALHENRY BANK=SIMSCISOLUTE 2,3

STREAM DATAPROP STREAM=1, TEMP=80, PRES(ATM)=1, RATE(W)=1000, &

COMP=1,0.80/ 2,2.0E-02/ 3,0.04/ 4,2E-02/ 5,5.0E-02/ & 6,0.05/ 7,1.0E-03/ 8,0.01/ 9,0.01

UNIT OPERATIONSFLASH

FEED 1PROD L=2, V=3ISOT TEMP(C)=90, DP=0.0

END

2.7 Solid Application: Urea is to be precipitated from an aqueous solution. Some library properties for urea and water such as vapor pressure and heat capacity are overridden with user-supplied values. The urea-water mixture is non-ideal and so user solubility data are supplied.

TITLE PROB=SOLIDSPRINT INPUT=ALL

COMP DATALIBID 1,UREA/ 2,H2OPHASE VLS=1ATTR COMP=1, PSD(MIC)=147,208,295,417,589,833,1168TTP(K) 1,4.0585E+02PTP(PA) 1,9.31306E+01FORMATION(V,J/KG,MOLE) 1,-2.458E+08,-1.582E+08HFUS(J/KG,MOLE) 1,1.479E+07VP(L,PA,K) CORR=20, LN, DATA=1, &

3.6805E+02,2.981E+02,2.8209E+01,-1.05E+04, &1.0272E-01,0.0,0.0,0.0

LATENT(J,KG/K,MOLE) CORR=1, DATA=1, &2.981E+02,2.981E+02,8.7864E+07,0.0, &0.0,0.0,0.0,0.0

CP(S,J/KG,K,MOLE) CORR=1, DATA=1, &4.0E+02,8.0E+01,1.725E+04,2.318E+02, &7.9E-02,0.0,0.0,0.0

DENS(S,K,KG/M3,WT) CORR=1, DATA=1, &300.0,20.0,1335.036

SVTB 1,-7.701601E-03SLTB 1,1.889548E+02SLTM 1,1.639447E+01

PRO/II Thermodynamic Data Keyword Input Manual II-2-19

Page 76: Manual de Modelos Termodinamicos

HVTB 1,-9.317743E-03HLTB 1,8.7864E+04HLTM 1,7.127574E+03

THERMO DATAMETHOD SYSTEM(VLE)=VANLAAR, KVALUE(SLE)=SOLDATAKVALUE(VLE)

VANLAAR 1,2,0.8255,100.0KVALUE(SLE)

SOLUTE 1SOLDATA(K) 1,2,0.0,-1310.37,0.533619

STREAM DATAPROP STREAM=1, TEMP=80, PRES(ATM)=1, RATE(W)=1000, &

COMP=1,25/ 2,75UNIT OPERATIONS

CRYSTALLIZERFEED 1PROD OVHD=2, BTMS=3RATING VOLUME=200OPER SOLU=1, SOLVENT=2, TEMP=20, DP=0.0GROWTH KG(M/S)=1.0E-07, GEXP=0.2NUCLEATION KB=8.0E+13, RPM=100

END

II-2-20 Application Guidelines

Page 77: Manual de Modelos Termodinamicos

Chapter 3 Generalized Correlations

These general purpose data generators may be used for a variety of industrial applications but are primarily applicable to systems of non-polar hydrocarbons. The program also allows the user to input K-value data directly.

Ideal and Library Methods

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=IDEALSTREAM DATA

. . .

General InformationThe IDEAL method calculates K-values, vapor and liquid densities, and vapor and liquid enthalpies. LIBRARY methods to calculate liquid entropies were discontinued starting with PRO/II version 4.1. These methods should be used with pure component streams and streams with very similar components; for instance:

o-xylene / m-xylene / p-xylene / ethylbenzenestyrene.

PRO/II Thermodynamic Data Keyword Input Manual II-3-1

Page 78: Manual de Modelos Termodinamicos

Table 3-1: Attributes of IDEAL and LIBRARY MethodsProperties predicted by IDEAL and LIBRARY methods

K-values Liquid densities Vapor densities

Liquid enthalpies Vapor enthalpies

Required pure component properties1

K-values - Vapor pressure correlations

Liquid enthalpy - Liquid enthalpy correlations

Vapor enthalpy - Liquid enthalpy and heat of vaporization correlations

Liquid densities - Liquid density correlations

Vapor densities - Molecular weight

Suggested application ranges

Pressure - Low pressures

Two liquid phase behavior

Free-water decant

- Not supported

VLLE - Not supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for

non-library components.

Input DescriptionThe THERMODYNAMIC DATA statement and the METHOD statement are discussed in full in Chapter 1, “Thermodynamic Data Overview”. The keywords relevant to the IDEAL method are dis-cussed here.

The METHOD StatementMETHOD SYSTEM=IDEAL, ...orMETHOD KVALUE=IDEAL, ENTHALPY=IDEAL,

DENSITY=IDEAL

SYSTEM Selects a combination of compatible thermodynamic property generators. When SYSTEM=IDEAL is chosen, IDEAL K-values, densities, and enthalpies are assumed.

II-3-2 Generalized Correlations

Page 79: Manual de Modelos Termodinamicos

Examples3.1: Using the IDEAL methods, model a 50/50 mix of propane

and normal butane at 50 psia and 100 F. By choosing the IDEAL “system”, Curl-Pitzer enthalpies are invoked.

TITLE PROB=IDEAL, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,IC4/ 2,NC4

THERMODYNAMIC DATAMETHOD SYSTEM=IDEAL

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FL1

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

KVALUE Selects the method for K-value calculations. Only VLE K-value calculations are available with the IDEAL method. Pure component vapor pressures and Raoult's law:

Pi = χ i Pisat

are used to calculate K-values.

ENTHALPY (VL or V and/or L)

Selects the method for enthalpy calculations. IDEAL methods may be selected for liquid and/or vapor phase calculations.

DENSITY (VL or V and/or L)

Selects the method for density calculations. IDEAL methods may be selected for liquid and/or vapor phase calculations.

PRO/II Thermodynamic Data Keyword Input Manual II-3-3

Page 80: Manual de Modelos Termodinamicos

3.2: For the same problem, explicitly declare IDEAL K-values, enthalpies, IDEAL vapor density, and API liquid densities.

THERMODYNAMIC DATAMETHOD KVALUE=IDEAL, ENTHALPY=IDEAL, &

DENSITY(V)=IDEAL, DENSITY(L)=API

3.3: For the same problem, use SRK for K-values and enthalpies, and IDEAL densities.

THERMO DATAMETHOD KVALUE=SRK, ENTHALPY=SRK, DENSITY=IDEAL

orTHERMO DATA

METHOD SYSTEM=SRK, DENSITY=IDEAL

3.4: For the same problem, use SRK for everything except liquid enthalpies. Use the IDEAL method instead for liquid enthalpy calculations.

THERMODYNAMIC DATAMETHOD SYSTEM=SRK, ENTHALPY(L)=IDEAL

Grayson-Streed

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=GSSTREAM DATA

. . .

General InformationThe Grayson-Streed method calculates K-values. It is generally use-ful for light to mid-range refinery hydrocarbons. It is also useful for vacuum column and coker simulations when API87 is used. Refer to the PRO/II Reference Manual for additional limitations.

II-3-4 Generalized Correlations

Page 81: Manual de Modelos Termodinamicos

Table 3-2: Attributes of Grayson-Streed MethodsProperties predicted by GS methods

K-values

Required pure component properties1

Molecular weight Critical temperature Critical pressure

Liquid molar volume Acentric factor Solubility parameter

Suggested application ranges

Pressure < 3000 psia

Temperature 0 - 800 F

Two liquid phase behavior

Free-water decant - Supported

VLLE - Not supported1Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD SYSTEM=GS, ...orMETHOD KVALUE=GS, ...

SYSTEM

Selects a combination of compatible thermodynamic property generators. When SYSTEM=GS is chosen, GS K-values, Curl-Pitzer (CP) enthalpies, CP entropies, API liquid densities, and SRK vapor densities are assumed.

KVALUE

Selects the method for K-value calculations. Only VLE K-value calculations are available with the GS method.

PRO/II Thermodynamic Data Keyword Input Manual II-3-5

Page 82: Manual de Modelos Termodinamicos

Water Handling Options (optional)

WATER DECANT=ON or OFF, GPSA,SOLUBILITY=SIMSCI or KEROSENE or EOSPROPERTY=SATURATED or STEAM

The GS K-value generator supports the free-water decant option. Refer to “Free-water Decant Considerations” on page 1-34 for a description of these input options.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... MOLVOL(unit) i, value / ... ACENTRIC i, value / ... SOLUPARA i, value / .... . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples3.5: Using the GS methods, model a 50/50 mix of propane and

normal butane at 50 psia and 100 F. By choosing the GS “system”, Curl-Pitzer enthalpies are invoked.

TITLE PROB=GS, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMO DATAMETHOD SYSTEM=GS

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FLSH

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

II-3-6 Generalized Correlations

Page 83: Manual de Modelos Termodinamicos

3.6: For the same problem, use GS K-values, Lee-Kesler enthalpies and densities.

THERMO DATAMETHOD KVALUE=GS, ENTHALPY=LK, DENSITY=LK

3.7: The same system as in Example 3.5 now contains 20% water at a higher pressure. Use the GPSA Data Book, water solubility by the API Technical Data Book, Fig. 9A1.4. Pure water properties are calculated using the Keenan and Keyes steam tables.

TITLE PROB=GS, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMO DATAMETHOD SYSTEM=GS

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=F1

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

PRO/II Thermodynamic Data Keyword Input Manual II-3-7

Page 84: Manual de Modelos Termodinamicos

Chao-Seader

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=CSSTREAM DATA

. . .

General InformationThe Chao-Seader method calculates K-values. It is generally useful for light to mid-range refinery hydrocarbons. SimSci recommends that the Grayson-Streed method (GS) be used in preference to CS. Refer to the PRO/II Reference Manual for additional limitations.

Table 3-3: Attributes of the Chao-Seader MethodsProperties predicted by CS Methods

K-values - Chao-Seader

Required pure component properties1

Molecular weight Critical temperature Critical pressure

Liquid molar volume Acentric factor Solubility parameter

Suggested application ranges

C2 & Higher H2 & C1

Pressure - < 2000 psia < 8000 psia

Temperature - 0 to 800 F -100 to 500F

Two liquid phase behavior

Free-water decant - Supported

VLLE - Not supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for

non-library components.

II-3-8 Generalized Correlations

Page 85: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM=CS, ...orMETHOD KVALUE=CS, ...

SYSTEM Selects a combination of compatible thermodynamic property generators. When SYSTEM=CS is chosen, CS K-values, Curl-Pitzer (CP) enthalpies, CP entropies, API liquid densities, and SRK vapor densities are assumed.

KVALUE Selects the method for K-value calculations. Only VLE K-value calculations are available with the CS method.

Water Handling Options (optional)WATER DECANT=ON or OFF, GPSA,

SOLUBILITY=SIMSCI or KEROSENE or EOSPROPERTY=SATURATED or STEAM

The CS K-value generator supports the free-water decant option. Refer to “Free-water Decant Considerations” on page 1-34, for a description of these input options.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... MOLVOL(unit) i, value / ... ACENTRIC i, value / ... SOLUPARA i, value / .... . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

PRO/II Thermodynamic Data Keyword Input Manual II-3-9

Page 86: Manual de Modelos Termodinamicos

Examples3.8: Using the CS methods, model a 50/50 mix of propane and

normal butane at 100 psia and 100 F. By choosing the CS “system”, Curl-Pitzer enthalpies are invoked.

TITLE PROB=CS, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMO DATAMETHOD SYSTEM=CS

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FLSH

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

3.9: For the same problem, use CS K-values, Lee-Kesler enthalpies and densities.

THERMO DATAMETHOD KVALUE=CS, ENTHALPY=LK, DENSITY=LK

3.10: The system in Example 3.8 now contains 20% water at a higher pressure. Use the GPSA Data Book charts, water solubility by the API Technical Data Book, Fig. 9A1.4. Pure water properties are calculated using the Keenan and Keyes steam tables.

TITLE PROB=GS, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,H2O/ 2,C3/ 3,NC4

THERMO DATAMETHOD SYSTEM=CS

WATER DECANT=ON, GPSA, SOLUBILITY=KEROSENE, & PROPERTY=STEAM

STREAM DATAPROP STREAM=1, TEMP=100, PRES=1000, COMP=20/40/40

II-3-10 Generalized Correlations

Page 87: Manual de Modelos Termodinamicos

UNIT OPERATIONFLASH UID=F1

FEED 1PROD V=2, L=3, W=4TPSPEC TEMP=100SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

Modifications to GS and CS

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=IGSSTREAM DATA

. . .

General InformationThe Erbar modification to the Chao-Seader and Grayson-Streed methods offers improved liquid fugacity coefficients for N2, H2S and CO2. These methods do not support rigorous three-phase calcu-lations, but they do support free water decant. The Improved Gray-son-Streed method has better liquid fugacity coefficients for N2, H2S, CO, CO2, H2O, and O2. This method supports a rigorous three phase calculation but can also be used with the free water decant option turned on.

These methods are generally useful for petroleum refinery applica-tions. Refer to the PRO/II Reference Manual for additional limita-tions.

PRO/II Thermodynamic Data Keyword Input Manual II-3-11

Page 88: Manual de Modelos Termodinamicos

Table 3-4: Attributes of the Modified GS and CS MethodsProperties predicted by modified GS and CS Methods

K-values (VLE) - Erbar modified Grayson-Streed Erbar modified Chao-Seader Improved Grayson-Streed

K-values (VLLE) - Improved Grayson-Streed

Required pure component properties1

Molecular weight Critical temperature Critical pressure

Acentric factor Water solubility parameter (IGS only)

Suggested application ranges

Pressure - < 3000 psia

Temperature - 0 to 800 F

Two liquid phase behavior

Free-water decant - Supported by GSE, CSE and IGS

VLLE - Not supported by GSE and CSE Supported by IGS

1Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD Statement

Improved Grayson-StreedMETHOD SYSTEM(VLE or VLLE)=IGS, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=IGS, ...

Erbar modifications to Grayson-Streed and Chao-SeaderMETHOD SYSTEM=GSE or CSE, ...orMETHOD KVALUE=GSE or CSE, ...

SYSTEM Selects a combination of compatible thermodynamic property generators. When SYSTEM=IGS, GSE or CSE is chosen, GS K-values, Curl-Pitzer (CP) enthalpies, CP entropies, API liquid densities, and SRK vapor enthalpies are default.

II-3-12 Generalized Correlations

Page 89: Manual de Modelos Termodinamicos

Water Handling Options (optional)

These options are not valid when the VLLE option is active.

WATER DECANT=ON or OFF, GPSA,SOLUBILITY=SIMSCI or KEROSENE or EOSPROPERTY=SATURATED or STEAM

The IGS, GSE, and CSE K-value generators support the free-water decant option. Refer to “Free-water Decant Considerations” on page 1-34, for a description of these input options.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... MOLVOL(unit) i, value / ... ACENTRIC i, value / ... SOLUPARA i, value / ... WDELT . . .

Properties may be supplied that are active only when a specific method is used. For IGS, the water solubility parameter, WDELT, is applied asymmetrically to the water phase. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples3.11: Using the IGS methods, model a 50/50 mix of propane

and normal butane at 100 psia and 100 F. By choosing the IGS “system”, Curl-Pitzer enthalpies are invoked.

TITLE PROB=IGS, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMO DATAMETHOD SYSTEM=IGS

STREAM DATAPROP STREAM=1, TEMP=100, PRES=1000, COMP=50/50

KVALUE Selects the method for K-value calculations. Only VLE K-value calculations are available with the GSE and CSE methods. The IGS method supports VLLE as well.

PRO/II Thermodynamic Data Keyword Input Manual II-3-13

Page 90: Manual de Modelos Termodinamicos

UNIT OPERATIONFLASH UID=F1

FEED 1PROD V=2, L=3TPSPEC TEMP=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

3.12: For the same problem, use GSE K-values, Lee-Kesler enthalpies and densities.

THERMO DATAMETHOD KVALUE=GSE, ENTHALPY=LK, DENSITY=LK

3.13: The Improved Grayson-Streed (IGS) method, compare the results using rigorous VLLE calculations with those obtained using the water decant option. Use all the defaults for the water decant option. Both thermodynamic systems will be tried in the same run by assigning different thermodynamic sets to the two flash units.

TITLE PROB=GS, PROJ=THERMOCOMPONENT DATA

LIBID 1,H2O/ 2,C3/ 3,NC4THERMO DATA

METHOD SYSTEM(VLLE)=IGS, SET=RIGOROUSMETHOD SYSTEM=IGS, SET=DECANTING

WATER DECANT=ON, GPSA, SOLUBILITY=KEROSENE, & PROPERTY=STEAM

STREAM DATAPROP STREAM=1, TEMP=100, PRES=1000, COMP=20/40/4

UNIT OPERATION FLASH UID=DEC

FEED 1PROD V=2D, L=3D, W=4DTPSPEC TEMP=100SPEC STREAM=2D, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5METHOD SET=DECANTING

FLASH UID=RIGFEED 1PROD V=2R, L=3R, W=4RTPSPEC TEMP=100SPEC STREAM=2R, RATE, RATIO, STREAM=1, &

RATE, VALUE=0.5METHOD SET=RIGOROUS

END

II-3-14 Generalized Correlations

Page 91: Manual de Modelos Termodinamicos

Curl-Pitzer

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=SRKM, ENTHALPY=CPSTREAM DATA

. . .

General InformationThe Curl-Pitzer method calculates enthalpies and entropies. It is generally useful for refinery hydrocarbons Refer to the PRO/II Ref-erence Manual for additional limitations.

Table 3-5: Attributes of CP MethodsProperties predicted by CP methods

Enthalpies Entropies

Required pure component properties1

Critical temperature Critical pressure Acentric factor1Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD SYSTEM=GS or CS or IGS or GSE or CSE or BK10, ...orMETHOD ..., ENTHALPY(VL)=CP, or

ENTHALPY(V)= CP and/or ENTHALPY(L)=CP,ENTROPY(VL)=CP, ...

orENTROPY(V)=CP and/or ENTROPY(L)=CP, ...

PRO/II Thermodynamic Data Keyword Input Manual II-3-15

Page 92: Manual de Modelos Termodinamicos

SYSTEM Selects a combination of compatible thermodynamic property generators. Selecting GS, CS, IGS, GSE or CSE will cause Curl-Pitzer enthalpies and entropies to be used. Selecting BK10 will cause CP entropies to be used.

ENTHALPY (VL or V and/or L)

Selects the method for enthalpy calculations. By default both vapor and liquid (VL) enthalpies are calculated using the same method. You may select different methods for the vapor and liquid enthalpies by providing both an ENTHALPY(V) and ENTHALPY(L) entry.

ENTROPY (VL or V and/or L)

Selects the method for entropy calculations. By default both vapor and liquid (VL) entropies are calculated using the same method. You may select different methods for the vapor and liquid entropies by providing both an ENTROPY(V) and ENTROPY(L) entry.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

The Curl-Pitzer method requires Tc, Pc, acentric factors and ideal enthalpies. Tc, Pc and acentric factors may be overridden here for a specific method set. The ideal enthalpies may only be specified glo-bally for all sets in the Component Data Category. For a further description of these input parameters, see Chapter 9, “Method-spe-cific Pure Component Data”.

Examples3.14: Using the CS system, model a 50/50 mix of propane and

normal butane at 100 psia and 100 F. By choosing the CS “system”, Curl-Pitzer enthalpies and entropies are invoked.

TITLE PROB=CP, PROJ=THERMODESC THERMO MANUAL PROBLEM PRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

II-3-16 Generalized Correlations

Page 93: Manual de Modelos Termodinamicos

THERMO DATA METHOD SYSTEM=CS

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FLSH

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, &

RATE, VALUE=0.5END

3.15: For the same problem, specify CP enthalpies and entropies explicitly.

THERMO DATA METHOD KVALUE=CS, ENTHALPY=CP, ENTROPY=CP, &

DENSITY=API

3.16: For the same problem, use Curl-Pitzer methods in the vapor phase and IDEAL methods in the liquid phase for enthalpy and entropy calculations. For liquid density, use API and for vapor density, use the IDEAL method.

TITLE PROB=CP, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMO DATAMETHOD KVALUE=CS, ENTHALPY(V)=CP, &

ENTHALPY(L)=IDEAL, ENTROPY(V)=CP, DENSITY(L)=API, &DENSITY(V)=IDEA

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FLSH

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

PRO/II Thermodynamic Data Keyword Input Manual II-3-17

Page 94: Manual de Modelos Termodinamicos

Braun K10

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=BK10STREAM DATA

. . .

General InformationThe Braun K10 method calculates K-values. It is generally useful for heavy refinery hydrocarbons at low pressures. Refer to the PRO/II Reference Manual for additional limitations.

Table 3-6: Attributes of the Braun K10 MethodsProperties predicted by BK10 method

K-values

Required pure component properties1

Molecular weight Critical temperature Critical pressure

Acentric factor Normal boiling point

Suggested application ranges

Pressure - 0 to 100 psia

Temperature - 100 to 1200 F

Composition - C6 & Heavier

Two liquid phase behavior

Free-water decant - Supported

VLLE - Not supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for

non-library components.

II-3-18 Generalized Correlations

Page 95: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM=BK10, ...orMETHOD KVALUE=BK10, ...

SYSTEM Selects a combination of compatible thermodynamic property generators. When SYSTEM=BK10 is chosen, BK10 K-values, Johnson-Grayson (JG) enthalpies, Curl-Pitzer (CP) entropies, IDEAL vapor densities, and API liquid densities are assumed.

KVALUE Selects the method for K-value calculations. Only VLE K-value calculations are available with the BK10 method.

Water Handling Options (optional)WATER DECANT=ON or OFF, GPSA,

SOLUBILITY=SIMSCI or KEROSENE or EOS PROPERTY=SATURATED or STEAM

The BK10 K-value generator supports the free-water decant option. Refer to “Free-water Decant Considerations” on page 1-34, for a description of these input options.

Method-specific Pure Component Properties (optional)NBP(unit) i, value / ... TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples3.17: Using the BK10 method, model a 50/50 mix of propane

and normal butane at 100 psia and 100 F. By choosing the SYSTEM=BK10, Johnson-Grayson enthalpies are invoked.

TITLE PROB=BK10, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

PRO/II Thermodynamic Data Keyword Input Manual II-3-19

Page 96: Manual de Modelos Termodinamicos

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMO DATAMETHOD SYSTEM=BK10

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FL1

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

3.18: For the same problem, use BK10 K-values, Lee-Kesler enthalpies and densities.

THERMO DATAMETHOD KVALUE=BK10, ENTHALPY=LK, DENSITY=LK

3.19: The system in Example 3.17 now contains 20% water at a higher pressure. Calculate water partial pressures using the GPSA Data Book, water solubilities using the API Technical Data Book, and, because of the conditions, pure water properties using the Keenan and Keyes steam tables.

TITLE PROB=BK10, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,H2O/ 2,C3/ 3,NC4

THERMO DATAMETHOD SYSTEM=BK10

WATER DECANT=ON, GPSA, & SOLUBILITY=KEROSENE, PROPERTY=STEAM

STREAM DATAPROP STREAM=1, TEMP=100, PRES=1000, COMP=20/40/40

UNIT OPERATIONFLASH UID=DRUM

FEED 1PROD V=2, L=3, W=4TPSPEC TEMP=100SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

II-3-20 Generalized Correlations

Page 97: Manual de Modelos Termodinamicos

Johnson-Grayson

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=SRKM, ENTHALPY=JGSTREAM DATA

. . .

General InformationThe Johnson-Grayson method calculates enthalpies. It is generally useful for heavy refinery hydrocarbons. When using the Johnson-Grayson enthalpy method, it is recommended that the Johnson-Grayson method be used for both liquid and vapor phases.Refer to the PRO/II Reference Manual for additional limitations.

Table 3-7: Attributes of JG MethodsProperties predicted by JG methods

Enthalpies

Required pure component properties1

Critical temperature Critical pressure Normal boiling point1 Automatically supplied for library and petroleum components. must be supplied by the user for

non-library components.

Input Description

The METHOD StatementMETHOD SYSTEM=BK10, ...orMETHOD ..., ENTHALPY(VL)=JG, ...

orENTHALPY(V)= JG and/or ENTHALPY(L)=JG

PRO/II Thermodynamic Data Keyword Input Manual II-3-21

Page 98: Manual de Modelos Termodinamicos

SYSTEM Selects a combination of compatible thermodynamic property generators. When SYTEM=BK10 is chosen, Johnson-Grayson vapor and liquid enthalpies are assumed.

ENTHALPY (VL or V and/or L)

Selects the method for enthalpy calculations. By default both vapor and liquid (VL) enthalpies are calculated using the same method. You may select different methods for the vapor and liquid enthalpies by providing both an ENTHALPY(V) and ENTHALPY(L) entry, although this is not recommended.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... NBP(unit) i, value / ...

The Johnson-Grayson method requires Tc, Pc, and NBP. Tc, Pc, and NBP may be overridden here for a specific method set. For a further description of these input parameters, see Chapter 9, “Method-spe-cific Pure Component Data”.

Examples3.20: Using the BK10 system, model a 50/50 mix of propane

and normal butane at 100 psia and 100 F. By choosing the BK10 “system”, Johnson-Grayson enthalpies are invoked.

TITLE PROB=JG, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMO DATAMETHOD SYSTEM=BK10

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=D101

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

II-3-22 Generalized Correlations

Page 99: Manual de Modelos Termodinamicos

3.21: For the same problem, specify JG enthalpies explicitly.

THERMO DATAMETHOD KVALUE=BK10, ENTHALPY=JG, ENTROPY=CP, & DENSITY=API

Lee-Kesler

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=SRKM, ENTHALPY=LKSTREAM DATA

. . .

General InformationThe Lee-Kesler method calculates enthalpies, entropies and densi-ties. It is generally useful for refinery hydrocarbons. The liquid den-sity method is not recommended for hydrocarbons heavier than C8. Refer to the PRO/II Reference Manual for additional limitations.

Table 3-8: Attributes of the Lee-Kesler MethodsProperties predicted by LK methods

Enthalpies Entropies Densities

Suggested application ranges

Composition - C8 & lighter (for liquid density method)

Required pure component properties1

Critical temperature Critical pressure Normal boiling point 1 Automatically supplied for library and petroleum components. must be supplied by the user for

non-library components.

PRO/II Thermodynamic Data Keyword Input Manual II-3-23

Page 100: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD ENTHALPY(VL)=LK,or

ENTHALPY(V)= LK and/or ENTHALPY(L)=LK, ENTROPY(VL)=LK, ...

orENTROPY(V)= LK and/or ENTROPY(L)=LK, ...DENSITY(VL)=LK, ...

orDENSITY(V)= LK and/or DENSITY(L)=LK, ...

ENTHALPY (VL or V and/or L)

Selects the method for enthalpy calculations. By default both vapor and liquid (VL) enthalpies are calculated using the same method. You may select different methods for the vapor and liquid enthalpies by providing both an ENTHALPY(V) and ENTHALPY(L) entry.

ENTROPY (VL or V and/or L)

Selects the method for entropy calculations. By default both vapor and liquid (VL) entropies are calculated using the same method. You may select different methods for the vapor and liquid entropy by providing both an ENTROPY(V) and ENTROPY(L) entry.

DENSITY (VL or V and/or L

Selects the method for density calculations. By default both vapor and liquid (VL) densities are calculated using the same method. You may select different methods for the vapor and liquid densities by providing both a DENSITY(V) and DENSITY(L) entry.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... NBP(unit) i, value / .... . .

The Lee-Kesler method requires Tc, Pc, NBP and ideal gas enthalp-ies. Tc, Pc and NBP may be overridden here for a specific method set. The ideal gas enthalpies may only be specified globally for all sets in the Component Data Category. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Com-ponent Data”.

II-3-24 Generalized Correlations

Page 101: Manual de Modelos Termodinamicos

Examples3.22: Using the SRK system and Lee-Kesler enthalpies, model a

50/50 mix of propane and normal butane at 100 psia and 100 F. By choosing the SRK “system”, SRK entropies, vapor densities, and API liquid densities are invoked.

TITLE PROB=LK, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMO DATAMETHOD SYSTEM=SRK, ENTHALPY=LK

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FLSH

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

3.23: For the same problem, specify SRK K-values, LK enthalpies, entropies and densities explicitly.

THERMO DATA METHOD KVALUE=SRK, ENTHALPY=LK, &

ENTROPY=LK, DENSITY=LK

PRO/II Thermodynamic Data Keyword Input Manual II-3-25

Page 102: Manual de Modelos Termodinamicos

API Liquid Density

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=SRKM, DENSITY(L)=APISTREAM DATA

. . .

General InformationThe API method calculates liquid densities. It is generally useful for refinery hydrocarbons. Refer to the PRO/II Reference Manual for additional limitations.

Table 3-9: Attributes of API Methods

Properties predicted by API methods

Liquid densities

Required pure component properties1

Critical temperature Critical pressure Normal boiling point1Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD SYSTEM=SRK or SRKKD or SRKH or SRKP or

SRKM or PR or PRH or PRP or PRM or BK10 or GSor IGS or CS or UNIWAAL or GLYCOL

orMETHOD ..., DENSITY(L)=API, ...

SYSTEM Selects a combination of compatible thermodynamic property generators. When one of the above systems is chosen, API liquid densities are assumed.

II-3-26 Generalized Correlations

Page 103: Manual de Modelos Termodinamicos

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... NBP(unit) i, value / ...

The API method requires Tc, Pc, and NBP. Tc, Pc and NBP may be overridden here for a specific method set. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples3.24: Using the SRK system, model a 50/50 mix of propane and

normal butane at 100 psia and 100 F. By choosing SYSTEM= SRK, API liquid densities are automatically invoked.

TITLE PROB=API, PROJ=THERMOCOMPONENT DATA

LIBID 1,C3/ 2,NC4THERMO DATA

METHOD SYSTEM=SRKSTREAM DATA

PROP STREAM=1, TEMP=100, PRES=100, COMP=50/50UNIT OPERATION

FLASH UID=D121FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

3.25: For the same problem, specify SRK K-values, SRK enthalpies, SRK entropies, SRK vapor densities, and API liquid densities explicitly.

THERMO DATAMETHOD KVALUE=SRK, ENTHALPY=SRK, &

ENTROPY=SRK, DENSITY(V)=LK, &DENSITY(L)=API

DENSITY(L) Selects the method for liquid density calculations.

PRO/II Thermodynamic Data Keyword Input Manual II-3-27

Page 104: Manual de Modelos Termodinamicos

Rackett Liquid Density

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=SRKM, DENSITY(L)=RACKETTSTREAM DATA

. . .

General InformationThe RACKETT method calculates liquid densities. It is generally useful for refinery hydrocarbons as well as non-hydrocarbons. Refer to the PRO/II Reference Manual for additional limitations.

Table 3-10: Attributes of RACKETT MethodsProperties predicted by RACKETT methods

Liquid densities

Required pure component properties1

Critical temperature Critical pressure

Rackett parameter Critical compressibility factor

1Automatically supplied for some library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD ..., DENSITY(L)=RACKETT, ...

DENSITY(L) Selects the method for liquid density calculations.

Method-specific Pure Component Properties (optional)TC(unit) i, value /... PC(unit) i, value /... RACKETT i, value /... ZC i, value /...

II-3-28 Generalized Correlations

Page 105: Manual de Modelos Termodinamicos

The RACKETT method requires Tc, Pc, the Rackett parameter, and the critical compressibility factor. Either RACKETT or Zc may be provided. If both are given, the Rackett parameter is used. Tc, Pc, RACKETT and Zc may be overridden here for a specific method set. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples3.26: Using the SRK system and RACKETT liquid densities,

model a 50/50 mix of propane and normal butane at 100 psia and 100 F. The DENSITY(L)=RACKETT overrides the default API liquid densities.

TITLE PROB=RACKETT, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMO DATAMETHOD SYSTEM=SRK, DENSITY(L)=RACKETT

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FL1

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

3.27: For the same problem, specify SRK K-values, SRK enthalpies, entropies, Lee-Kesler vapor densities, and RACKETT liquid densities explicitly.

THERMO DATA METHOD KVALUE=SRK, ENTHALPY=SRK, &

ENTROPY=SRK, DENSITY(V)=LK, &DENSITY(L)=RACKETT

PRO/II Thermodynamic Data Keyword Input Manual II-3-29

Page 106: Manual de Modelos Termodinamicos

Costald Liquid Density

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=SRKM, DENSITY(L)=COSTALDSTREAM DATA

. . .

General InformationThe COSTALD method calculates liquid densities. It is generally useful for aromatics and other light refinery hydrocarbons up to reduced temperatures of 0.95. Refer to the PRO/II Reference Man-ual for additional limitations.

Table 3-11: Attributes of COSTALD MethodsProperties predicted by COSTALD methods

Liquid densities

Required pure component properties1

Critical temperature Acentric factor

Critical volume

1 Automatically supplied for some library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD . ..., DENSITY(L)=COSTALD, ...

DENSITY(L) Selects the method for liquid density calculations.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... ACENTRIC i, value / ... VC(unit) i, value / .... . .

The COSTALD method requires Tc, the acentric factor, and critical volumes. Tc and w may be overridden here for a specific method

II-3-30 Generalized Correlations

Page 107: Manual de Modelos Termodinamicos

set. The parameter Vc is used by COSTALD as a “characteristic volume”, not a critical volume, and is retrieved (along with Tc and the acentric factor) from the COSTALD databank. Pure component critical volumes will however be used when the characteristic vol-ume is not supplied or is missing from the COSTALD databank. For petroleum and assay components however, a characteristic vol-ume is back calculated in order to provide a correct specific gravity for the pseudocomponent. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples3.28: Using the SRK system, and COSTALD liquid densities,

model a 50/50 mix of propane and normal butane at 100 psia and 100 F. The DENSITY(L)=COSTALD overrides the default (API) liquid densities.

TITLE PROB=COSTALD, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMO DATAMETHOD SYSTEM=SRK, DENSITY(L)=COSTALD

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FLSH

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, &RATE, VALUE=0.5

END

3.29: For the same problem, specify SRK K-values, SRK enthalpies, entropies, Lee-Kesler vapor densities, and COSTALD liquid densities explicitly.

THERMO DATAMETHOD KVALUE=SRK, ENTHALPY=SRK, &

ENTROPY=SRK, DENSITY(V)=LK, &DENSITY(L)=COSTALD

PRO/II Thermodynamic Data Keyword Input Manual II-3-31

Page 108: Manual de Modelos Termodinamicos

User-supplied K-value Data

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMODYNAMIC DATA

METHOD KVALUE=DATAKVALUE(VLE)KDATA TABU=50, 100, 150/ 1, 0.4, 0.6, 0.7/ &

2, 0.3, 0.4, 10.8/ 3, 0.5, 0.7, 0.9, PREF=50or

COMPONENT DATALIBID 1,IC4/ 2,NC4/ 3,NC5

THERMODYNAMIC DATAMETHOD KVALUE=DATAKVALUE(VLE)KDATA TABU=50, 100, 150/1, 0.4, 0.6, 0.7, PREF=50

STREAM DATA . . .

General InformationAll K-value data supplied by the user may be chosen as the primary VLE or LLE K-value method by designating DATA as the K-value method on the METHOD statement. K-value data may also be used as a secondary K-value method, overriding some or all of the values generated by the principal K-value method. VLE or LLE K-value data may be supplied. However, if a VLLE method is selected, both LLE and VLE K-value data may be supplied. KDATA may be sup-plied in either tabular or correlation forms.

Table 3-12: Attributes of User-Supplied K-value DataProperties predicted by K-value Data

K-values

Required pure component properties

None

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported

II-3-32 Generalized Correlations

Page 109: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD KVALUE(VLE)=DATA, ...

orMETHOD KVALUE(VLE)=DATA, KVALUE(LLE)=method, ...

orMETHOD KVALUE(LLE)=DATA, SYSTEM(VLLE)=method, ...

orMETHOD KVALUE(LLE)=DATA, KVALUE(VLE)=method, ...

K-value Data (required)KVALUE(VLE or LLE)

KDATA CORR=icorr, LN or LOG or EXPFAC=ipos,PREF(punit)=value, DATA=i, tmax, tmin, c1, ...c8/ ...

orKDATA TABU=t1, t2, .../ i, p1, p2, .../ ..., PREF(punit)=value

Note: If KVALUE(VLE)=DATA is used, all components of phase type VL or VLS must have KDATA information.

Note: If KVALUE(LLE)=DATA is used, all component of phase type VL, VLS, or LS must have KDATA information.

KDATA This statement allows entry of K-value data in either tabular or correlation forms.

CORR Selects the correlation form of the supplied K-value data. “icorr” is one of the 29 available correlation forms. See Volume I, “ Component Properties”, for further details on data entry for thes equation-based correlations.

TABU Selects the tabular form of the supplied K-value data. See Volume I, “Component Properties”, for further details on data entry for tabular based data. Tabular data will interpolated using:

K( )ln aT--- b+=

where a and b are constants, and T is Kelvin.

PRO/II Thermodynamic Data Keyword Input Manual II-3-33

Page 110: Manual de Modelos Termodinamicos

Examples3.30: Using tabular data, predict the bubble point temperature at

50 psia for an equal molar mixture of propane, n-butane and n-pentane. The K-value data to be entered are as follows:

Temperature 50F 100F 150F

propane 2.2492 2.08300 1.9088

n-butane 0.58776 0.68216 0.76869

n-pentane 0.16308 0.23487 0.32252

TITLE PROB=KDATA BPCOMPONENT DATA

LIBID 1, C3/2, NC4 /3, NC5 THERMODYNAMIC DATA

METHOD SYST=DATA, ENTH=PR, DENS(V)=PR,DENS(L)=API KVALUE

KDATA TABU= 50, 100, 150 / & 1, 2.2492, 2.08300, 1.9088 / & 2, 0.58776,0.68216, 0.76869 / & 3, 0.16308, 0.23487, 0.32252, PREF=50

STREAM DATAPROP STREAM=1, TEMP=90, PRES=50, COMP=50/50/50

UNIT OPERATIONSFLASH UID=1

FEED 1PROD L=2BUBB PRES=50

END

PREF This keyword is required and provides the reference pressure at which K-value data are being supplied. K-value data at any other pressure P will be calculated using the following equations:

For VLE: K P( ) K PREF( ) PREFP

---------------×=

For LLE: K P( ) K PREF( )=

Note: Supplied KDATA will apply to VLE by default. If VLLE methods are used, both LLE or VLE KDATA may be supplied.

II-3-34 Generalized Correlations

Page 111: Manual de Modelos Termodinamicos

3.31: Using the SRKM method for VLE K-values, supply VLE K-values for H2O in a 50/40/10 mixture of propane, n-butane, and water at 100 F and 100 psia.

TITLE PROB=KDATA, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4/ 3,H20

THERMO DATAMETHOD SYSTEM=SRKMKVALUEKDATA TABU=50,100,150,6.0387,10.822,18.773, PREF=100

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/40/10

UNIT OPERATIONFLASH UID=FD23

FEED 1PROD V=2, L=3TPSPEC PRES=75SPEC STREAM=2, RATE, RATIO, STREAM=1, &RATE, VALUE=0.5

END

PRO/II Thermodynamic Data Keyword Input Manual II-3-35

Page 112: Manual de Modelos Termodinamicos

II-3-36 Generalized Correlations

Page 113: Manual de Modelos Termodinamicos

Chapter 4 Equations of State

Historically, equations of state have been successfully applied to petroleum and refining hydrocarbon systems and light gases. Recent advances in mixing rules and alpha forms have extended their applicability to many non-ideal systems.

Soave Modified Redlich-Kwong

Typical Usage

...COMPONENT DATA

LIBID 1,IC4/ 2,NC4/ 3,NC5THERMO DATA

METHOD SYSTEM=SRKSTREAM DATA

. . .

General InformationThe Soave modified Redlich-Kwong equation of state predicts K-values, enthalpies, entropies, and vapor densities. It is most often used in gas and refining processes. Without significant modifica-tion, it is generally not useful for highly non-ideal systems. Liquid densities and VLLE behavior can be predicted with the SRK equa-tion of state, but are not recommended without using an advanced form (see“Modified Soave-Redlich-Kwong and Peng-Robinson” on page 4-13).

PRO/II Thermodynamic Data Keyword Input Manual II-4-1

Page 114: Manual de Modelos Termodinamicos

Table 4-1: Attributes of the Soave-Redlich-Kwong Equation of StateProperties predicted by SRK

K-values Enthalpies Entropies

Vapor densities Liquid densities (not recommended)

Required pure component properties1

Molecular weight Critical temperature Critical pressure

Acentric factor Ideal vapor enthalpy

Suggested application ranges

Pressure - 0 to 5000 psia

Temperature - -460 to 1200 F

Two liquid phase behavior

Free-water decant - Supported

VLLE - Not recommended 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

Input Description

The METHOD StatementMETHOD SYSTEM=SRK, ...orMETHOD KVALUE=SRK, ENTHALPY=SRK,

ENTROPY=SRK, DENSITY(V)=SRK,DENSITY(L)=API,...

Note: DENSITY(L)=SRK is supported but not recommended. KVALUE(VLLE)=SRK is supported but not recommended.

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=SRK is chosen, SRK K-values, SRK enthalpies, SRK entropies, API liquid densities, and SRK vapor densities are assumed.

KVALUE Selects the method for K-value calculations. Only VLE K-value calculations are recommended with the SRK method.

ENTHALPY (VL or V and/or L)

Selects the method for enthalpy calculation. By default, both vapor and liquid enthalpies use this method.

II-4-2 Equations of State

Page 115: Manual de Modelos Termodinamicos

K-value Data (optional)KVALUE BANK=PROCESS or SIMSCI or NONE or bankid,

FILL=NONE or GAO or GOR or CPHC,ALPHA=ACENTRIC or SIMSCI or bankid

SRK(K or R) i, j, kija, kijb, kijc/ ...SA01to SA11 i, c1, c2, c3/ ...

Note: The SRK and SAxx statements must follow the KVALUE statement.

ENTROPY (VL or V and/or L)

Selects the method for entropy calculation. By default, both vapor and liquid entropies use this method.

DENSITY (V) Selects the method for vapor density.

Note: If DENSITY=SRK without the “V” qualifier is used, liquid density will also be calculated from the SRK equation of state. This method is not recommended for this purpose.

BANK

This option selects one or more banks from which to retrieve vapor and/or liquid phase binary interaction data.

PROCESS Selects the SimSci PROCESS databank.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects the user-created databank named ‘”bankid” that is created and maintained by the LIBMGR program.

FILL Selects the method used for estimating values for hydrocarbon/hydrocarbon binary interaction data missing from the input file and any selected databank libraries. This option is not valid for all modified equations of state. See “Filling in Missing Parameters” on page 4-27 for further information on the methods given below.

NONE This option disables estimation of any missing binary interaction data(default).

GOR This option estimates binary interaction parameters between methane and ethane and heavier hydrocarbons.

GAO This option estimates binary interaction parameters between methane through propane and heavier hydrocarbons.

PRO/II Thermodynamic Data Keyword Input Manual II-4-3

Page 116: Manual de Modelos Termodinamicos

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK=PROCESS or SIMSCI or NONE or bankid,

ALPHA=ACENTRIC or SIMSCI or bankid

ENTROPY BANK=PROCESS or SIMSCI or NONE or bankid,ALPHA=ACENTRIC or SIMSCI or bankid

DENSITY BANK=PROCESS or SIMSCI or NONE or bankid,ALPHA=ACENTRIC or SIMSCI or bankid

SRK(K or R) i, j, kija, kijb, kijc/ ...SA01to SA11 i, c1, c2, c3/ ...

SRK interaction parameters and alpha formulations may be pro-vided for enthalpy, entropy, and density methods. Normally, these data are provided for the K-value method and are automatically car-ried over for other properties using the same method, i.e., SRK. If, however, the K-value method is not SRK, you can supply the inter-action parameters and/or alpha formulations independently.

CPHC This option estimates binary interaction parameters for all hydrocarbon pairs.

ALPHA This option allows access to the databank for alpha formulations.

ACENTRIC Uses the original Soave acentric form for alpha (default).

SIMSCI Selects the SimSci alpha form and values supplied from the SIMSCI databank.

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

SRK This statement allows entry of the binary interaction parameters (kijs) for the SRK equation of state. Entries correspond to the following temperature-dependent correlation:

kij = kija + kijb/T + kijc/T2

Temperature units may be K (default) or R.

SA01 to SA11

These entries permit various formulations of the pure component Alpha correlations. See “Cubic Equation Of State Alpha Formulations” on page 4-29, for further details.

II-4-4 Equations of State

Page 117: Manual de Modelos Termodinamicos

See above under K-value Data for format and definition of these entries.

Water Handling Options (optional)WATER DECANT=ON or OFF, GPSA,

SOLUBILITY=SIMSCI or KEROSENE or EOSPROPERTY=SATURATED or STEAM

The SRK K-value generator supports the free-water decant option. Refer to “Free-water Decant Considerations” on page 1-34 for a description of these input options.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples4.1: Using the SRK method with default interaction parameters

and using acentric factors for alpha formulation, calculate the temperature of a 50/50 mix of propane and normal butane at 50 psia and 50% vaporization.

TITLE PROB=SRK, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMODYNAMIC DATAMETHOD SYSTEM=SRK

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FLSH

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

PRO/II Thermodynamic Data Keyword Input Manual II-4-5

Page 118: Manual de Modelos Termodinamicos

4.2: For the same problem, explicitly specify SRK K-values, enthalpies, entropies, and vapor densities. Specify API liquid densities.

THERMODYNAMIC DATAMETHOD KVALUE=SRK, ENTHALPY=SRK, ENTROPY=SRK,&

DENSITY(V)=SRK, DENSITY(L)=API

4.3: Use the SOUR thermo methods but apply SRK to vapor density.

THERMODYNAMIC DATAMETHOD SYSTEM=SOUR, DENSITY(V)=SRK

4.4: Supply SRK kij binaries for components 1-2 and 2-3. Note that unless binary 1-3 is available in the databank, the kij will have a value of 0.0. Note that the SRK statement must follow the KVALUE statement even though there are no additional entries on the KVALUE statement.

THERMODYNAMIC DATAMETHOD SYSTEM=SRKKVALUE SRK 1,2,0.01/ 2,3,0.025...

4.5: For the previous example, also supply parameters for the Twu-Bluck-Cunningham alpha formulation for components 1 and 3. See “Cubic Equation Of State Alpha Formulations” on page 4-29.

THERMODYNAMIC DATAMETHOD SYSTEM=SRKKVALUE SRK 1,2,0.01/ 1,3,0.025 SA06 1,0.75,0.93,1.6/ 3,0.61,0.81,2.1

4.6: For the previous example, use alpha parameters from the PROCESS instead of the default SIMSCI databank for entropy calculations. Also, supply parameters for the Twu alpha formulation for entropy calculations for components 1 and 3.

TITLE PROB=SRK, PROJ=THERMOCOMPONENT DATA

LIBID 1,C3/ 2,NC4/ 3,H2O/ 4,NH3/ 5,CO2THERMO DATA

METHOD SYSTEM=SRK

II-4-6 Equations of State

Page 119: Manual de Modelos Termodinamicos

KVALUESRK 1,2,0.01/ 1,3,0.025SA06 1,0.75,0.93,1.6/ 3,0.61,0.81,2.1ENTROPY BANK=SIMSCI, ALPHA=SIMSCISA05 1,0.7,0.85/ 3,0.6,0.71

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50/2/2/2

UNIT OPERATIONFLASH UID=F1

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

Peng-Robinson

Typical Usage

...COMPONENT DATA

LIBID 1,IC4/ 2,NC4/ 3,NC5THERMODYNAMIC DATA

METHOD SYSTEM=PRSTREAM DATA. . .

General InformationThe Peng-Robinson (PR) equation of state predicts K-values, enthalpies, entropies, and vapor densities. It is most often used for gas and refining processes. Without significant modification, it is generally not useful for highly non-ideal systems. Liquid densities and VLLE behavior predictions are not recommended without using an advanced form of the PR equation of state (see “Modified Soave-Redlich-Kwong and Peng-Robinson” on page 4-13).

PRO/II Thermodynamic Data Keyword Input Manual II-4-7

Page 120: Manual de Modelos Termodinamicos

Table 4-2: Attributes of the PR Equation of StateProperties predicted by PR

K-values Enthalpies Entropies

Vapor densities Liquid densities (not recommended)

Required pure component properties1

Molecular weight Critical pressure Critical temperature

Ideal vapor enthalpy Acentric factor

Suggested application ranges

Pressure - 0 to 5000 psia

Temperature - -460 to 1200 F

Two liquid phase behavior

Free-water decant

- Supported

VLLE - Not recommended 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

Input Description

The METHOD StatementMETHOD SYSTEM=PR, ..orMETHOD KVALUE=PR, ENTHALPY=PR, ENTROPY=PR,

DENSITY(V)=PR, DENSITY(L)=API,...

Note: DENSITY(L)=PR is supported but not recommended. KVALUE(VLLE)=PR is supported but not recommended.

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=PR is chosen, PR K-values, PR enthalpies, PR entropies, API liquid densities, and SRK vapor densities are assumed.

KVALUE Selects the method for K-value calculations. VLE and VLLE are both supported, but only VLE K-value calculations are recommended with the PR method.

II-4-8 Equations of State

Page 121: Manual de Modelos Termodinamicos

K-value Data (optional)KVALUE BANK=PROCESS or SIMSCI or NONE or bankid,

FILL=NONE or GOR or GAO or CPHCALPHA=ACENTRIC or SIMSCI or bankid

PR(K or R) i, j, kija, kijb, kijc/ ...PA01to PA11 i, c1, c2, c3/ ...

Note: The PR and PAxx statements must follow the KVALUE statement.

ENTHALPY (VL or V and/or L)

Selects the method for enthalpy calculation. By default, both vapor and liquid enthalpies use this method.

ENTROPY (VL or V and/or L)

Selects the method for entropy calculation. By default, both vapor and liquid entropies use this method.

DENSITY (V) Selects the method for vapor density.

Note: If DENSITY=PR without the “V” qualifier is used, liquid density will also be calculated from the PR equation of state. This method is not recommended for this purpose.

BANK

This option selects one or more banks from which to retrieve vapor and/or liquid phase binary interaction data.

PROCESS Selects the SimSci PROCESS databank.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

FILL Selects the method used for estimating values for hydrocarbon/hydrocarbon binary interaction data missing from the input file and any selected databank libraries. This option is not valid for all modified equations of state. See “Filling in Missing Parameters” on page 4-27 for further information on the methods given below.

NONE This option disables estimation of any missing binary interaction data(default).

PRO/II Thermodynamic Data Keyword Input Manual II-4-9

Page 122: Manual de Modelos Termodinamicos

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK=PROCESS or SIMSCI or NONE or bankid,

ALPHA=ACENTRIC or SIMSCI or bankidENTROPY BANK=PROCESS or SIMSCI or NONE or bankid,

ALPHA=ACENTRIC or SIMSCI or bankidDENSITY BANK=PROCESS or SIMSCI or NONE or bankid,

ALPHA=ACENTRIC or SIMSCI or bankidPR(K or R) i, j, kija, kijb, kijc/ ...PA01to PA11 i, c1, c2, c3/ ...

PR interaction parameters and alpha formulations may be selected for enthalpy, entropy, and density methods. Normally, these features are selected for the K-value method and are automatically carried

GOR This option estimates binary interaction parameters between methane and ethane and heavier hydrocarbons.

GAO This option estimates binary interaction parameters between methane through propane and heavier hydrocarbons.

CPHC This option estimates binary interaction parameters for all hydrocarbon pairs.

ALPHA This option allows access to the databank for alpha formulations.

ACENTRIC

Uses the original Soave acentric form for alpha (default).

SIMSCI Selects the SimSci alpha form and values supplied from the SIMSCI databank.

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

PR This statement allows entry of the binary interaction parameters (kijs) for the PR equation of state. Entries correspond to the following temperature-dependent correlation:

kij = kija + kijb/T + kijc/T2

Temperature units may be K (default) or R.

PA01 to PA11 These entries permit various formulations of the pure component Alpha correlations. See “Cubic Equation Of State Alpha Formulations” on page 4-29, for further details.

II-4-10 Equations of State

Page 123: Manual de Modelos Termodinamicos

over for these other methods. If, however, the K-value method is not SRK, you can supply the interaction parameters and/or alpha formulations independently.

See above under K-value Data for format and definition of these entries.

Water Handling Options (optional)WATER DECANT=ON or OFF, GPSA,

SOLUBILITY=SIMSCI or KEROSENE or EOSPROPERTY=SATURATED or STEAM

The PR K-value generator supports the free-water decant option. Refer to “Free-water Decant Considerations” on page 1-34 for a description of these input options.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ...PC(unit) i, value / ...ACENTRIC i, value / ...

. . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples4.7: Using the PR method with default interaction parameters

and using acentric factors for alpha formulation, calculate the temperature of a 50/50 mix of propane and normal butane at 50 psia and 50% vaporization.

TITLE PROB=PR, PROJ=THERMO DESC THERMO MANUAL PROBLEM PRINT INPUT=ALLCOMPONENT DATA LIBID 1,C3/ 2,NC4THERMODYNAMIC DATA METHOD SYSTEM=PRSTREAM DATA

PROP STREAM=1, TEMP=100, PRES=100, COMP=50/50UNIT OPERATION

FLASH UID=F203 FEED 1 PROD V=2, L=3 TPSPEC PRES=50 SPEC STREAM=2, RATE, RATIO, STREAM=1, &

PRO/II Thermodynamic Data Keyword Input Manual II-4-11

Page 124: Manual de Modelos Termodinamicos

RATE, VALUE=0.5END

4.8: For the same problem, explicitly specify PR K-values, enthalpies, entropies, and vapor densities. Specify API liquid densities.

THERMODYNAMIC DATAMETHOD KVALUE=PR, ENTHALPY=PR, ENTROPY=PR,&

DENSITY(V)=PR, DENSITY(L)=API...

4.9: Use the SOUR thermo methods but apply PR to vapor density.

THERMODYNAMIC DATA METHOD SYSTEM=SOUR, DENSITY(V)=PR

4.10: Supply PR kij binaries for components 1-2 and 2-3. Note that unless binary 1-3 is available in the databank, the kij will have a value of 0.0. Note that the PR statement must follow the KVALUE statement even though there are no additional entries on the KVALUE statement.

THERMODYNAMIC DATA METHOD SYSTEM=PR KVALUE PR 1, 2, 0.01/ 2, 3, 0.025

4.11: For the previous example, also supply parameters for the Twu-Bluck-Cunningham alpha formulation for components 1 and 3. See “Cubic Equation Of State Alpha Formulations” on page 4-29.

THERMODYNAMIC DATA METHOD SYSTEM=PR KVALUE PR 1, 2, 0.01/ 2, 3, 0.025 PA06 1, 0.75, 0.93, 1.6/ 3, 0.61, 0.81, 2.1

4.12: For the previous example, use binary parameters from the PROCESS databank instead of the default SIMSCI databank for entropy calculations. Also, supply parameters for the Twu alpha formulation for entropy calculations for components 1 and 3.

II-4-12 Equations of State

Page 125: Manual de Modelos Termodinamicos

TITLE PROB=PR, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4/ 3,H2O/ 4,NH3/ 5,CO2

THERMO DATAMETHOD SYSTEM=PRKVALUE

PR 1, 2, 0.01/ 1, 3, 0.025PA06 1, 0.75, 0.93, 1.6/ 3, 0.61, 0.81, 2.1

ENTROPY BANK=SIMSCI, ALPHA=SIMSCIPA05 1, 0.7, 0.85/ 3, 0.6, 0.71

STREAM DATA PROP STREAM=1, TEMP=100, PRES=100, COMP=50/50/2/2/2UNIT OPERATION

FLASH UID=F209FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

Modified Soave-Redlich-Kwong and Peng-Robinson

Typical Usage

...COMPONENT DATA

LIBID 1,IC4/ 2,NC4/ 3,NC5THERMO DATA

METHOD SYSTEM=SRKMSTREAM DATA

. . .

General InformationThe modified SRK and PR equations of state predict K-values, enthalpies, entropies, and vapor densities. They are most often used in gas and refining processes and are generally useful for non-ideal systems. VLLE behavior can be predicted with the modified SRK and PR equations of state. Liquid densities can also be predicted but are not recommended.

PRO/II Thermodynamic Data Keyword Input Manual II-4-13

Page 126: Manual de Modelos Termodinamicos

Table 4-3: Attributes of the Modified SRK and PR Equations of StateProperties predicted by Modified SRK and PR Equations

K-values Entropies Enthalpies

Vapor densities Liquid densities (not recommended)

Required pure component properties1

Molecular weight Critical temperature Critical pressure

Ideal vapor enthalpy Acentric factor (needed only if ACENTRIC alpha formulation is selected)

Suggested application ranges

Pressure - 0 to 5000 psia

Temperature - -460 to 1200 F

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

Input Description

The METHOD Statement

Modified Panagiotopoulos-Reid modifications to SRKMETHOD

SYSTEM(VLE or VLLE)=SRKM, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=SRKM,

ENTHALPY=SRKM, ENTROPY=SRKM,DENSITY(V)=SRKM, DENSITY(L)=API, ...

Note: DENSITY(L)=SRKM is supported but not recommended.

Huron-Vidal modifications to SRKMETHOD

SYSTEM(VLE or VLLE)=SRKH, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=SRKH,

ENTHALPY=SRKH, ENTROPY=SRKH,DENSITY(V)=SRKH, DENSITY(L)=API, ...

Note: DENSITY(L)=SRKH is supported but not recommended.

II-4-14 Equations of State

Page 127: Manual de Modelos Termodinamicos

SimSci modifications to SRKMETHOD SYSTEM(VLE or VLLE)=SRKS, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=SRKS,

ENTHALPY=SRKS, ENTROPY=SRKS, DENSITY(V)=SRKS, DENSITY(L)=API, ...

Note: DENSITY(L)=SRKS is supported but not recommended.

Panagiotopoulos-Reid modifications to SRKMETHOD SYSTEM(VLE or VLLE)=SRKP, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=SRKP,

ENTHALPY=SRKP, ENTROPY=SRKP,DENSITY(V)=SRKP, DENSITY(L)=API, ...

Note: DENSITY(L)=SRKP is supported but not recommended.

Kabadi-Danner modifications to SRKMETHOD SYSTEM(VLE or VLLE)=SRKKD, ... orMETHOD KVALUE(VLE and/or LLE or VLLE)=SRKKD,

ENTHALPY=SRKKD, ENTROPY=SRKKD,DENSITY(V)=SRKKD, DENSITY(L)=API, ...

Note: DENSITY(L)=SRKKD is supported but not recommended.

Modified Panagiotopoulos-Reid modifications to PRMETHOD SYSTEM(VLE or VLLE)=PRM, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=PRM,

ENTHALPY=PRM, ENTROPY=PRM, DENSITY(V)=PRM, DENSITY(L)=API, ...

Note: DENSITY(L)=PRM is supported but not recommended.

Huron-Vidal modifications to PRMETHOD SYSTEM(VLE or VLLE)=PRH, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=PRH,

ENTHALPY=PRH, ENTROPY=PRH,DENSITY(V)=PRH, DENSITY(L)=API, ...

Note: DENSITY(L)=PRH is supported but not recommended.

PRO/II Thermodynamic Data Keyword Input Manual II-4-15

Page 128: Manual de Modelos Termodinamicos

Panagiotopoulos-Reid modifications to PRMETHOD SYSTEM(VLE or VLLE)=PRP, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=PRP,

ENTHALPY=PRP, ENTROPY=PRP,DENSITY(V)=PRP, DENSITY(L)=API, ...

Note: DENSITY(L)=PRP is supported but not recommended.

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=SRKM (or SRKS or SRKH or SRKP or SRKKD or PRM or PRH or PRP) is chosen, SRKM (or SRKS or SRKH or SRKP or SRKKD or PRM or PRH or PRP) K-values, enthalpies, entropies, vapor densities, and API liquid densities are assumed.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the modified SRK and PR methods. The VLLE option automatically selects both.SRKM (or PRM) selects the modified Panagiotopoulos-Reid SRK (or PR) method, SRKS selects the SimSci modified SRK method, SRH (or PRH) selects the Huron-Vidal modified SRK (or PR) method, SRP (or PRP) selects the Panagiotopoulos-Reid modified SRK (or PR), and SRKKD selects the Kabadi-Danner modified SRK.

K-value Data (optional)KVALUE(VLE or LLE or VLLE) BANK=SIMSCI or NONE or bankid,

FILL=NONE or GOR or GAO or CPHCALPHA=SIMSCI or ACENTRIC or bankid

SRKM or PRM(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji /...or

SRKS(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji /...or

SRKH or PRH(K or KCAL or KJ) i, j, aij, bij, cij, aji, bji, cji, αij, βij/ ...or

SRKP or PRP(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic/...or

SRKKD(K or R) i, j, kija, kijb, kijc/ ...

II-4-16 Equations of State

Page 129: Manual de Modelos Termodinamicos

SA01 to SA11 or PA01 to PA11 i, c1, c2, c3/ ...

Note: If used for calculating K-values, the SRKM or PRM or SRKH or PRH or SRKP or PRP or SRKKD or SRKS and SAxx or PAxx statements must follow the KVALUE statement.

BANK

This option selects one or more databanks from which to retrieve vapor and/or liquid phase binary interaction data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

The SRKM and SRKS databanks are the only databanks that contain extensive binary interaction parameter data. The databanks for the advanced PR equations of state are especially limited in the binary interaction data they contain. Providing binary interaction parameters regressed from experimental data is highly recommended when using advanced SRK and PR equations of state for non-ideal components.

FILL Selects the method used for estimating values for hydrocarbon/hydrocarbon binary interaction data missing from the input file and any selected databank libraries. This option is not valid for all modified equations of state. See “Filling in Missing Parameters” on page 4-27 for further information on the methods given below.

NONE This option disables estimation of any missing binary interaction data(default).

GOR This option estimates binary interaction parameters between methane and ethane and heavier hydrocarbons.

GAO This option estimates binary interaction parameters between methane through propane and heavier hydrocarbons.

CPHC This option estimates binary interaction parameters for all hydrocarbon pairs.

ALPHA This option allows access to the databank for alpha formulations.

PRO/II Thermodynamic Data Keyword Input Manual II-4-17

Page 130: Manual de Modelos Termodinamicos

SIMSCI Selects the SimSci alpha form and values supplied from the SIMSCI databank (default).

ACENTRIC

Uses the original Soave acentric form for alpha (default).

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

SRKM or PRM

This statement allows entry of the binary interaction parameters (kijs) for the SRKM or PRM equation of state.Entries correspond to the following temperature dependent correlation:

kij = kija + kijb / T + kijc / T2

Temperature units may be K (default) or R. The cij's are additional non-ideal interactions.

SRKS This statement allows entry of the binary interaction parameters (kijs) for the SRKS equation of state. Entries correspond to the following temperature dependent correlation:

kij = kija + kijb / T + kijc / T 2

Temperature units may be K (default) or R. The cij's are additional non-ideal interactions.

SRKH or PRH

This statement allows entry of the binary interaction parameters (kijs) for the SRKH or PRH equation of state. Entries correspond to the following temperature dependent correlation:

kij = aij + bijl / T + kijl / T2

Temperature units may be K (default) or KCAL or KJ. αij and βij are two-parameter interactions.

SRKP or PRP

This statement allows entry of the binary interaction parameters (kijs) for the SRKP or PRP equation of state. Entries correspond to the following temperature dependent correlation:

kij = kija + kijb / T + kijc / T2

Temperature units may be K (default) or R.

SRKKD This statement allows entry of the binary interaction parameters (kijs) for the SRKKD equation of state. Entries correspond to the following temperature dependent correlation:

II-4-18 Equations of State

Page 131: Manual de Modelos Termodinamicos

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK=SIMSCI or NONE or bankid,

ALPHA=SIMSCI or ACENTRIC or bankid

ENTROPY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

DENSITY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

SRKM or PRM(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji /...or

SRKS(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji /...or

SRKH or PRH(K or KCAL or KJ) i, j, aij, bij, cij, aji, bji, cji, αij, βij/ ...or

SRKP or PRP(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic/...or

SRKKD(K or R) i, j, kija, kijb, kijc/ ...

SA01 to SA11 or PA01 to PA11 i, c1, c2, c3/ ...

All these interaction parameters and alpha formulations may be selected for enthalpy, entropy, and density methods. Normally, these features are selected for the K-value method and are automat-ically carried over for these other methods. If, however, the K-value method is not any of the modified SRK or PR methods, you can supply the interaction parameters and/or alpha formulations inde-pendently.

See above under K-value Data for format and definition of these entries.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

kij = kija + kijb / T + kijc /T 2

Temperature units may be K (default) or R.

SA01 to SA11PA01 to PA11

These entries permit various formulations of the pure component Alpha correlations. See “Cubic Equation Of State Alpha Formulations” on page 4-29 for further details.

PRO/II Thermodynamic Data Keyword Input Manual II-4-19

Page 132: Manual de Modelos Termodinamicos

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples4.13: Using the SRKM method with default interaction

parameters, model a 50/40/10 mix of propane, normal butane, and water at 50 psia and 50% vaporization.

TITLE PROB=SRKMCOMPONENT DATA

LIBID 1,C3/ 2,NC4/ 3,H2OTHERMODYNAMIC DATA

METHOD SYSTEM(VLLE)=SRKMSTREAM DATA

PROP STREAM=1, TEMP=100, PRES=100, COMP=1,50/ 2,40/ 3,10UNIT OPERATION

FLASH UID=FL2FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE,VALUE=0.5

END

4.14: For the same problem, explicitly specify SRKKD K-values, enthalpies, entropies, and vapor densities. Specify API liquid densities.

THERMODYNAMIC DATA METHOD KVALUE(VLLE)=SRKKD, ENTHALPY=SRKKD, & ENTROPY=SRKKD, DENSITY(V)=SRKKD, & DENSITY(L)=API

4.15: Use the SOUR thermo methods but apply PRM to vapor density.

THERMODYNAMIC DATAMETHOD SYSTEM=SOUR, DENSITY(V)=PRM...

4.16: Supply SRKM kij binaries for components 1-2 and 2-3. Note that unless binary 1-3 is available in the databank, the kij will have a value of 0.0. Note that the SRKM statement must follow the KVALUE statement even though there are no additional entries on the KVALUE statement.

II-4-20 Equations of State

Page 133: Manual de Modelos Termodinamicos

THERMODYNAMIC DATA METHOD SYSTEM=SRKM KVALUE SRKM 1, 2, 0.01, -0.02/ 2, 3, 0.025, 0.04

4.17: For the previous example, also supply parameters for the Twu-Bluck-Cunningham alpha formulation for components 1 and 3. See “Cubic Equation Of State Alpha Formulations” on page 4-29.

THERMODYNAMIC DATA METHOD SYSTEM=SRKM KVALUE SRKM 1,2,0.01,-0.02/2,3,0.025,0.04 SA06 1,0.75,0.93,1.6/3,0.61,0.81,2.1...

4.18: For the previous example, supply binary interaction parameters for component pairs 1-2 and 1-3. Disable all entropy binary interaction data except those input directly. Also, supply Twu alpha parameters for entropy calculations for components 1 and 3, and use the acentric databank to supply values for component 2.

TITLE PROB=SRKMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4/ 3,H2O

THERMODYNAMIC DATAMETHOD SYSTEM=SRKM $,ENTROPY=SRKH

KVALUE SRKM 1,2,0.01/2,3,0.025 SA06 1,0.75,0.93,1.6/3,0.61,0.81,2.1ENTROPY BANK=NONE, ALPHA=ACENTRIC

$ SRKH(KJ) 1,2,0.06/1,3,0.10$ SA05 1,0.7,0.85/3,0.6,0.71STREAM DATA PROP STREAM=1, TEMP=100, PRES=100, COMP=1,50/ 2,40/ 3,10 UNIT OPERATION

FLASH UID=F101FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

PRO/II Thermodynamic Data Keyword Input Manual II-4-21

Page 134: Manual de Modelos Termodinamicos

4.19: For the previous example, compare the results obtained from using rigorous VLLE calculations with those obtained from using the water decant option. Take all the defaults for the water handling option. Both thermodynamic systems will be tried in the same run by assigning different thermodynamic sets.

TITLE PROB=SRKMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4/ 3,H2O

THERMODYNAMIC DATAMETHOD SYSTEM(VLLE)=SRKM, SET=RIGOROUS

KVALUE SRKM 1,2,0.01 SA06 1,0.75,0.93,1.6/3,0.61,0.81,2.1ENTROPY BANK=NONE, ALPHA=ACENTRIC

METHOD SYSTEM=SRK, SET=DECANTINGKVALUE SRK 1,2,0.01 SA06 1,0.75,0.93,1.6/3,0.61,0.81,2.1ENTROPY BANK=NONE, ALPHA=ACENTRICWATER DECANT=ON

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=1,50/ 2,40/ 3,10

UNIT OPERATIONFLASH UID=RIG

FEED 1PROD V=2R, L=3R, W=4RTPSPEC PRES=100 $,TEMP=100SPEC STREAM=2R, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5METHOD SET=RIGOROUS

FLASH UID=DECFEED 1PROD V=2D, L=3D, W=4DTPSPEC PRES=100 $,TEMP=100SPEC STREAM=2D, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5METHOD SET=DECANTING

END

II-4-22 Equations of State

Page 135: Manual de Modelos Termodinamicos

UNIWAALS

Typical Usage

...COMPONENT DATA

LIBID 1,IC4/ 2,NC4/ 3,NC5THERMODYNAMIC DATA

METHOD SYSTEM=UNIWAALSTREAM DATA

. . .

General InformationThe UNIWAALS equation of state predicts K-values, enthalpies, entropies, and vapor and liquid densities. It is most often useful for highly non-ideal systems if group contribution parameters are sup-plied either from the built-in databanks or by the user. VLLE behav-ior can also be predicted with the UNIWAALS equation of state.

Table 4-4: Attributes of the UNIWAALS Equation of StateProperties predicted by UNIWAALS

K-values Enthalpies Entropies

Vapor densities Liquid densities

Required pure component properties1

Molecular weight Critical temperature Critical pressure

Acentric factor Ideal vapor enthalpy

Suggested application ranges

Low to mid temperatures

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

PRO/II Thermodynamic Data Keyword Input Manual II-4-23

Page 136: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=UNIWAAL, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=UNIWAAL,

ENTHALPY=UNIWAAL, ENTROPY=UNIWAAL,DENSITY(V)=UNIWAAL, DENSITY(L)=API, ...

Note: DENSITY(L)=UNIWAAL is also supported, but is not rec-ommended.

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=UNIWAAL is chosen, UNIWAAL K-values, enthalpies, entropies, and API liquid densities are assumed.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the UNIWAAL method. The VLLE option automatically selects both.

K-value Data (optional)

KVALUE(VLE and/or LLE or VLLE)BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

UFT1(K) m, k, amk, akm, bmk, bkm, cmk, ckm/ ...UNIFAC(K or KCAL or KJ) m, k, Amk, Akm/...

VA01 to VA11 i, c1, c2, c3/ ...

Note: The UFT1, UNIFAC and VAxx statements must follow the KVALUE statement.

BANK

This option selects one or more banks from which to retrieve vapor and/or liquid phase binary group contribution data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

II-4-24 Equations of State

Page 137: Manual de Modelos Termodinamicos

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK=SIMSCI or NONE or bankid,

ALPHA=SIMSCI or ACENTRIC or bankid

ENTROPY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

DENSITY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

UFT1(K) m, k, amk, akm, bmk, bkm, cmk, ckm/ ...UNIFAC(K or KCAL or KJ) m, k, Amk, Akm/...VA01 to VA11 i, c1, c2, c3/ ...

UNIWAALS UFT1 and UNIFAC binary group contribution data and alpha formulations VA01-VA11 may be selected for enthalpy, entropy, and density methods. Normally, these features are selected for the K-value method and are automatically carried over for these other methods. If, however, the K-value method is not UNI-WAALS, you can supply these parameters independently.

ALPHA This option allows access to the databank for alpha formulations.

SIMSCI Selects the SimSci alpha form and values supplied from the SIMSCI databank (default).

ACENTRIC

Uses the original Soave acentric form for alpha.

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

UFT1 and/or UNIFAC

This statement allows entry of the temperature dependent Lyngby modification of the UNIFAC method (UFT1) and non-temperature dependent UNIFAC group contribution data for groups m and k for the UNIWAAL equation of state. UFT1 entries correspond to the following temperature dependent correlation:

Amk = amk + bmk(T-To) + cmk(T ln{To / T} + T - To)

For UNIFAC, units may be K (default) or KCAL or KJ.

VA01 to VA11

These entries permit various formulations of the pure component Alpha correlations. See “Cubic Equation Of State Alpha Formulations” on page 4-29 for further details.

PRO/II Thermodynamic Data Keyword Input Manual II-4-25

Page 138: Manual de Modelos Termodinamicos

See above under K-value Data for format and definition of these entries.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

Properties may be supplied that are active only when a specific method is used. If UFT1 and/or UNIFAC data are specified, van der Waals area and volume data (VANDERWAALS) may also be input. However, VANDERWAALS data may only be specified globally for all thermodynamic sets in the Component Data Category. For a further description of these input parameters see Chapter 9, “Method-specific Pure Component Data”.

Examples4.20: Using the UNIWAALS method with default group

contribution data, calculate the temperature of a 50/50 mix of propane and normal butane at 50 psia and 50% vaporization.

TITLE PROB=UNIWAALPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMODYNAMIC DATAMETHOD SYSTEM=UNIWAAL

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/50UNIT OPERATION

FLASH UID=FL30FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

4.21: For the same problem, use explicitly specified UNIWAALS K-values, enthalpies, entropies, and vapor densities. Specify API liquid densities.

II-4-26 Equations of State

Page 139: Manual de Modelos Termodinamicos

THERMODYNAMIC DATA METHOD KVALUE=UNIWAAL, ENTHALPY=UNIWAAL, &

ENTROPY=UNIWAAL, DENSITY(V)=UNIWAAL, &DENSITY(L)=API

4.22: For the previous example, also supply parameters for the Twu-Bluck-Cunningham alpha formulation for components 1 and 2, propane and butane. See “Cubic Equation Of State Alpha Formulations” on page 4-29.

THERMODYNAMIC DATA METHOD KVALUE=UNIWAAL, ENTHALPY=UNIWAAL, &

ENTROPY=UNIWAAL, DENSITY(V)=UNIWAAL, & DENSITY(L)=API

KVALUE VA06 1,0.34,0.85,2.54/ 2,0.19,0.87,2.96

4.23: Use the SOUR thermo methods but apply UNIWAAL to vapor density.

THERMODYNAMIC DATAMETHOD SYSTEM=SOUR, DENSITY(V)=UNIWAAL

Filling in Missing Parameters

Typical Usage

...COMPONENT DATA

LIBID 1,C1/ 2,C2/ 3,C3/ 4,NC4/ 5,C5THERMO DATA

METHOD SYSTEM=SRKKVALUE FILL=GAO $ or GOR or CPHC

STREAM DATA . . .

General InformationPRO/II has an extensive facility to backfill missing binary interac-tion data between hydrocarbons for cubic equations of state (i.e., SRK, PR, and their modifications). Table 4-5 shows the methods developed by SIMSCI that can be used for estimating binary inter-action parameters.

PRO/II Thermodynamic Data Keyword Input Manual II-4-27

Page 140: Manual de Modelos Termodinamicos

Table 4-5: FILL options available for Cubic Equations of StateFILL Options Description

GOR Provides cubic equation of state binary interaction parameters between methane and ethane and heavier hydrocarbons. This method is based on correlations of existing experimental data.

GAO Provides cubic equation of state binary interaction parameters between methane, ethane, and propane and heavier hydrocarbons. This method is based on a modified Gao et al approach.

CPHC Provides cubic equation of state binary interaction parameters for all hydrocarbon pairs. This method is based on the work of Chueh and Prausnitz.

Input Description

The METHOD StatementMETHOD SYSTEM=SRK or PR or SRKM or PRM or SRKS

or SRKP or PRP, ...orMETHOD KVALUE=SRK or PR or SRKM or PRM or SRKS

or SRKP or PRP, ...

SYSTEM One of the cubic equations of state shown above must be selected if one of the three hydrocarbon/hydrocarbon FILL options is used.

KVALUE Selects the method for K-value calculations. Only the above cubic equations of state can be used with the hydrocarbon/hydrocarbon FILL option.

K-value DataKVALUE FILL=NONE or GOR or GAO or CPHC

II-4-28 Equations of State

Page 141: Manual de Modelos Termodinamicos

FILL This selects the method used for estimating values for hydrocarbon/hydrocarbon binary interaction data missing from the input file and any selected databank libraries. Missing parameters are regressed using the option selected to fit the previously specified K-value cubic equation of state method. A description of the FILL options shown in Table 4-5. The options are ordered such that each subsequent method in the table generates more and more binary interaction parameters, so they provide a spectrum of results that can be selected based on the goodness of fit to the specific production data being modeled.

Cubic Equation Of State Alpha Formulations

Typical Usage

...COMPONENT DATA

LIBID 1,IC4/ 2,NC4/ 3,NC5THERMO DATA

METHOD SYSTEM=SRKMKVALUE SA06 2, 0.19, 0.87, 2.96

STREAM DATA . . .

General InformationThe pure component alpha formulations are used for methods based on the cubic equation of state. The alpha function controls pure component properties (vapor pressure, enthalpies and entropy) as opposed to the interaction parameter (kij), which controls the mix-ture properties.

Alpha formulations are available with all cubic equations of state. The SAxx entries are associated with SRK and modified SRK equa-tions of state. The PAxx entries are associated with the PR and mod-ified PR equations of state. The VAxx entries are associated with the UNIWAAL equation of state. PRO/II will use all data supplied on the SAxx, PAxx, or VAxx statements. The constants to be sup-

PRO/II Thermodynamic Data Keyword Input Manual II-4-29

Page 142: Manual de Modelos Termodinamicos

plied on the SAxx, PAxx, or VAxx statements can be regressed from experimental data using REGRESSTM. Components not entered here will default to the method selected on the ALPHA entry.

K-value Data KVALUE ALPHA=SIMSCI or ACENTRIC or bankid, ......,

SA01 or PA01 or VA01 i, c1/ ...or

SA02 or PA02 or VA02 i, c1, c2, c3/ ...or

SA03 or PA03 or VA03 i, c1, c2/ ...or

SA04 or PA04 or VA04 i, c1, c2/ ...or

SA05 or PA05 or VA05 i, c1, c2/ ...or

SA06 or PA06 or VA06 i, c1, c2, c3/ ...or

SA07 or PA07 or VA07 i, c1/ ...or

SA08 or PA08 or VA08 i, c1, c2, c3/ ...or

SA09 or PA09 or VA09 i, c1, c2, c3/ ...or

SA10 or PA10 or VA10 i, c1, c2/ ...or

SA11 or PA11 or VA11 i, c1, c2/ ...

Note: The SAxx, PAxx and VAxx statements must follow the KVALUE statement.

ALPHA This option allows access to the databank for alpha formulations for components not given on SAxx, PAxx, or VAxx statements.

SIMSCI Selects the SimSci alpha form and values supplied from the SIMSCI databank (default).

ACENTRIC

Uses the original Soave acentric form for alpha (default).

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

II-4-30 Equations of State

Page 143: Manual de Modelos Termodinamicos

T

Table 4-6 gives the equations for the eleven alpha formulations that are available.

able 4-6: Alpha Formulations SA01 to SA22 or PA01 to PA11 or VA01 to VA11xx = Equation Reference

01 α 1 C1 1 Tr

0.5–( )+[ ]2

= Soave (1972)

02 α C1 C2 1 Tr

C3–( )+[ ]2

= Peng-Robinson (1980)

03 α 1 1 Tr–( ) C1

C2Tr------⎠

⎞+⎝⎛+=

Soave (1979)

04 α C1[exp 1 Tr

C2–( ) ]= Boston-Mathias (1980)

05 α Tr

2 C2 1–( )C1[exp 1 Tr

2C2–( ) ]= Twu (1988)

06 α Tr

C3 C2 1–( )C1 1 Tr

C2C3–( )[ ]exp=Twu-Bluck-Cunningham(1990) (Recommended by SimSci)

07 α = exp

2C11 C1+--------------- 1 Tr

Cr 1+( ) 2⁄–( )⎝ ⎠

⎛ ⎞ Alternative for form (04)

08 α Tr

C3 C1[exp 1 TrC2–( ) ]=

Alternative for form (06)

09 α 1 C1 1 Tr

0.5–( ) C2 1 Tr0.5–( )

2C3 1 Tr

0.5–( )2

C3 1 Tr0.5–( )

3]2

+ + + +[ ]= Mathias-Copeman (1983)

10 α 1 C1 1 Tr

0.5–( ) C2 1 Tr–( ) 0.7 Tr–( )+ +[ ]2

= Mathias (1983)

11 α C1 1 Tr–( ) C2 1 Tr

0.5–( )2

]+[exp=Melhem-Saini-Goodwin (1989)

SA01 to SA11orPA01 to PA11orVA01 to VA11

These entries permit various formulations of the pure component alpha correlations. Statements that have an “S” prefix may be used with any form of the Soave-Redlich- Kwong equation of state, those with “P” apply to the Peng-Robinson equation of state, while those statements prefixed with “V” apply to the UNIWAALS equation of state. For each component i, c1, c2, and c3 are dimensionless coefficients that define the alpha correlation for that component.

PRO/II Thermodynamic Data Keyword Input Manual II-4-31

Page 144: Manual de Modelos Termodinamicos

Enthalpy, Entropy, and Density Data (optional)ENTHALPY ALPHA=SIMSCI or ACENTRIC or bankid, ...

ENTROPY ALPHA=SIMSCI or ACENTRIC or bankid, ...

DENSITY ALPHA=SIMSCI or ACENTRIC or bankid, ...

SA01 to SA11i, c1, c2, c3/ ...or

PA01 to PA11i, c1, c2, c3/ ...or

VA01 to VA11i, c1, c2, c3/ ...

Alpha formulations SA01-SA11 or PA01-PA11 or VA01-VA11 may be selected for enthalpy, entropy, and density methods. Normally, these features are selected for the K-value method and are automat-ically carried over for these other methods. If, however, the K-value method is not the same as the enthalpy or entropy or density meth-ods, you can supply these parameters independently.

See above under K-value Data for format and definition of these entries.

Vapor Phase Fugacity Data (optional)

Available only when liquid activity methods are used.

PHI ALPHA=SIMSCI or ACENTRIC or bankid, ...

SA01 to SA11 i, c1, c2, c3/ ...PA01 to PA11 i, c1, c2, c3/ ...VA01 to VA11 i, c1, c2, c3/ ...

Alpha formulations SA01-SA11 or PA01-PA11 or VA01-VA11 may be selected for vapor phase fugacities when liquid activity methods are used. See above under K-value Data for format and definition of these entries.

II-4-32 Equations of State

Page 145: Manual de Modelos Termodinamicos

Examples4.24: Using the SRK method with default data, model a 50/50

mix of propane and normal butane at 50 psia and 50% vaporization. Supply parameters for the Twu-Bluck-Cunningham alpha formulation SA06 for components 1 and 2, propane and butane.

TITLE PROB=ALPHA COMPONENT DATA

LIBID 1,C3/ 2,NC4 THERMODYNAMIC DATA

METHOD KVALUE=SRK, ENTHALPY=SRK, & ENTROPY=SRK, DENSITY(V)=SRK, & DENSITY(L)=API

KVALUE SA06 1, 0.34, 0.85, 2.54/ 2, 0.19, 0.87, 2.96

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

UNIT OPERATIONFLASH UID=FL2

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, RATE, VALUE=0.5

END

Benedict-Webb-Rubin-Starling

Typical Usage

...COMPONENT DATA

LIBID 1,IC4/ 2,NC4/ 3,NC5THERMO DATA

METHOD SYSTEM=BRWSSTREAM DATA

. . .

PRO/II Thermodynamic Data Keyword Input Manual II-4-33

Page 146: Manual de Modelos Termodinamicos

General InformationThe Benedict-Webb-Rubin-Starling equation of state predicts K-values, enthalpies, entropies, and vapor and liquid densities. It is most often useful for light to heavy refinery hydrocarbons. Rigor-ous two liquid phase behavior is not supported with the BWRS equation of state.

Table 4-7: Attributes of the BWRS Equation of StateProperties predicted by BWRS

K-values Enthalpies Entropies

Vapor densities Liquid densities

Required pure component properties1

Molecular weight Critical temperature Critical volume

Acentric factor Ideal vapor enthalpy

Suggested application ranges

Pressure - 0 to 2000 psia

Temperature - -460 to 200 F

Components - C1 & heavier

Two liquid phase behavior

Free-water decant - Supported

VLLE - Not supported1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

The METHOD StatementMETHOD SYSTEM=BWRS, ...orMETHOD KVALUE=BWRS, ENTHALPY=BWRS,

ENTROPY=BWRS, DENSITY=BWRS, ...

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=BWRS is chosen, BWRS K-values, BWRS enthalpies, BWRS entropies, BWRS liquid and vapor densities are assumed.

II-4-34 Equations of State

Page 147: Manual de Modelos Termodinamicos

K-value Data (optional)KVALUE BANK=SIMSCI or NONE or bankidBWRS i, j, kij/ ...

Note: The BWRS statements must follow the KVALUE state-ment.

BANK

This option selects one or more banks from which to retrieve vapor and/or liquid phase binary interaction data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

BWRS This statement allows entry of interaction parameters for component pairs that use the BWRS equation of state. Each entry includes the component ID number for each component in the pair, followed by the interaction parameter value.

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK=SIMSCI or NONE or bankid

ENTROPY BANK=SIMSCI or NONE or bankid

DENSITY BANK=SIMSCI or NONE or bankid

BWRS i, j, kij ...

KVALUE Selects the method for K-value calculations. Only VLE K-value calculations are available with the BRWS method.

ENTHALPY (VL or V and/or L)

Selects the method for enthalpy calculation. By default, both vapor and liquid enthalpies use this method.

ENTROPY (VL or V and/or L)

Selects the method for entropy calculation. By default, both vapor and liquid entropies use this method.

DENSITY (VL or V and/or L)

Selects the method for density calculation. By default, both liquid and vapor densities use this method.

PRO/II Thermodynamic Data Keyword Input Manual II-4-35

Page 148: Manual de Modelos Termodinamicos

BWRS binary interaction data may be selected for enthalpy, entropy and density methods. Normally, these features are selected for the K-value method and are automatically carried over for these other methods. If, however, the K-value method is not BWRS, you can supply these parameters independently.

See above under K-value Data for format and definition of these entries.

Water Handling Options (optional)WATER DECANT=ON or OFF, GPSA,

SOLUBILITY=SIMSCI or KEROSENE or EOSPROPERTY=SATURATED or STEAM

The BWRS K-value generator supports the free-water decant option. Refer to “Free-water Decant Considerations” on page 1-34 for a description of these input options.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

Properties may be supplied that are active only when a specific method is used. However, ideal vapor enthalpy data may only be specified globally for all thermodynamic sets in the Component Data Category. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples4.25: Using the BWRS method with default binary interaction

data, model a 50/50 mix of propane and normal butane at 50 PSIA AND 50% vaporization.

TITLE PROB=BWRSPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMODYNAMIC DATAMETHOD SYSTEM=BWRS

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/50

II-4-36 Equations of State

Page 149: Manual de Modelos Termodinamicos

UNIT OPERATIONFLASH UID=DRUM

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1,& RATE, VALUE=0.5

END

4.26: For the same problem, use explicitly specified BWRS K-values, enthalpies, entropies, and vapor densities. Specify API liquid densities.

THERMODYNAMIC DATA METHOD KVALUE=BWRS, ENTHALPY=BWRS, &

ENTROPY=BWRS, DENSITY(V)=BWRS, & DENSITY(L)=API

4.27: Use the SOUR thermo methods but apply BWRS to vapor density.

THERMODYNAMIC DATAMETHOD SYSTEM=SOUR, DENSITY(V)=BWRS...

Associating Hexamer Equation Of State

Typical Usage

...COMPONENT DATA

LIBID 1,IBTE/ 2,IC4/ 3,HFTHERMO DATA

METHOD SYSTEM=HEXAMERSTREAM DATA

. . .

General Information

The HEXAMER equation of state1 predicts K-values, enthalpies, entropies, and vapor densities. It is most often useful for HF alkyla-

1. Twu, C.H., J.E. Coon, and J. Cunningham, 1993, “An Equation of State for Hydrogen Fluoride”, Fluid Phase Equilibria, 86, 47-62.

PRO/II Thermodynamic Data Keyword Input Manual II-4-37

Page 150: Manual de Modelos Termodinamicos

tion and refrigerant synthesis. Rigorous two liquid phase behavior is supported with the HEXAMER equation of state.

Table 4-8: Attributes of the HEXAMER Equation of StateProperties predicted by HEXAMER

K-values Enthalpies Entropies

Vapor densities Liquid densities (not recommended)

Required pure component properties1

Molecular weight Critical temperature Critical volume

Acentric factor Ideal vapor enthalpy

Suggested application ranges

Components - Only 1 hexamerizing component and no H2O

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=HEXAMER, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=HEXAMER,

ENTHALPY=HEXAMER, ENTROPY=HEXAMER,DENSITY(V)=HEXAMER, DENSITY(L)=API, ...

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=HEXAMER is chosen, HEXAMER K-values, HEXAMER enthalpies, HEXAMER entropies, HEXAMER vapor densities, and API liquid densities are assumed.

KVALUE Selects the method for K-value calculations. VLE and VLLE K-value calculations are available with the HEXAMER method.

II-4-38 Equations of State

Page 151: Manual de Modelos Termodinamicos

K-value Data (optional)

KVALUE BANK=SIMSCI or NONE or bankid,HEXA(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji / ...

Note: The HEXA statements must follow the KVALUE state-ment.

BANK

This option selects one or more banks from which to retrieve vapor and/or liquid phase binary group contribution data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

HEXA This statement allows entry of interaction parameters for component pairs that use the Associating Hexamer equation of state. Each entry includes the component ID number for each of the two components in the pair, followed by the interaction parameters.

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK=SIMSCI or NONE or bankid

ENTROPY BANK=SIMSCI or NONE or bankid

DENSITY BANK=SIMSCI or NONE or bankid

ENTHALPY (VL or V and/or L)

Selects the method for enthalpy calculation. By default, both vapor and liquid enthalpies use this method.

ENTROPY (VL or V and/or L)

Selects the method for entropy calculation. By default, both vapor and liquid entropies use this method.

DENSITY (V) Selects the method for vapor density.

Note: If DENSITY=HEXAMER without the “V” qualifier is used, liquid density will also be calculated from the HEXAMER equation of state. This method is not recommended for this pur-pose.

PRO/II Thermodynamic Data Keyword Input Manual II-4-39

Page 152: Manual de Modelos Termodinamicos

HEXA(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji / ...

HEXAMER binary interaction data may be selected for enthalpy, entropy, and density methods. Normally, these features are selected for the K-value method and are automatically carried over for these other methods. If, however, the K-value method is not HEXAMER, you can supply these parameters independently.

See above under K-value Data for format and definition of these entries.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

Properties may be supplied that are active only when a specific method is used. However, ideal vapor enthalpy data may only be specified globally for all thermodynamic sets in the Component Data Category. For a further description of these input parameters see Chapter 9, “Method-specific Pure Component Data”.

Examples4.28: The HEXAMER equation of state is used to model a

hydrocarbon stream containing HF.

TITLE PROJ=MANUAL, PROB=HEXAMERDIME LIQV=BBL, TIME=DAY, XDEN=API

COMPONENT DATALIBID 1,C3/ 2,IC4/ 3,NC4/ 4,IC5/ 5,HF/ 6,NC7

THERMODYNAMIC DATAMETHOD SYSTEM=HEXAMER, SET=SET01, DEFAULTMETHOD SYSTEM(VLLE)=HEXAMER, &

L1KEY=1, L2KEY=5, SET=SET02STREAM DATA

PROP STREAM=F, TEMP=140, PRES=169, RATE(LV)=65952, &COMP(V)=17.1/58.4/9.8/1.1/2.1/11.5

PROP STREAM=REFL, TEMP=86, PRES=158, RATE=56250, &COMP=0.59/0.39/0.02

II-4-40 Equations of State

Page 153: Manual de Modelos Termodinamicos

UNIT OPERATIONCOLUMN UID=12C2, NAME=ISOSTRIPPER

PARA TRAY=49, IO=30FEED F,7/ REFL,1PROD OVHD=DF, BTMS=1, 20600, VDRAW=IR, 9, 167672DUTY 1,42,1200/ 2,49,1000PRES 1,161/ 7,164/ 49,174ESTI MODEL=CONVSPEC STREAM=IR, COMP=2, RATE, RATIO, STREAM=F, &RATE, VALUE=O.75SPEC TRAY=1, TEMP, VALUE=114.8VARY DUTY=2, DRAW=IR

FLASH UID=F1, NAME=CONDENSERFEED DFPROD L=DF1, W=HF1ISO PRES=50, TEMP=85METHOD SET=SET02

END

Lee-Kesler-Plocker

Typical Usage

...COMPONENT DATA

LIBID 1,IC4/ 2,NC4/ 3,NC5THERMO DATA

METHOD SYSTEM=LKPSTREAM DATA

. . .

General InformationThe LKP method is derived from a corresponding states approach combined with the Benedict-Webb-Rubin-Starling (BWRS) equa-tion of state (see “Benedict-Webb-Rubin-Starling” on page 4-33). The LKP method predicts K-values, enthalpies, entropies, and vapor and liquid densities. It is most often used for light hydrocar-bons and for reformer systems containing high quantities of hydro-gen. VLLE behavior can also be predicted with the LKP method.

PRO/II Thermodynamic Data Keyword Input Manual II-4-41

Page 154: Manual de Modelos Termodinamicos

Table 4-9: Attributes of the LKP MethodProperties predicted by LKP

K-values Enthalpies Entropies

Vapor densities Liquid densities

Required pure component properties1

Molecular weight Critical temperature Critical volume

Acentric factor Ideal vapor enthalpy Specific gravity

Suggested application ranges

Temperature - Below reduced temperatures of 0.96

Components - Light hydrocarbons

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=LKP, ...orMETHOD KVALUE(VLE or VLLE)=LKP, ENTHALPY=LKP,

ENTROPY=LKP, DENSITY=LKP

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=LKP is chosen, LKP K-values, LKP enthalpies, LKP entropies, LKP liquid and vapor densities are assumed.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the LKP method. The VLLE option automatically selects both.

II-4-42 Equations of State

Page 155: Manual de Modelos Termodinamicos

K-value Data (optional)KVALUE(VLE or LLE or VLLE) BANK=SIMSCI or NONE or bankid

LKP i, j, kij / ...

Note: The LKP statements must follow the KVALUE statement.

BANK

This option selects one or more banks from which to retrieve vapor and/or liquid phase binary interaction data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects the user-created databank named “bankid” that is created and maintained by the LIBMGR program.

SRK This statement allows entry of the interaction parameters for component pairs that use the Lee-Kesler-Plocker method. Each entry includes the component ID number for each of the two components in the pair, followed by the interaction parameter value.

ENTHALPY (VL or V and/or L)

Selects the method for enthalpy calculation. By default, both vapor and liquid (VL) enthalpies are calculated using the same method. You may select different methods for the vapor and liquid enthalpies by providing both an ENTHALPY(V) and ENTHALPY(L) entry.

ENTROPY (VL or V and/or L)

Selects the method for entropy calculation. By default, both vapor and liquid (VL) entropies are calculated using the same method. You may select different methods for the vapor and liquid enthalpies by providing both an ENTROPY(V) and ENTROPY(L) entry.

DENSITY (VL or V and/or L)

Selects the method for density calculation. By default, both vapor and liquid (VL) densities are calculated using the same method. You may select different methods for the vapor and liquid enthalpies by providing both an DENSITY(V) and DENSITY(L) entry.

PRO/II Thermodynamic Data Keyword Input Manual II-4-43

Page 156: Manual de Modelos Termodinamicos

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK= SIMSCI or NONE or bankid

ENTROPY BANK= SIMSCI or NONE or bankid

DENSITY BANK=SIMSCI or NONE or bankid

LKP i, j, kij / ...

LKP binary interaction data may be selected for enthalpy, entropy, and density methods. Normally, these features are selected for the K-value method and are automatically carried over for these other methods. If, however, the K-value method is not LKP, you can sup-ply these parameters independently.

See above under K-value Data for format and definition of these entries.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

Properties may be supplied that are active only when a specific method is used. However, ideal vapor enthalpy data may only be specified globally for all thermodynamic sets in the Component Data Category. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples4.29: Using the LKP method, calculate the temperature of a 50/

50 mix of propane and normal butane at 50 psia and 50% vaporization.

TITLE PROB=SRK, PROJ=THERMODESC THERMO MANUAL PROBLEMPRINT INPUT=ALL

COMPONENT DATALIBID 1,C3/ 2,NC4

THERMODYNAMIC DATAMETHOD SYSTEM=LKP

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, COMP=50/50

II-4-44 Equations of State

Page 157: Manual de Modelos Termodinamicos

UNIT OPERATIONFLASH UID=FLSH

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

4.30: For the same problem, explicitly specify LKP K-values, enthalpies, entropies, and vapor densities. Specify API liquid densities.

THERMODYNAMIC DATAMETHOD KVALUE=LKP, ENTHALPY=LKP, ENTROPY=LKP, &

DENSITY(V)=LKP, DENSITY(L)=API

4.31: Use the SOUR thermo methods but apply LKP to vapor density.

THERMODYNAMIC DATAMETHOD SYSTEM=SOUR, DENSITY(V)=LKP

PRO/II Thermodynamic Data Keyword Input Manual II-4-45

Page 158: Manual de Modelos Termodinamicos

II-4-46 Equations of State

Page 159: Manual de Modelos Termodinamicos

Chapter 5 Special Packages

Several special thermodynamic packages have been incorporated into the program. These packages have been developed for particu-lar applications containing systems of components commonly found in refining or chemicals processing. Systems available include alcohols, glycols, sour water and amines.

Alcohols

Typical Usage...COMPONENT DATA

LIBID 1,ETOH/ 2, MEOH/ 3, H2OTHERMO DATA

METHOD SYSTEM=ALCOHOLSTREAM DATA

. . .

General InformationThe ALCOHOL package is used to predict VLE and/or LLE phase behavior. This method does not support free water decant. This sys-tem uses a special set of NRTL binary interaction data for systems containing alcohols, water, and other polar components.

The ALCOHOL package is generally useful for applications involving alcohols, especially for azeotropic distillation common in

PRO/II Thermodynamic Data Keyword Input Manual II-5-1

Page 160: Manual de Modelos Termodinamicos

alcohol dehydration plants. Refer to the PRO/II Reference Manual for information.

Table 5-1:Attributes of the ALCOHOL PackageProperties predicted by the ALCOHOL method

K-values

Required pure component properties1

Vapor pressure PHI=IDEAL and POYNTING=OFF

Vapor pressure Critical temperature Critical pressure Acentric factor

PHI=SRK or PR or SRKM or PRM or SRH or PRH or SRP or PRP or SRKS or SRKKD or HOCV or BWRS or UNIWAAL

Vapor pressure When used with POYNTING=ON

Liquid molar volume

Suggested application ranges

Pressure - up to 1500 psia

Temperature - 122-230 F (H2O-Alcohol), 150-230 F (Other systems)

Components - Alcohols, water, other polar components

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for

non-library components.

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=ALCOHOL,

PHI=IDEAL, {HENRY}orMETHOD KVALUE(VLE and/or LLE or VLLE)=ALCOHOL,

ENTHALPY(V)=SRKM, ENTHALPY(L)=IDEAL, ENTROPY=SRKM, DENSITY(V)=SRKM, DENSITY(L)=IDEAL, PHI=IDEAL, {HENRY}, ...

II-5-2 Special Packages

Page 161: Manual de Modelos Termodinamicos

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=ALCOHOL is chosen, NRTL K-values, SRKM vapor enthalpies, IDEAL liquid enthalpies, SRKM entropies, IDEAL liquid densities, and SRKM vapor densities are default. Interaction parameters are defaulted to the ALCOHOL databank.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the ALCOHOL package. The VLLE option automatically selects both. See “Vapor-liquid-liquid Equilibrium Considerations” on page 1-37 for more details on liquid-liquid equilibrium calculations.

PHI Selects the option used to calculate pure component and mixture vapor phase fugacity coefficients (φi). A vapor fugacity method should generally be selected for high pressure applications. The options are the equations of state methods SRK, PR, SRKM, PRM, SRKH, PRH, SRKP, PRP, SRKS, SRKKD, BWRS and UNIWAAL (see Chapter 4) and HOCV (the Hayden-O'Connell method), TVIRIAL (the Truncated Virial method) and the IDIMER method. See “Hayden-O’Connell Vapor Fugacity” on page 6-69; “Truncated Virial Vapor Fugacity” on page 6-73; and “IDIMER Vapor Fugacity” on page 6-78 for details on these last three options. The default is PHI=IDEAL.

HENRY This option selects Henry's Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. See “Henry’s Law for Non-condensible Components” on page 6-63 for further details.

Note: A heat of mixing option, HMIX, is available for the enthalpy method selected. See “Redlich-Kister, Gamma Heat of Mixing” on page 6-82 for further information on the use of this option.

PRO/II Thermodynamic Data Keyword Input Manual II-5-3

Page 162: Manual de Modelos Termodinamicos

K-value Data (Optional)KVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON,

MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY, BANK=ALCOHOL and SIMSCI or NONE or bankid, FILL=NONE or UNIFAC or UFT1 or FLORY or REGULAR, AZEOTROPE=SIMSCI or NONE or bankid, WRITE=fileid

NRTL3(K or KCAL or KJ) i, j, bij, bji, aij / ...and/or

NRTL(K or KCAL or KJ) i, j, aij, bij, aji, bji, a ij / ...and/or

NRTL6(K or KCAL or KJ) i, j, aij, bij, aji, bji, α’ij, β’ij /...and/or

NRTL8(K or KCAL or KJ) i, j, aij, bij, cij, aji, bji, cji, α’ij, β’ij/...and/or

AZEOTROPE(basis, punit, tunit) i, j, pres, temp, xi / ...and/or

INFINITE(tunit) i, j, temp, γioo, γj

oo / ...and/or

MUTUAL(basis, tunit) i, j, temp, xiI, xi

II / ...and/or

IDEAL i, j/ ...

Note: The NRTL3, NRTL, NRTL6, NRTL8, AZEOTROPE, INFINITE, MUTUAL and/or IDEAL statements must follow the KVALUE statement.

POYNTING This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL

This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD

The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

II-5-4 Special Packages

Page 163: Manual de Modelos Termodinamicos

BANK This option selects the alcohol databank from which to retrieve vapor and/or liquid phase binary interaction data.

ALCOHOL Selects the ALCOHOL databank. This databank contains binary coefficients for a special set of components including many alcohols, water and other polar components. See Table 5-2 for the components available in this databank and Table 5-3 for the binary interaction data available. This is the default databank when SYSTEM=ALCOHOL or KVALUE=ALCOHOL is selected.

SIMSCI Selects the SIMSCI databank. If selected, this should follow the ALCOHOL entry. The program will search the ALCOHOL databank first for NRTL interaction parameters, then attempt to find missing parameters in the SIMSCI databank.

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

FILL This selects the method used for estimating values for binary interaction data missing from the input file and any selected databank libraries. See “Filling in Missing Parameters” on page 6-57 for further details on these options.

AZEOTROPE This selects the azeotrope databank used for retrieving azeotropic data for binary pairs. Current options are SIMSCI (default) or NONE or bankid.

WRITE This option writes the binary interaction parameters for the liquid activity coefficient K-value method to a file. The format of this file is suitable for inclusion into an input file.

PRO/II Thermodynamic Data Keyword Input Manual II-5-5

Page 164: Manual de Modelos Termodinamicos

Data input using the NRTL3, NRTL, NRTL6, NRTL8, AZEO-TROPE, INFINITE, MUTUAL and IDEAL statements are used in preference to any data retrieved from the databanks or estimated using FILL options. See “Filling in Missing Parameters” on page 6-57 for further details.

fileid This name identifies the file containing the binary interaction data. It may be any valid file name allowed on the particular operating system being used, but must not include a suffix. The program will automatically add a suffix (e.g., .FIL on PCs).

NRTL3 and/or NRTL and/or NRTL6 and/or NRTL8

This statement allows entry of the binary interaction data parameters for the NRTL K-value method used in the ALCOHOL package. The statements can be mixed in order to enter the data in the most convenient form. The binary parameters aij, bij, cij, aji, bji, cji, α’ij and β’ij are related to the liquid activity coefficients γi by the following equations:

In γi

τj ij

GkiXkk∑---------------------

XjGij

GkjXkk∑--------------------- τij

xkτkjGkjk∑

GkjXkk∑

---------------------------–

⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞

j∑+=

τij aijbijT------

Cij

T2-------+ += (when unit is K)

τij aijbijRT-------

Cij

R2T2------------+ +=

(when unit is KCAL or KJ)

Gji φγiτji–( ) φγi,exp a'ji β'jiT+= =

AZEOTROPE and/or INFINITE and/or MUTUAL

These statements are used to enter data for binary pairs. This data will be regressed to the coefficients for the liquid activity method used to generate the K-values. Multiple statements may be used to enter data with different units, or the data can be entered on a single statement.

and/or IDEAL

This statement sets the binary interaction parameters to zero.

II-5-6 Special Packages

Page 165: Manual de Modelos Termodinamicos

Enthalpy, Entropy, and Density Data (optional)ENTHALPY(V) BANK=SIMSCI or NONE or bankid

ALPHA=SIMSCI or ACENTRIC or bankid

ENTROPY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

DENSITY(V) BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

SRKM(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji / ...

SA01 to SA11 i, c1, c2, c3/ ...

BANK Selects databank from which to retrieve binary interaction data.

SIMSCI Selects the SimSci standard databank(default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

ALPHA

This option allows access to the databank for alpha formulations.

SIMSCI Selects the SimSci alpha form and values supplied from the SIMSCI databank (default).

ACENTRIC

Uses original Soave acentric form for alpha (default).

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

Note: The SRKM and SAxx statements may follow each ENTHALPY(V), ENTROPY or DENSITY(V) STATEMENT.

PRO/II Thermodynamic Data Keyword Input Manual II-5-7

Page 166: Manual de Modelos Termodinamicos

Table 5-2:ALCOHOL Databank ComponentsComponent Formula LIBID

Water H2O H2O

Alcohols

Methanol Ethanol N-propanol Isopropanol N-butanol Isobutanol Sec-butanol Tert-butanol 3-Methyl-1 butanol N-Pentanol

CH4O C2H6O C3H8O C3H8O C4H10O C4H10O C5H12O C5H12O

MEOH ETOH NPRA IPAIBA SBA TBA 3M1BA

Ethers

Isopropyl Ether Ethyl Ether Methyl Ether

C6H14O C4H10O C2H6O

IPE, DIPE, DEE DME

Acids

Acetic Acid Formic Acid

C2H4O2 CH2O2

HAC, HDAC HFOR

Ketones

Methyl Ethyl Ketone Acetone

C4H8O C3H6O

MEK DMK

Esters

Ethyl Acetate Methyl Formate

C4H8O2 C2H4O2

EOQC MFOR

Miscellaneous

Acetaldehyde Sulfolane

C2H4O C4H8O2S

ACH SULFLN

Light Gases

Hydrogen Nitrogen Oxygen Carbon Dioxide

H2 N2 O2 CO2

H2 N2 O2 CO2

II-5-8 Special Packages

Page 167: Manual de Modelos Termodinamicos

Hydrocarbons

Isopentane N-Pentane Cyclopentane 2 Methylpentane 1-Hexene N-Hexane Methylcyclopentane Benzene Cyclohexane 2-4 Dimethylpentane 3-Methylhexane 1-Trans-2-Dimethyl- cyclopentane N-Heptane Methylcyclohexane Toluene 2-4 Dimethylhexane 1-Trans-2-Cis-4-Tri-Methylcyclopentane

C5H12 C5H12 C5H10 C6H14 C6H12 C6H14 C6H12 C6H6 C6H12 C7H16 CYH16 C7H14 C7H16 C7H14 C7H8 C8H18 C8H16

IC5 NC5 CP 2MP 1HEXENE NC6 MCP C6H6 CH 24DMP 3MHX 1T2MCP NC7 MCH TOLU 24DMHX 1T2C4MCP

Table 5-2:ALCOHOL Databank ComponentsComponent Formula LIBID

PRO/II Thermodynamic Data Keyword Input Manual II-5-9

Page 168: Manual de Modelos Termodinamicos

2

1-T

2,

2

M

1-T-

Table 5-3:Binary Interaction Data Nitrogen XOxygen X X

Carbon Dioxide X X XIsopentane X X X Xn-Pentane X X X X X

2-Methylpentane X X X X X Xn-Hexane X X X X X X X

,4,-Dimethylpentane X X X X X X X X3-Methylhexane X X X X X X X X X

n-Heptane X X X X X X X X X X2,4-Dimethylhexane X X X X X X X X X X X

Cyclopentane X X X X X X X X X X X XMethylcyclopentane X X X X X X X X X X X X X

Cyclohexane X X X X X X X X X X X X X X-2DM-Cyclopentane X X X X X X X X X X X X X X XMethylcyclohexane X X X X X X X X X X X X X X X X

1-T,2-C-4 TMCP X X X X X X X X X X X X X X X X X1-Hexene X X X X X X X X X X X X X X X X X XBenzene X X X X X X X X X X X X X X X X X X XToluene X X X X X X X X X X X X X X X X X X X X

DIPE X X X XDEE X X X XDME X X X X X

Acetic Acid X X X X X XFormic Acid X X X X X X

MEK X X X X X X XAcetone X X X X X X X X

Ethyl Acetate X X X X X X X X XMrthyl Formate X X X X X X

Acetaldehyde X X X X X X X X XSulfolane X X X X X X X X X X X X X X X X X X X X X

n-Pentanol X X X X3-M-1-Butanol X X X X X

n-Butanol X X X X X XIsobutanol X X X X X X X X X

sec -Butanol X X X X X X X Xtert -Butanol X X X X X X X X X X X Xn-Propanol X X X X X X X X X X

Isopropanol X X X X X X X X X X X X X X X X X X X XEthanol X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X XMethaol X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Water X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Nitrogen XOxygen X X

Carbon Dioxide X X XIsopentane X X X Xn-Pentane X X X X X

2-Methylpentane X X X X X Xn-Hexane X X X X X X X

4,-Dimethylpentane X X X X X X X X3-Methylhexane X X X X X X X X X

n-Heptane X X X X X X X X X X,4-Dimethylhexane X X X X X X X X X X X

Cyclopentane X X X X X X X X X X X Xethylcyclopentane X X X X X X X X X X X X X

Cyclohexane X X X X X X X X X X X X X X2DM-Cyclopentane X X X X X X X X X X X X X X XMethylcyclohexane X X X X X X X X X X X X X X X X

1-T,2-C-4 TMCP X X X X X X X X X X X X X X X X X1-Hexene X X X X X X X X X X X X X X X X X XBenzene X X X X X X X X X X X X X X X X X X XToluene X X X X X X X X X X X X X X X X X X X X

DIPE X X X XDEE X X X XDME X X X X X

Acetic Acid X X X X X XFormic Acid X X X X X X

MEK X X X X X X XAcetone X X X X X X X X

Ethyl Acetate X X X X X X X X XMethyl Formate X X X X X X

Acetaldehyde X X X X X X X X XSulfolane X X X X X X X X X X X X X X X X X X X X X

n-Pentanol X X X X3-M-1-Butanol X X X X X

n-Butanol X X X X X XIsobutanol X X X X X X X X X

sec -Butanol X X X X X X X Xtert -Butanol X X X X X X X X X X X Xn-Propanol X X X X X X X X X X

Isopropanol X X X X X X X X X X X X X X X X X X X XEthanol X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Methanol X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X XWater X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ... MOLVOL(unit) i, value / ... VP . . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”. Note that only vapor pressure has any direct effect on the calculation of liquid activity coefficients. Tc, Pc and the acentric factor will have an

II-5-10 Special Packages

Page 169: Manual de Modelos Termodinamicos

impact if a cubic equation of state is chosen for vapor phase fugaci-ties. Molar volume will have an impact on the Poynting correction factor.

Examples6.1: Using the ALCOHOL system, model a 50/25/20/5 mix of

water, benzene, ethanol and cyclohexane at 50 psia and 20% vaporization. Use SRK for vapor phase fugacity calculations, and supply NRTL binary interaction data.

TITLE PROB=ALCOHOLPRINT INPUT=ALL

COMPONENT DATALIBID 1,H2O/2,BENZENE/3,ETOH/4,CHEN

THERMO DATAMETHOD SYSTEM=ALCOHOL, PHI=SRKKVALUE FILL=UNIFAC, POYNTING=ON

NRTL 1,2,5.256,219.685,-5.645,288.34,0.2/ &1,3,1.015,536.264,0.4985,-456.0,0.1448/ &2,3,-2.748,1472.24,-0.449,440.51,0.5355

STREAM DATAPROP STREAM=1,TEMP=100,PRES=100, &

COMP=50/25/20/5UNIT OPERATION

FLASH UID=FL2BFEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.2

END

6.2: For the same problem, use ALCOHOL K-values, IDEAL enthalpies and liquid densities and SRK vapor densities.

THERMO DATAMETHOD KVALUE=ALCOHOL, ENTHALPY=IDEAL, &

DENSITY(L)=IDEAL, DENSITY(V)=SRK, PHI=SRK

PRO/II Thermodynamic Data Keyword Input Manual II-5-11

Page 170: Manual de Modelos Termodinamicos

Glycols

Typical Usage

...COMPONENT DATA

LIBID 1,H2O/ 2, CH/ 3, TEGTHERMO DATA

METHOD SYSTEM=GLYCOLSTREAM DATA

. . .

General InformationThe GLYCOL package is used to predict VLE and/or LLE phase behavior. This method does not support free water decant. It uses a special set of SRKM binary interaction data and alpha parameters for systems containing glycol, water, and other components.

The GLYCOL package is generally useful for applications involv-ing triethylene glycol, and to a lesser extent, diethylene glycol, and ethylene glycol. It is useful especially for TEG dehydration plants. Refer to the PRO/II Reference Manual for information.

Table 5-4:Attributes of the GLYCOL PackageProperties predicted by GLYCOL method

K-values

Required pure component properties1

Critical temperature Critical pressure

Acentric factor

Suggested application ranges

Pressure - up to 2000 psia

Temperature - 80-400 F

Components - A glycol or water must be present

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

II-5-12 Special Packages

Page 171: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=GLYCOLorMETHOD KVALUE(VLE and/or LLE or VLLE)=GLYCOL,

ENTHALPY(V)=SRKM, ENTHALPY(L)=SRKM,ENTROPY=SRKM, DENSITY(V)=SRKM, DENSITY(L)=API,...

andKVALUE BANK=GLYCOL

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=GLYCOL is chosen, SRKM K-values, SRKM vapor enthalpies, IDEAL liquid enthalpies, SRKM entropies, IDEAL liquid densities, and SRKM vapor densities are default.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the SRKM method, which is used by the GLYCOL package. The VLLE option automatically selects both. See “Vapor-liquid-liquid Equilibrium Considerations” on page 1-37 for more details on liquid-liquid equilibrium calculations.

K-value Data (optional)KVALUE(VLE or LLE or VLLE)

BANK=GLYCOL and SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

SRKM(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji / ...

SA01 to SA11 i, c1, c2, c3/ ...

Note: If used for calculating K-values, the SRKM and SAxx statements must follow the KVALUE statement.

PRO/II Thermodynamic Data Keyword Input Manual II-5-13

Page 172: Manual de Modelos Termodinamicos

BANK This option selects the GLYCOL databank from which to retrieve vapor and/or liquid phase binary interaction data.

GLYCOL Selects the GLYCOL databank. This databank contains binary coefficients and alpha parameters for a special set of components including many glycols, water and other components. See Table 5-5 for the components available in this databank. This is the default databank when SYSTEM=GLYCOL or KVALUE=GLYCOL is selected.

SIMSCI Selects the SimSci standard databank. If selected this should follow the GLYCOL entry. The program will search the GLYCOL databank first for SRKM interaction parameters, then attempt to find missing parameters in the SIMSCI databank.

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

ALPHA This option allows access to the databank for alpha formulations.

SIMSCI Selects the SimSci alpha formulation and values supplied from the SimSci databank (default).

ACENTRIC Uses original Soave acentric form for alpha (default).

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

II-5-14 Special Packages

Page 173: Manual de Modelos Termodinamicos

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK=SIMSCI or NONE or bankid,

ALPHA=SIMSCI or ACENTRIC or bankid

ENTROPY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

DENSITY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

SRKM(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji /...

SA01 to SA11 i, c1, c2, c3/ ...

All these interaction parameters and alpha formulations may be selected for enthalpy, entropy, and density methods. Normally for the GLYCOL package, these features are selected for the K-value method and are automatically carried over for these other methods. However, you can supply the interaction parameters and/or alpha formulations independently.

See above under K-value Data for format and definition of these entries.

SRKM and/or SA01 to SA11

This statement inputs binary interaction parameters and alpha formulation data for the SRKM method used to calculate K-values for the GLYCOL package. See “Modified Soave-Redlich-Kwong and Peng-Robinson” on page 4-13 for further details.

Table 5-5:Components Available for GLYCOL PackageGas Component Formula LIBID

Hydrogen Nitrogen Oxygen Carbon Dioxide Hydrogen Sulfide Methane Ethane Propane Isobutane N-butane

H2 N2 O2 CO2 H2S CH4 C2H6 C3H8 C4H10 C4H10

H2 N2 O2 CO2 H2S C1 C2 C3 IC4 NC4

PRO/II Thermodynamic Data Keyword Input Manual II-5-15

Page 174: Manual de Modelos Termodinamicos

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples6.3: Using the GLYCOL system, model a 50/25/20/5 mix of

water, benzene, ethanol and TEG at 50 psia and 20% vaporization. Supply SRKM binary interaction data.

TITLE PROB=GLYCOLCOMPONENT DATA

LIBID 1,H2O/2,BENZENE/3,ETOH/4,TEGTHERMO DATA

METHOD SYSTEM=GLYCOLKVALUE

SRKM 2,4,0.05,0.0,0.0,0.3,0.07,0.0,0.0,0.3STREAM DATA

PROP STREAM=1, TEMP=100, PRES=100, &

Liquid Components

Formula LIBID

Isopentane Pentane Hexane Heptane Cyclohexane Methylcyclohexane Ethylcyclohexane Benzene Toluene O-xylene M-xylene P-xylene Ethylbenzene Ethylene Glycol Diethylene Glycol Triethylene Glycol Water

C5H12 C5H12 C6H14 C7H16 C6H12 C7H14 C8H16 C6H6 C7H8 C8H10 C8H10 C8H10 C8H10 C2H6O2 C4H10O3 C6H14O4 H2O

IC5 NC5 NC6 NC7 CH MCH ECH BNZN TOLU OXYL MXYL PXYL EBZN EG DEG TEG H2O

Table 5-5:Components Available for GLYCOL Package

II-5-16 Special Packages

Page 175: Manual de Modelos Termodinamicos

COMP=50/25/20/5UNIT OPERATION

FLASH UID=FLSHFEED 1PROD V=2, L=3TPSPEC TEMP=100SPEC STREAM=2, RATE, RATIO, STREAM=1, &

RATE, VALUE=0.2END

6.4: For the same problem, use K-values and IDEAL liquid densities.

THERMO DATAMETHOD KVALUE=GLYCOL, ENTHALPY=SRKM, &

DENSITY(L)=IDEAL, DENSITY(V)=SRKM

Sour Water

Typical Usage...COMPONENT DATA

LIBID 1,H2O/ 2, NH3/ 3, CO2THERMO DATA

METHOD SYSTEM=SOURSTREAM DATA

. . .

General InformationThe SOUR package is used to predict VLE and/or LLE phase behavior. This method does not support free water decant. This sys-tem uses the API/EPA SWEQ (Sour Water EQuilibrium) method developed by Grant Wilson to model sour water components NH3, H2S, CO2, and H2O. SRKM generates phase equilibria for all other components.

The SOUR package is generally useful for applications involving sour water containing less than 30% by weight of sour components.

PRO/II Thermodynamic Data Keyword Input Manual II-5-17

Page 176: Manual de Modelos Termodinamicos

Table 5-6:Attributes of the SOUR PackageProperties predicted by SOUR method

K-values

Required pure component properties1

Critical temperature Critical pressure Acentric factor

Suggested application ranges

Pressure - up to 1500 psia

Temperature - 68-300 F

Components - xwtNH3 + xwt

CO2+ xwtH2S< 0.30

(H2O, NH3, and one acid gas required)

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=SOUR,...orMETHOD KVALUE(VLE and/or LLE or VLLE)=SOUR,

ENTHALPY(V)=SRKM, ENTHALPY(L)=IDEAL,ENTROPY=SRKM, DENSITY(V)=SRKM, DENSITY(L)=IDEAL, ...

SYSTEM

Selects a combination of consistent thermodynamic property generators. When SYSTEM=SOUR is chosen, SOUR K-values, SRKM vapor enthalpies, IDEAL liquid enthalpies, SRKM entropies, IDEAL liquid densities, and SRKM vapor densities are default.

KVALUE

Selects the method for K-value calculations. Both VLE and VLLE K-value calculations are available with the SOUR package.

II-5-18 Special Packages

Page 177: Manual de Modelos Termodinamicos

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK=SIMSCI or NONE or bankid,

ALPHA=SIMSCI or ACENTRIC or bankid

ENTROPY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

DENSITY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

SRKM(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji /...

SA01 to SA11 i, c1, c2, c3/ ...

All these interaction parameters and alpha formulations may be selected for enthalpy, entropy, and density methods. Normally, for the SOUR package, these features are selected for the K-value method and are automatically carried over for these other methods. However, you can supply the interaction parameters and/or alpha formulations independently.

BANK This option selects the databank from which to retrieve vapor and/or liquid phase binary interaction data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

ALPHA

This option allows access to the databank for alpha formulations.

SIMSCI Selects the SimSci alpha formulation and values supplied from the SimSci databank (default).

ACENTRIC Uses original Soave acentric form for alpha (default).

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

PRO/II Thermodynamic Data Keyword Input Manual II-5-19

Page 178: Manual de Modelos Termodinamicos

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples6.5: Using the SOUR system, model a 80/5/10/5 mix of water,

H2S, CO2 and NH3 at 50 psia and 20% vaporization.

TITLE PROB=SOURPRINT INPUT=ALL

COMPONENT DATALIBID 1,H2O/2,H2S/3,CO2/4,NH3

THERMO DATAMETHOD SYSTEM=SOUR

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=80/5/10/5UNIT OPERATION

FLASH UID=FL7FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1,& RATE, VALUE=0.2

END

6.6: For the same problem, supply SRKM vapor enthalpy interaction data for component pairs 1-2 and 1-4.

THERMO DATA METHOD SYSTEM=SOUR ENTHALPY(V) SRKM 1, 2, 0.38, -26.7, 7, 0.0, 1.64, 0.3, -168, 10011, 0.3/ &

1, 4, -0.08, -54, 0.0, 2.5, -0.18, -28, 0.0, 0.5

SRKM and/or SA01 to SA11

This statement inputs binary interaction parameters and alpha formulation data for the SRKM method used to calculate vapor enthalpies, vapor densities and liquid and vapor entropies for the SOUR package. See “Modified Soave-Redlich-Kwong and Peng-Robinson” on page 4-13 for further details.

II-5-20 Special Packages

Page 179: Manual de Modelos Termodinamicos

GPA Sour Water

Typical Usage...COMPONENT DATALIBID 1, H2O/2, H2S/3, CO2/4, NH3THERMO DATA

METHOD SYSTEM=GPSWATERSTREAM DATA

. . .

General InformationThe GPSWATER package predicts VLE and/or LLE phase behavior for Sour Water systems. This method does not support free water decant. It uses the Gas Processors Association GPSWAT method to model sour water components H2O, NH3, H2S, CO, CS2, MeSH, EtSH and CO2. SRKM is used for all other components.

The GPSWATER package is generally valid for a wider range of applications involving sour water than the SOUR package (See “Sour Water” on page 5-17).

Table 5-7:Attributes of GPSWATER PackageProperties predicted by GPSWATER method

K-values

Required pure component properties1

Critical temperature Critical pressure

Acentric factor

Suggested application ranges

Pressure - up to 2000 psia

Temperature - 68-600 F

Components - xwtNH3 < 0.40, PCO2+ PH2S < 1200 psia

(H2O, NH3, H2S, and CO2 required)

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

PRO/II Thermodynamic Data Keyword Input Manual II-5-21

Page 180: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=GPSWATER,...orMETHOD KVALUE(VLE and/or LLE or VLLE)=GPSWATER,

ENTHALPY(V)=SRKM, ENTHALPY(L)=IDEAL,ENTROPY=SRKM, DENSITY(V)=SRKM, DENSITY(L)=IDEAL, ...

SYSTEM

Selects a combination of consistent thermodynamic property generators. When SYSTEM=GPSWATER is chosen, GPSWATER K-values, SRKM vapor enthalpies, IDEAL liquid enthalpies, SRKM entropies, IDEAL liquid densities, and SRKM vapor densities are default.

KVALUE

Selects the method for K-value calculations. Both VLE and VLLE K-value calculations are available with the GPSWATER package.

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK=SIMSCI or NONE or bankid,

ALPHA=SIMSCI or ACENTRIC or bankid

ENTROPY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

DENSITY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

SRKM(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji /...

SA01 to SA11 i, c1, c2, c3/ ...

All these interaction parameters and alpha formulations may be selected for enthalpy, entropy, and density methods. Normally, for the GPSWATER package, these features are selected for the K-value method and are automatically carried over for these other methods. However, you can supply the interaction parameters and/or alpha formulations independently.

II-5-22 Special Packages

Page 181: Manual de Modelos Termodinamicos

BANK This option selects the databank from which to retrieve vapor and/or liquid phase binary interaction data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

ALPHA

This option allows access to the databank for alpha formulations.

SIMSCI Selects the SimSci alpha formulation and values supplied from the SimSci databank (default).

ACENTRIC Uses original Soave acentric form for alpha (default).

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

SRKM and/or SA01 to SA11

This statement inputs binary interaction parameters and alpha formulation data for the SRKM method used to calculate vapor enthalpies, vapor densities and liquid and vapor entropies for the GPSWATER package. See “Modified Soave-Redlich-Kwong and Peng-Robinson” on page 4-13 for further details.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

PRO/II Thermodynamic Data Keyword Input Manual II-5-23

Page 182: Manual de Modelos Termodinamicos

Examples6.7: Using the GPSWATER system, model a 80/5/10/5 mix of

water, H2S, CO2 and NH3 at 50 psia and 20% vaporization.

TITLE PROB=GPSWATERCOMPONENT DATA

LIBID 1,H2O/2,H2S/3,CO2/4,NH3THERMO DATA

METHOD SYSTEM=GPSWATERSTREAM DATA

PROP STREAM=1, TEMP=100, PRES=100,& COMP=80/5/10/5

UNIT OPERATIONFLASH UID=F405

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.2

END

6.8: For the same problem, supply SRKM enthalpy interaction data for component pairs 1-2 and 1-4.

THERMO DATAMETHOD SYSTEM=GPSWATER ENTHALPY(V) SRKM 1, 2, 0.38, -26, 0.0, 1.6, 0.3, -168, 10011, 0.3/ &

1, 4, -0.08, -54, 0.0, 2.5,- 0.18, -28, 0.0, 0.5

Amines

Typical Usage

. . .COMPONENT DATALIBID 1, H20/2, H2S/3, MEA/4, C1THERMO DATA

METHOD SYSTEM=AMINESTREAM DATA. . .

II-5-24 Special Packages

Page 183: Manual de Modelos Termodinamicos

General InformationThe AMINE package is used to predict VLE and/or LLE phase behavior. This method does not support free water decant. This sys-tem uses the Kent-Eisenberg model for reaction equilibria with MEA, DEA, or DIPA and an additional residence time correction for MDEA or DGA. A correction is applied to IDEAL liquid enthalpies to account for heats of reaction. The DIPA data are not recommended for final design purposes.

The AMINE package is generally useful for gas sweetening pro-cesses with a single amine. Only one amine at a time is allowed.

Table 5-8:Attributes of the AMINE PackageProperties predicted by the AMINE method

K-values

Required pure component properties1

Critical temperature Critical pressure

Acentric factor

Suggested application ranges

MEA DEA DGA MDEA DIPA

Pressure, psig 25-500 100-1000 100-1000 100-1000 100-1000

Temperature, F <275 <275 <275 <275 <275

Concentration, wt.% ~15-25 ~25-35 ~55-65 ~50 ~30

Acid gas loading, (mol gas/mol amine)

0.5-0.6 0.45 0.50 0.4 0.4

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

PRO/II Thermodynamic Data Keyword Input Manual II-5-25

Page 184: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=AMINE,...orMETHOD KVALUE(VLE and/or LLE or VLLE)=AMINE,

ENTHALPY(V)=SRKM, ENTHALPY(L)=AMINE,ENTROPY=SRKM, DENSITY(V)=SRKM, DENSITY(L)=IDEAL, ...

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=AMINE is chosen, AMINE K-values, SRKM vapor enthalpies, AMINE liquid enthalpies, SRKM entropies, IDEAL liquid densities, and SRKM vapor densities are default.

KVALUE Selects the method for K-value calculations. Both VLE and VLLE K-value calculations are available with the AMINE package.

K-value Data (optional)KVALUE(VLE or LLE or VLLE)RESI=0.3

RESI Specifies the dimensionless residence time correction for systems involving MDEA or DGA. The default value is 0.3. A RESI value of 1.0 corresponds to an equilibrium model. For amines MEA, DEA or DIPA, the entry is ignored if it appears.

Note: If used for correcting the dimensionless residence time for systems involving MDEA or DGA, the RESI statement must fol-low the KVALUE statement.

II-5-26 Special Packages

Page 185: Manual de Modelos Termodinamicos

Enthalpy, Entropy, and Density Data (optional)ENTHALPY BANK=SIMSCI or NONE or bankid,

ALPHA=SIMSCI or ACENTRIC or bankid

ENTROPY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

DENSITY BANK=SIMSCI or NONE or bankid,ALPHA=SIMSCI or ACENTRIC or bankid

SRKM(K or R) i, j, kija, kjia, kijb, kjib, kijc, kjic, cij, cji /...

SA01 to SA11 i, c1, c2, c3/ ...

All these interaction parameters and alpha formulations may be selected for enthalpy, entropy, and density methods. You can supply the interaction parameters and/or alpha formulations independently.

BANK This option selects the databank from which to retrieve vapor and/or liquid phase binary interaction data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

ALPHA This option allows access to the databank for alpha formulations.

SIMSCI Selects the SimSci alpha formulation and values supplied from the SIMSCI databank (default).

ACENTRIC

Uses original Soave acentric form for alpha (default).

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

SRKM and/or SA01 to SA11

This statement inputs binary interaction parameters and alpha formulation data for the SRKM method used to calculate vapor enthalpies, vapor densities and liquid and vapor entropies for the AMINE package. See “Modified Soave-Redlich-Kwong and Peng-Robinson” on page 4-13 for further details.

PRO/II Thermodynamic Data Keyword Input Manual II-5-27

Page 186: Manual de Modelos Termodinamicos

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / .... . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples6.9: Using the AMINE system, model a mix of water, H2S,

CO2, MEA, and NH3 at 50 psia and 20% vaporization.

TITLE PROB=AMINEPRINT INPUT=ALL

COMPONENT DATALIBID 1,H2O/2,H2S/3,CO2/4,NH3/5,MEA

THERMO DATAMETHOD SYSTEM=AMINE

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=30/5/10/5/50UNIT OPERATION

FLASH UID=FL3FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.2

END

6.10: For the same problem, use MDEA and supply a residence time correction factor of 1.0.

COMPONENT DATALIBID 1,H2O/2,H2S/3,CO2/4,NH3/5,MDEA

THERMO DATA METHOD SYSTEM=AMINE KVALUE RESI=1.0

II-5-28 Special Packages

Page 187: Manual de Modelos Termodinamicos

User-added Subroutines

Typical Usage

...COMPONENT DATA

LIBID 1,IC4/ 2, NC4/ 3, H2OTHERMO DATA

METHOD KVALUE=U1, ENTHALPY=U2, DENSITY=U3STREAM DATA

. . .

General InformationUser-added subroutines can be supplied to calculate equilibrium K-values and to generate liquid and/or vapor enthalpy data, liquid and/or vapor entropy data and liquid and/or vapor density data.

Table 5-9:Attributes of User-Added SubroutinesProperties predicted by User-Added Subroutines

K-values Liquid/vapor densities

Liquid/vapor entropies Liquid/vapor enthalpies

Required pure component properties1

As required by the subroutine

Two liquid phase behavior

Free-water decant - Supported

VLLE - Supported

1 Automatically supplied for library and petroleum

PRO/II Thermodynamic Data Keyword Input Manual II-5-29

Page 188: Manual de Modelos Termodinamicos

components. Must be supplied by the user for non-library components

II-5-30 Special Packages

Page 189: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD

KVALUE(VLE and/or LLE or VLLE)=U1 or U2 or ... U15, ENTHALPY(VL or V and/or L)=U1 or U2 or ... U15,ENTROPY(VL or V and/or L)=U1 or U2 or ... U15, DENSITY(VL or V and/or L)=U1 or U2 or ... U15

KVALUE and/or ENTHALPY and/or ENTROPY and/or DENSITY

Selects the user-added method for K-value, liquid/vapor enthalpy, liquid/vapor entropy, and liquid/vapor density calculations. Both VLE and LLE K-value calculations are available when supplying user-added subroutines. The VLLE option automatically selects both. See the PRO/II Data Transfer System and User-Added Subroutines User’s Guide for more details on specifying these subroutines.

K-value Data (optional)KVALUE(VLE or LLE or VLLE)

UDATA i, value /...

Note: If used for calculating K-values, the UDATA statement must follow the KVALUE statement.

UDATA This statement supplies method-specific data that will be used by the user-added subroutine for the calculation of equilibrium K-values. See the PRO/II Data Transfer System and User-added Subroutines User's Guide for more information.

Enthalpy, Entropy, and Density Data (optional)ENTHALPY

ENTROPY

DENSITY

UDATA i, value /...

See above under K-value Data for format and definition of these entries.

PRO/II Thermodynamic Data Keyword Input Manual II-5-31

Page 190: Manual de Modelos Termodinamicos

Examples6.11: Using a user-supplied liquid enthalpy method U1 and the

GLYCOL package, model a 50/25/20/5 mix of water, benzene, ethanol and TEG at 50 psia and 20% vaporization. Supply data for U1 for components 2 and 4.

TITLE PROB=UASENTHCOMPONENT DATA

LIBID 1,H2O/2,BENZENE/3,ETOH/4,TEGTHERMO DATA

METHOD SYSTEM=GLYCOL, ENTHALPY(L)=U1ENTHALPY(L)

UDATA 2,2.5/4,3.0STREAM DATA

PROP STREAM=1,TEMP=100,PRES=100, &COMP=50/25/20/5

UNIT OPERATIONFLASH UID=FL3D

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.2

END

CAPE-OPEN

Typical Usage

…..COMPONENT DATA LIBID 1,PROPANE/2,BENZENE/3,METHANE, BANK=PROCESS,SIMSCITHERMODYNAMIC DATA METHOD SYSTEM=CO, PID=SIMSCI.THERMOSYSTEM.1, & PNAME=COC3C6C1SRK, SET=CO01 . . .

The PRO/II CAPE-OPEN thermodynamics capability enables users to add a third party CAPE-OPEN property packages to perform thermodynamic property calculations for streams on flow sheet. CAPE-OPEN standards are the uniform standards for interfacing

II-5-32 Special Packages

Page 191: Manual de Modelos Termodinamicos

process modeling software components developed specifically for the design and operation of chemical processes. These standards allow integration of different software components like Unit Opera-tions and Thermodynamic Property Packages from different ven-dors into a single simulation.

Input DescriptionThe Method Statement

Method SYSTEM=CO, PID=SIMSCI.THERMOSYSTEM.1, PNAME=COC3C6C1SRK

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM = CO is chosen, all property calculations and flash calculations will done in property package.

PID Program Id of COM identifier for property package. This is to identify and instantiate the property package on computer system

PNAME If CAPE-OPEN thermodynamics is thermo system, it gives package name. If it is a property package, PNAME will be NULL

EXAMPLE TITLE =CAPE-OPEN

DESC TEST SAMPLE CAPEOPEN THERMO

DIMENSION SI, STDTEMP=273.15, STDPRES=101.325

SEQUENCE SIMSCI

CALCULATION RVPBASIS=APIN, TVP=310.93

COMPONENT DATA

LIBID 1,PROPANE/2,BENZENE/3,METHANE, BANK=PRO-CESS,SIMSCI

THERMODYNAMIC DATA

METHOD SYSTEM=SRK, SET=SRK01, DEFAULT

PRO/II Thermodynamic Data Keyword Input Manual II-5-33

Page 192: Manual de Modelos Termodinamicos

METHOD SYSTEM=CO, PID=SIMSCI.THERMOSYSTEM.1, PNAME=COC3C6C1SRK, &

SET=CO01

METHOD SYSTEM=CO, PID=COPROPPACK.CPROPPACK, PNAME=NULL, SET=CO02

STREAM DATA

PROPERTY STREAM=S1, TEMPERATURE=250, PRES-SURE=1400, PHASE=M, &

RATE(M)=300, COMPOSITION(M)=1,1/2,1/3,1, &

NORMALIZE, SET=DEFAULT

UNIT OPERATIONS

FLASH UID=F1

FEED S1

PRODUCT V=S2, L=S3

ADIABATIC

END

II-5-34 Special Packages

Page 193: Manual de Modelos Termodinamicos

Chapter 6 Liquid Activity Methods

These are primarily applicable to highly non-ideal systems, particu-larly non-hydrocarbons. These methods are also useful for predict-ing VLLE behavior.

NRTL

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, CHTHERMO DATA

METHOD SYSTEM=NRTLSTREAM DATA

. . .

General InformationThe Non-Random Two Liquid (NRTL) liquid activity method is used to predict VLE and/or LLE phase behavior. This method does not support free water decant.

The NRTL method is generally useful for non-ideal applications, especially for partially immiscible systems. Refer to the PRO/II Reference Manual for additional information.

PRO/II Thermodynamic Data Keyword Input Manual II-6-1

Page 194: Manual de Modelos Termodinamicos

Table 6-1: Attributes of NRTL methodsProperties predicted by NRTL methods

K-values

Required pure component properties1

Vapor pressure PHI=IDEAL and POYNTING=OFF

Vapor pressure Critical temperature Critical pressure Acentric factor

When used with PHI=SRK or PR or SRKM or PRM or SRH or PRH or SRP or PRP or SRKS or SRKKD or BWRS or UNIWAAL or HOCV

Vapor pressure Liquid molar volume

When used with POYNTING=ON

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=NRTL, PHI=IDEAL,

{HENRY},...orMETHOD KVALUE(VLE and/or LLE or VLLE)=NRTL,

PHI=IDEAL, {HENRY},..

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=NRTL is chosen, NRTL K-values, LIBRARY enthalpies, IDEAL liquid densities and IDEAL vapor densities are default.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the NRTL method. The VLLE option automatically selects both. See “Vapor-liquid-liquid Equilibrium Considerations” on page 1-37 for more details on liquid-liquid equilibrium calculations.

II-6-2 Liquid Activity Methods

Page 195: Manual de Modelos Termodinamicos

K-value Data (optional)KVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON,

MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY, BANK=SIMSCI or ALCOHOL or NONE or bankid, FILL=NONE or UNIFAC or UFT1 or FLORY or REGULAR, AZEOTROPE = SIMSCI or NONE or bankid, WRITE=fileid

NRTL3(K or KCAL or KJ) i, j, bij, bji, αij / ...and/or

NRTL(K or KCAL or KJ) i, j, aij, bij, aji, bji, αij / ...and/or

NRTL6(K or KCAL or KJ) i, j, aij, bij, aji, bji, α’ij, β’ij / ...and/or

NRTL8(K or KCAL or KJ) i, j, aij, bij, cij, aji, bji, cji, α’ij, β’ij / ...and/or

AZEOTROPE(basis, punit, tunit) i, j, pres, temp, xi / ...and/or

INFINITE(tunit) i, j, temp, γioo , γj

oo / ...

PHI Selects the option used to calculate pure component and mixture vapor phase fugacity coefficients (φi). A vapor fugacity method should generally be selected for high pressure applications. The options are the equations of state methods SRK, PR, SRKM, PRM, SRKH, PRH, SRKP, PRP, SRKS, SRKKD, BWRS and UNIWAAL (see Chapter 4) and HOCV (the Hayden-O'Connell method), TVIRIAL (the Truncated Virial method) and the IDIMER method. See “Hayden-O’Connell Vapor Fugacity” on page 6-69, “Truncated Virial Vapor Fugacity” on page 6-73, and “IDIMER Vapor Fugacity” on page 6-78, for details on these last three options. The default is PHI=IDEAL.

HENRY This option selects Henry's Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. See “Henry’s Law for Non-condensible Components” on page 6-63 for further details.

Note: A heat of mixing option, HMIX, is available for the enthalpy method selected. See “Redlich-Kister, Gamma Heat of Mixing” on page 6-82, for further information on the use of this option.

PRO/II Thermodynamic Data Keyword Input Manual II-6-3

Page 196: Manual de Modelos Termodinamicos

and/orMUTUAL(basis, tunit) i, j, temp, xi

I, xjII / ...

and/orIDEAL i, j / ...

Note: The NRTL3, NRTL, NRTL6, NRTL8, AZEOTROPE, INFINITE, MUTUAL and/or IDEAL statements must follow the KVALUE statement.

POYNTING This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

BANK

This option selects one or more banks from which to retrieve vapor and/or liquid phase binary interaction data.

SIMSCI Selects the SimSci standard databank (default).

ALCOHOL Selects the Alcohol databank. This databank contains binary coefficients for systems with alcohols, water and other polar components.

NONE This option disables all data retrieval from databanks for interaction parameters.

II-6-4 Liquid Activity Methods

Page 197: Manual de Modelos Termodinamicos

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

FILL This selects the method used for estimating values for binary interaction data missing from the input file and any selected databank libraries. See “Filling in Missing Parameters” on page 6-57, for further details on these options.

AZEOTROPE This selects the azeotrope databank used for retrieving azeotropic data for binary pairs. Current options are SIMSCI (default) or NONE or bankid.

WRITE This option writes the binary interaction parameters for the liquid activity coefficient K-value method to a file. The format of this file is suitable for inclusion into an input file.

fileid This name identifies the file containing the binary interaction data. It may be any valid file name allowed on the particular operating system being used, but must not include a suffix. The program will automatically add a suffix (e.g., .FIL on PCs).

NRTL3 and/or NRTL and/or NRTL6 and/or NRTL8

This statement allows entry of the binary interaction data parameters for the NRTL liquid activity coefficient method. The statements can be mixed in order to enter the data in the most convenient form. The binary parameters aij, bij, cij, aji, bji, cji, α’ij, and β’ij are related to the liquid activity coefficients gi by the following equations:

ln γi

τjiGjixjj

Gkixkk∑

-------------------------xjGij

Gkjxkk∑-------------------- τi j

xkτkjGkjk∑

Gkjxkk∑

---------------------------–

⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞

j∑+=

τij aijbijT------

cij

T2-----+ += (when unit is K)

PRO/II Thermodynamic Data Keyword Input Manual II-6-5

Page 198: Manual de Modelos Termodinamicos

τij aijbijRT-------

cij

R2T2

------------+ +=

Data input using the NRTL3, NRTL, NRTL6, NRTL8, AZEO-TROPE, INFINITE, MUTUAL and IDEAL statements is used in preference to any data retrieved from the databanks or estimated using FILL options. See “Filling in Missing Parameters” on page 6-57, for further details.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ... MOLVOL(unit) i, value / ... . . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters see Chapter 9, “Method-specific Pure Component Data”. Note that only the vapor pressure has any direct effect on the calculation of K-values. The vapor pressure may only be supplied globally for all sets in the Component Data Category. Tc, Pc and the acentric factor will have an impact on the K-values if a cubic equation of state is chosen for vapor phase fugacities. Molar volume will have an impact on the Poynting correction factor.

Examples5.1: Using the NRTL system, model a 50/40/10 mix of DIPE,

IPA and water at 50 psia and 50% vaporization.

TITLE PROB=NRTLPRINT INPUT=ALL

(when unit is KCAL or

KJ)Gji αjiτji–( )exp= and αij = α’ij + β’ij T

AZEOTROPE and/or INFINITE and/or MUTUAL

These statements are used to enter data for binary pairs. This data will be regressed to the coefficients for the liquid activity method used to generate the K-values. Multiple statements may be used to enter data with different units or the data can be entered on a single statement.

and/or IDEAL

This statement sets the binary interaction parameters to zero.

II-6-6 Liquid Activity Methods

Page 199: Manual de Modelos Termodinamicos

COMPONENT DATALIBID 1,H2O/ 2,BENZENE/ 3,ETOH/ 4,CHEN

THERMO DATAMETHOD SYSTEM=NRTL, PHI=SRKKVALUE FILL=UNIFAC, POYNTING=ON

NRTL 1,2,5.256,219.685,-5.645,288.34,0.2/ &1,3,1.015,536.264,0.4985,-456.0,0.1448/ &2,3,-2.748,1472.24,-0.449,440.51,0.5355

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/25/20/5UNIT OPERATION

FLASH UID=F204FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.2

END

5.2: For the same problem, use NRTL K-values, IDEAL enthalpies and liquid densities and SRK vapor densities.

THERMO DATA METHOD KVALUE=NRTL, ENTHALPY=IDEAL, &

DENSITY(L)=IDEAL, DENSITY(V)=SRK

UNIQUAC

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, CHTHERMO DATA

METHOD SYSTEM=UNIQUACSTREAM DATA

. . .

General InformationThe UNIQUAC liquid activity method is used to predict both VLE and VLLE phase behavior. This method does not support free water decant.

PRO/II Thermodynamic Data Keyword Input Manual II-6-7

Page 200: Manual de Modelos Termodinamicos

The UNIQUAC method is generally useful for highly non-ideal applications, especially for partially immiscible systems. Refer to the PRO/II Reference Manual for additional information.

Table 6-2: Attributes of UNIQUAC MethodsProperties predicted by UNIQUAC methods

K-values

Required pure component properties1

Vapor pressure van der Waals area and volume

PHI=IDEAL and POYNTING=OFF

Vapor pressure Critical temperature Critical pressure Acentric factor van der Waals area and volume

When used with PHI=SRK or PR or SRKM or PRM or SRH or PRH or SRP or PRP or SRKS or SRKKD or BWRS or UNIWAAL or HOCV

Vapor pressure Liquid molar volume van der Waals area and volume

When used with POYNTING=ON

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=UNIQUAC,

PHI=IDEAL, {HENRY},...orMETHOD KVALUE(VLE and/or LLE or VLLE)=UNIQUAC,

PHI=IDEAL, {HENRY},...

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=UNIQUAC is chosen, UNIQUAC K-values, LIBRARY enthalpies, IDEAL liquid densities and IDEAL vapor densities are default.

II-6-8 Liquid Activity Methods

Page 201: Manual de Modelos Termodinamicos

K-value Data (optional)KVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON,

MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY, BANK=SIMSCI or NONE or bankid, FILL=NONE or UNIFAC or UFT1 or FLORY or REGULAR, AZEOTROPE = SIMSCI or NONE or bankid, WRITE=fileid

UNIQUAC(K or KCAL or KJ) i, j, aij, aji / ...and/or

UNIQ4(K or KCAL or KJ) i, j, aij, aji, bij, bji / ...and/or

AZEOTROPE(basis, punit, tunit) i, j, pres, temp, xi / ...

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the UNIQUAC method. The VLLE option automatically selects both. See “Vapor-liquid-liquid Equilibrium Considerations” on page 1-37 for more details on liquid-liquid equilibrium calculations.

PHI Selects the option used to calculate pure component and mixture vapor phase fugacity coefficients (φi). A vapor fugacity method should generally be selected for high pressure applications. The options are the equations of state methods SRK, PR, SRKM, PRM, SRKH, PRH, SRKP, PRP, SRKS, SRKKD, BWRS and UNIWAAL (see Chapter 4) and HOCV (the Hayden-O'Connell method), TVIRIAL (the Truncated Virial method) and the IDIMER method. See “Hayden-O’Connell Vapor Fugacity” on page 6-69, “Truncated Virial Vapor Fugacity” on page 6-73, “IDIMER Vapor Fugacity” on page 6-78, for details on these last three options. The default is PHI=IDEAL.

HENRY This option selects Henry's Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. See “Henry’s Law for Non-condensible Components” on page 6-63 for further details.

Note: A heat of mixing option, HMIX, is available for the enthalpy method selected. See “Redlich-Kister, Gamma Heat of Mixing” on page 6-82, for further information on the use of this option.

PRO/II Thermodynamic Data Keyword Input Manual II-6-9

Page 202: Manual de Modelos Termodinamicos

and/orINFINITE(tunit) i, j, temp, γi

oo, γjoo / ...

and/orMUTUAL(basis, tunit) i, j, temp, xi

I, xjII / ...

and/orIDEAL i, j / ...

Note: The UNIQUAC, UNIQ4, AZEOTROPE, INFINITE, MUTUAL and/or IDEAL statements must follow the KVALUE statement.

POYNTING This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

BANK

This option selects one or more banks from which to retrieve vapor and/or liquid phase binary interaction data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

II-6-10 Liquid Activity Methods

Page 203: Manual de Modelos Termodinamicos

FILL This selects the method used for estimating values for binary interaction data missing from the input file and any selected databank libraries. See “Filling in Missing Parameters” on page 6-57, for further details on these options.

AZEOTROPE This selects the azeotrope databank used for retrieving azeotropic data for binary pairs. Current options are SIMSCI (default) or NONE or bankid.

UNIQUAC and/or UNIQ4

This statement allows entry of the binary interaction data parameters for the UNIQUAC liquid activity coefficient method. The statements can be mixed in order to enter the data in the most convenient form. The binary parameters aij, bij, aji and bji are related to the liquid activity coefficients γi by the following equations:

γiln γiCln γi

Rln+=

γiCln

ϕixi-----ln Z

2---qi

θiϕi-----ln li

ϕiθi----- Xjlj

j 1=

M

∑–+ +=

γiRln qi 1 θjτji

j 1=

M

∑θjτi j

θkτkj

k 1=

M

-----------------------j 1=

M

∑–ln–

⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞

=

τijUijT

-------–⎝ ⎠⎛ ⎞exp= (when unit is K)

τijUijRT-------–⎝ ⎠

⎛ ⎞exp= (when the unit is KCAL or KJ)

Uij aij bijT+=

θixiqi

xiqi

i 1=

M

-------------------= ljZ2--- rj qj–( ) rj 1–( )–=

ϕixiri

xjrj

j 1=

M

------------------=

PRO/II Thermodynamic Data Keyword Input Manual II-6-11

Page 204: Manual de Modelos Termodinamicos

qiAwi

2.5 9×10-------------------= ri

Vwi15.17-------------=

Data input using the UNIQUAC, UNQ4, AZEOTROPE, INFI-NITE, MUTUAL and IDEAL statements is used in preference to any data retrieved from the databanks or estimated using FILL options. See “Filling in Missing Parameters” on page 6-57, for fur-ther details.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ... MOLVOL(unit) i, value / ... VANDERWAALS i, value / ... . . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”. Note that of these properties, only the van der Waals area and volume (VANDERWAALS) has any direct effect on the calculation of liquid activity coefficients, but may only be supplied in the Component Data Category. The vapor pressure also has a direct effect on K-values, but may only be supplied globally for all sets in the Component Data Category. Tc, Pc and the acentric factor will

, Z 10=

AZEOTROPE and/or INFINITE and/or MUTUAL

These statements are used to enter data for binary pairs. This data will be regressed to the coefficients for the liquid activity method used to generate the K-values. Multiple statements may be used to enter data with different units or the data can be entered on a single statement.

and/or IDEAL

This statement sets the binary interaction parameters to zero.

WRITE This option writes the binary interaction parameters for the liquid activity coefficient K-value method to a file. The format of this file is suitable for inclusion into an input file.

fileid This name identifies the file containing the binary interaction data. It may be any valid file name allowed on the particular operating system being used, but must not include a suffix. The program will automatically add a suffix (e.g., .FIL on PCs).

II-6-12 Liquid Activity Methods

Page 205: Manual de Modelos Termodinamicos

have an impact if a cubic equation of state is chosen for vapor phase fugacities. Molar volume will have an impact on the Poynting correction factor.

PRO/II Thermodynamic Data Keyword Input Manual II-6-13

Page 206: Manual de Modelos Termodinamicos

Examples5.3: Using the UNIQUAC system, model a 50/40/10 mix of

DIPE, IPA and water at 50 psia and 50% vaporization.

TITLE PROB=UNIQUACPRINT INPUT=ALL

COMPONENT DATALIBID 1,H2O/ 2,BENZENE/ 3,ETOH/ 4,CHEN

THERMO DATAMETHOD SYSTEM=UNIQUAC

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/25/20/5UNIT OPERATION

FLASH UID=DRUMFEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.2

END

5.4: For the same problem, use UNIQUAC K-values, IDEAL enthalpies and liquid densities and SRK vapor densities.

THERMO DATA METHOD KVALUE=UNIQUAC, ENTHALPY=IDEAL, &

DENSITY(L)=IDEAL, DENSITY(V)=SRK

UNIFAC

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, CHTHERMO DATA

METHOD SYSTEM=UNIFACSTREAM DATA

. . .

II-6-14 Liquid Activity Methods

Page 207: Manual de Modelos Termodinamicos

General InformationThe UNIFAC liquid activity method is used to predict both VLE and VLLE phase behavior. This method does not support free water decant.

The UNIFAC group contribution method is generally useful for non-ideal applications at low pressures. It is generally restricted to components with 10 or fewer different structural groups and sys-tems containing low molecular weight polymers. Refer to the PRO/II Reference Manual for additional information.

Table 6-3: Attributes of UNIFAC MethodsProperties predicted by UNIFAC methods

K-values

Required pure component properties1

Vapor pressure Structural groups Structure van der Waals area and volume parameters

PHI=IDEAL and POYNTING=OFF

Vapor pressure Critical temperature Critical pressure Structural groups Van der Waals area and volume

When used with PHI=SRK or PR or SRKM or PRM or SRH or PRH or SRP or PRP or SRKS or SRKKD or BWRS or UNIWAAL or HOCV

Vapor pressure Liquid molar volume Structural groups Van der Waals area and volume

When used with POYNTING=ON

Suggested application ranges

Pressure - up to 10 atmospheres

Temperature - 32-300 F

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

PRO/II Thermodynamic Data Keyword Input Manual II-6-15

Page 208: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=UNIFAC, PHI=IDEAL,

{HENRY},...orMETHOD KVALUE(VLE and/or LLE or VLLE)=UNIFAC, PHI=IDEAL, {HENRY},..

SYSTEM Selects a combination of consistent thermodynamic property generators. When SYSTEM=UNIFAC is chosen, UNIFAC K-values, LIBRARY enthalpies, IDEAL liquid densities and IDEAL vapor densities are default.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the UNIFAC method. The VLLE option automatically selects both. See “Vapor-liquid-liquid Equilibrium Considerations” on page 1-37 for more details on liquid-liquid equilibrium calculations.

PHI Selects the option used to calculate pure component and mixture vapor phase fugacity coefficients (φi). A vapor fugacity method should generally be selected for high pressure applications. The options are the equations of state methods SRK, PR, SRKM, PRM, SRKH, PRH, SRKP, PRP, SRKS, SRKKD, BWRS and UNIWAAL (see Chapter 4) and HOCV (the Hayden-O'Connell method), TVIRIAL (the Truncated Virial method) and the IDIMER method. See “Hayden-O’Connell Vapor Fugacity” on page 6-69, “Truncated Virial Vapor Fugacity” on page 6-73, and “IDIMER Vapor Fugacity” on page 6-78, for details on these last three options. The default is PHI=IDEAL.

HENRY This option selects Henry's Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. See “Henry’s Law for Non-condensible Components” on page 6-63 for further details.

II-6-16 Liquid Activity Methods

Page 209: Manual de Modelos Termodinamicos

K-value Data (optional)KVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON,

MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY, BANK=SIMSCI or NONE or bankid, AZEOTROPE = SIMSCI or NONE or bankid, WRITE=fileid

UNIFAC(K or KCAL or KJ) l, k, Alk, Akl / ...and/or

AZEOTROPE(basis, punit, tunit) i, j, pres, temp, xi / ...and/or

INFINITE(tunit) i, j, temp, γioo , γj

oo / ...and/or

MUTUAL(basis, tunit) i, j, temp, xiI, xj

II / ...and/or

IDEAL i, j / ...

Note: The UNIFAC, AZEOTROPE, INFINITE, MUTUAL and/or IDEAL statements must follow the KVALUE statement.

Note: A heat of mixing option, HMIX, is available for the enthalpy method selected. See “Redlich-Kister, Gamma Heat of Mixing” on page 6-82, for further information on the use of this option.

POYNTING This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

PRO/II Thermodynamic Data Keyword Input Manual II-6-17

Page 210: Manual de Modelos Termodinamicos

BANK

This option selects one or more banks from which to retrieve vapor and/or liquid phase binary interaction data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

AZEOTROPE This selects the azeotrope databank used for retrieving azeotropic data for binary pairs. Current options are SIMSCI (default) or NONE or bankid.

WRITE This option writes the binary interaction parameters for the liquid activity coefficient K-value method to a file. The format of this file is suitable for inclusion into an input file.

fileid This name identifies the file containing the binary interaction data. It may be any valid file name allowed on the particular operating system being used, but must not include a suffix. The program will automatically add a suffix (e.g., .FIL on PCs).

UNIFAC This statement allows entry of the group interaction data parameters for the UNIFAC liquid activity coefficient method. The statements can be mixed in order to enter the data in the most convenient form. The group parameters Alk and Akl are related to the liquid activity coefficients γi by the following equations:

γiln γiCln γi

Rln+=

where:

γiCln

Φixi------ln 1

Φixi------– Z

2---– qi

Φiθi------⎝ ⎠

⎛ ⎞ln⎝⎛ 1

Φiθi------⎠

⎞–+ +=

II-6-18 Liquid Activity Methods

Page 211: Manual de Modelos Termodinamicos

Φixiri

xjrj

j 1=

NOC

-------------------= , θixiqi

xjqj

j 1=

NOC

-------------------=

ri νki Rk

k 1=

NK

∑= , qi νki Qk

k 1=

NK

∑=

Rk = volume parameter for group k

Qk = surface area parameter for group k

vki = number of type k groups in component i

xi = liquid mole fraction of component i

Z = coordination number (Z = 10)

NK = number of groups in molecule i

γiR( )ln νk

i Γkln Γkiln–( )

k 1=

NK

∑=

Γk( )ln Qk 1 θmΨmk

m 1=

NK

∑⎝ ⎠⎜ ⎟⎜ ⎟⎛ ⎞

ln–θmΨmk

θnΨnm

n 1=

NK

----------------------------n 1–

NK

∑–

⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞

=

ΨnmAnm

T---------–⎝ ⎠

⎛ ⎞exp= (where unit is K)

ΨnmAnmRT---------–⎝ ⎠

⎛ ⎞exp= (where unit is KCAL or KJ)

θnmQmXm

QnXn

n 1=

NK

------------------------=

Xm

νmj xj

j 1=

NOC

νnj xj

j 1=

NOC

∑n 1=

NK

--------------------------------=

Anm = group interaction parameter for the interaction between m and n.

PRO/II Thermodynamic Data Keyword Input Manual II-6-19

Page 212: Manual de Modelos Termodinamicos

Data input using the UNIQUAC, AZEOTROPE, INFINITE, MUTUAL and IDEAL statements is used in preference to any data retrieved from the databanks.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ... MOLVOL(unit) i, value / ... VANDERWAALS i, value / ... . . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”. Note that of these properties, only the van der Waals area and volume (VANDERWAALS) has any direct effect on the calculation of liquid activity coefficients, but may only be supplied in the Component Data Category. The vapor pressure also has a direct effect on K-values, but may only be supplied globally for all sets in the Component Data Category. Tc, Pc and the acentric factor will have an impact if a cubic equation of state is chosen for vapor phase fugacities. Molar volume will have an impact on the Poynting correction factor.

Data are available in PRO/II databanks for many structural groups as shown in Table 6-4.

AZEOTROPE and/or INFINITE and/or MUTUAL

These statements are used to enter data for binary pairs. This data will be regressed to the coefficients for the liquid activity method used to generate the K-values. Multiple statements may be used to enter data with different units or the data can be entered on a single statement.

and/or IDEAL

This statement sets the binary interaction parameters to zero.

II-6-20 Liquid Activity Methods

Page 213: Manual de Modelos Termodinamicos

Table 6-4: Available UNIFAC Interaction Parameters

UNIFAC INTERACTION PARAMETERS AVAILABLE IN PROII

. No interactions V VLE interactions - ( 634) L LLE interactions - ( 208) * Both VLE and LLE - ( 91) $ Both VLE and T - ( 48) @ VLE - LLE and T - ( 103) T TEMP dependent - ( 1) 11 --- * 20 --- @ * 21 --- V V . 27 --- . . . . 30 --- * V @ V . 40 --- V . V V . V 43 --- . . V V . V . 46 --- V . V . . V . . 50 --- . . $ V . . . . V 52 --- . . $ V . . . . . V 55 --- * * @ V . . . . V V . 56 --- . . V V . V . . . . . . 59 --- . . $ . . . . . V V V . . 60 --- @ V @ V V $ V . V V $ . V V 70 --- @ * @ V . @ . V V . $ V V V @ 73 --- V . V . . V . . V . . . . . V V 76 --- V V V . . V . . V . V V . . V V V 81 --- @ . @ V . @ . . . V . V . . @ V . V 84 --- @ . @ V . V . . . . . . . $ @ @ . V @ 86 --- @ . @ V . V . . . . . L . $ @ @ V V @ . 87 --- * V * V . . . . . V V V . V V * V V V V V 88 --- * . * . . V . . V . . . . . V V V V V V V . 90 --- @ * @ V V @ V V * $ $ @ V $ @ @ V V @ @ @ * * 110 --- @ V @ V . @ V . * $ $ V . $ @ @ V V @ @ @ V V @ 114 --- . . V . . . . . V . . . . . . . . . . . . . V V V 120 --- @ * @ V . @ V V * $ $ @ V $ @ @ V V @ $ @ * V @ @ . 122 --- * * * V . * V V V V V * V V * * V V * V * * V * * . * 130 --- @ * @ V . @ V V V . V @ V V @ @ V V @ @ @ * * @ @ V @ * 140 --- . . @ V . . . . V V V $ . . V @ V V V V @ * V @ @ V @ * @ 141 --- L . * . . . . . V . . . . . * V . V V V . * V * * V * * * V 143 --- . L * . . . . . . . . * . . . . . . V . . V . * . . * * * . V 144 --- V * @ . . . . . . . T * . . V . V . . $ @ L V @ V . @ * $ @ . V 150 --- . . V . . . . . V V . . . . V . V . V . . . . V . . V V V V . . . 151 --- . . . . . . . . . . . . . . . . . . . . V . V V V . . . . . . . . V 153 --- . V V . . . . . . . . . . . . . . . . . . . . V . . V V V . V . V . . 161 --- $ V $ V . $ . . V $ $ $ V $ $ $ V V $ $ $ V V $ $ . $ V $ $ V . $ V V V 162 --- @ * @ V V * V . * $ $ @ V $ @ @ . V @ @ @ * L @ @ . @ * @ @ * * @ . . . $ 168 --- @ * @ V . . . . V $ $ @ . $ @ @ V V @ @ @ * V @ @ . @ * @ @ * * $ . V V $ @ 170 --- . V V V . . . . . . . . . . V V . V V . V . V V V . V V V V V . . . . . V V V 171 --- * . * . . L . . L . . . . . V * . V . L * . L * V . * * * . . . L . . . . * * . 203 --- . . V . . V . . V . . . . . . V . V . . . . V V V . V V . V . . . . . . V V V . . 247 --- V . V . . . . . V . . . . . V V . V . V V . . * * . * * V . . . . V . . V V V . . . 250 --- . V V . . . . . . . . . . . . . . . . . V V V V V . V V . . . . . V . . . V . . . . . 251 --- . . V . . . . . . . . . . . . . . . . . . . . V V . V V . . . . . . . . V V . . . . . . 260 --- V . V . . . . . . V V . . . V . . . . . . . . V . . V V V . . . . . . . . V . . . . . . . 270 --- V . V . . . . . . V V . . . . . . . . . . . . V . . V V . . . . . . . . . . V . . . . . . V 281 --- . . . . . . . . V . . . . . . . . . . . . . . V V . V . . . . . . . . . . . . . . . . . . . . 287 --- . . V . . . . . . . V . . V V . . . . . . . . V V . V V . . . . V . . . V . V . . . . . . . . V 290 --- . . V . . . . . . . . . . . . . . . . . . . . V . . V . . . V . . . . . V . . . . . . . . . . V . 300 --- V . V . . . . . . . . . . . V V . V V V . V . V V . V V V V V V V . . . V . V . . . V . . . . . . . 320 --- V . V . . V . . . . . . . . V V . V . V V . . V . . V V V . V V . . . . V . V V . . . . . . . . . . . 330 --- . . . . . . . . . . . . . . . . . . . . . . . V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 --- . . . . . . . . . . . . . . . . . . . . . . . V . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 350 --- . . . . . . . . . . . . . . . . . . . . . . . V . . . . . . . . . . . . . . . . . . . . . . . . . . . . V V 360 --- . . . . . . . . . . . . . . . . . . . . . . . V . . . . . . . . . . . . . . . . . . . . . . . . . . . . V V V 385 --- L * * . . . . . V . . * . . V * . V . . . L . * . . * * * V * L . . . . V * . . L . V V . . . . . . . . . . . . 388 --- . . V . . . . . . . . . . . . V . V . V . V . V V . V V V V . . . . . . . V V . . . . . . . . . . . . . . . . . V | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 1 1 2 2 2 3 4 4 4 5 5 5 5 5 6 7 7 7 8 8 8 8 8 9 1 1 2 2 3 4 4 4 4 5 5 5 6 6 6 7 7 0 4 5 5 6 7 8 8 9 0 2 3 4 5 6 8 0 1 0 1 7 0 0 3 6 0 2 5 6 9 0 0 3 6 1 4 6 7 8 0 0 4 0 2 0 0 1 3 4 0 1 3 1 2 8 0 1 3 7 0 1 0 0 1 7 0 0 0 0 0 0 0 5

Examples5.5: Using the UNIFAC system, model 50/40/10 mix of DIPE,

IPA, and water at 50 psia and 50%vaporization.

TITLE PROB=UNIFACPRINT INPUT=ALL

COMPONENT DATALIBID 1,DIPE/ 2,IPA/ 3,H2O

THERMO DATAMETHOD SYSTEM=UNIFAC

PRO/II Thermodynamic Data Keyword Input Manual II-6-21

Page 214: Manual de Modelos Termodinamicos

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, & COMP=50/40/10

UNIT OPERATIONFLASH UID=F2

FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

5.6: For the same problem, use UNIFAC K-values, IDEAL enthalpies and liquid densities and SRK vapor densities.

THERMO DATA METHOD KVALUE=UNIFAC, ENTHALPY=IDEAL, &

DENSITY(L)=IDEAL, DENSITY(V)=SRK

Modifications to UNIFAC

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, CHTHERMO DATA

METHOD SYSTEM=UFT1STREAM DATA

. . .

General InformationThe modified UNIFAC liquid activity methods are used to predict both VLE and VLLE phase behavior. These methods do not support free water decant.

The modified UNIFAC group contribution methods are generally useful for non-ideal applications at low pressures. The Lyngby modification UFT1, the Dortmund modification UFT2, and UFT3 modified methods can be used if temperature dependent UNIFAC data is available. The UNFV free volume data method is designed to model polymer solutions and should not be used for non-polymer systems. Refer to the PRO/II Reference Manual for additional infor-mation.

II-6-22 Liquid Activity Methods

Page 215: Manual de Modelos Termodinamicos

Table 6-5: Attributes of Modified UNIFAC MethodsProperties predicted by UNIFAC methods

K-values

Required pure component properties1

Vapor pressure van der Waals area and volume (UFT1,UFT2,UFT3 only)

PHI=IDEAL and POYNTING=OFF

Vapor pressure Critical temperature Critical pressure Acentric factor Van der Waals area and volume (UFT1,UFT2,UFT3 only)

When used with PHI=SRK or PR or SRKM or PRM or SRH or PRH or SRP or PRP or SRKS or SRKKD or BWRS or UNIWAAL or HOCV

Vapor pressure Liquid molar volume Van der Walls area and volume (UFT1,UFT2,UFT3 only)

When used with POYNTING=ON

Suggested application ranges

Pressure - up to 10 atmospheres

Temperature - 70-300 F

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported1Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=UF1 or UFT2 or UFT3 or UNFV, PHI=IDEAL, {HENRY},...

orMETHOD KVALUE(VLE and/or LLE or VLLE)=UF1 or UFT2 or

UFT3 or UNFV, PHI=IDEAL,{HENRY},..

PRO/II Thermodynamic Data Keyword Input Manual II-6-23

Page 216: Manual de Modelos Termodinamicos

SYSTEM Selects a combination of consistent thermodynamic property generators. The options available are:

UFT1 When SYSTEM=UFT1 is chosen, UFT1 K-values, LIBRARY enthalpies, IDEAL liquid densities and IDEAL vapor densities are default.

UFT2 When SYSTEM=UFT2 is chosen, UFT2 K-values, LIBRARY enthalpies, IDEAL liquid densities and IDEAL vapor densities are default.

UFT3 When SYSTEM=UF3 is chosen, UFT3 K-values, LIBRARY enthalpies, IDEAL liquid densities and IDEAL vapor densities are default.

UNFV When SYSTEM=UNFV is chosen, UNFV K-values, LIBRARY enthalpies, IDEAL liquid densities and IDEAL vapor densities are default.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the UFT1, UFT2, UFT3 AND UNFV methodS. The VLLE option automatically selects both. See “Vapor-liquid-liquid Equilibrium Considerations” on page 1-37 for more details on liquid-liquid equilibrium calculations.

PHI Selects the option used to calculate pure component and mixture vapor phase fugacity coefficients (φi). A vapor fugacity method should generally be selected for high pressure applications. The options are the equations of state methods SRK, PR, SRKM, PRM, SRKH, PRH, SRKP, PRP, SRKS, SRKKD, BWRS and UNIWAAL (see Chapter 4) and HOCV (the Hayden-O'Connell method), TVIRIAL (the Truncated Virial method) and the IDIMER method. See “Hayden-O’Connell Vapor Fugacity” on page 6-69, “Truncated Virial Vapor Fugacity” on page 6-73, and “IDIMER Vapor Fugacity” on page 6-78 for details on these last three options. The default is PHI=IDEAL.

HENRY This option selects Henry's Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. See “Henry’s Law for Non-condensible Components” on page 6-63 for further details.

II-6-24 Liquid Activity Methods

Page 217: Manual de Modelos Termodinamicos

K-value Data (optional)

UFT1-Lyngby modified UNIFACKVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON,

MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY, BANK=SIMSCI or NONE or bankid, AZEOTROPE = SIMSCI or NONE or bankid, WRITE=fileid

UNIFAC(K or KCAL or KJ) l, k, Alk, Akl / ...and/or

UFT2-Dortmund modified UNIFAC

KVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON, MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY, BANK=SIMSCI or NONE or bankid, AZEOTROPE = SIMSCI or NONE or bankid, WRITE=fileid

UNIFAC(K or KCAL or KJ) l, k, Alk, Akl / ...and/or

UFT3-Modified UNIFAC

KVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON, MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY, BANK=SIMSCI or NONE or bankid, AZEOTROPE = SIMSCI or NONE or bankid, WRITE=fileid

UNIFAC(K or KCAL or KJ) l, k, Alk, Akl / ...and/or

UNFV-Free Volume modification

KVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON, MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY, BANK=SIMSCI or NONE or bankid, AZEOTROPE = SIMSCI or NONE or bankid, WRITE=fileid

UNIFAC(K or KCAL or KJ) l, k, Alk, Akl / ...and/or

AZEOTROPE(basis, punit, tunit) i, j, pres, temp, xi / ...and/or

INFINITE(tunit) i, j, temp, γioo , γj

oo / ...and/or

Note: A heat of mixing option, HMIX, is available for the enthalpy method selected. See “Redlich-Kister, Gamma Heat of Mixing” on page 6-82, for further information on the use of this option.

PRO/II Thermodynamic Data Keyword Input Manual II-6-25

Page 218: Manual de Modelos Termodinamicos

MUTUAL(basis, tunit) i, j, temp, xiI, xj

II / ...and/or

IDEAL i, j / ...

Note: The AZEOTROPE, INFINITE, MUTUAL and/or IDEAL statements may be used with the UFT1, UFT2, UFT3 and UNFV methods. The data statements must follow the KVALUE state-ment. UNIFAC data statements may be used with any of the mod-ified UNIFAC methods if non-temperature dependent data are entered. The UNIFT1, UNIFT2, UNIFT3 and/or UNFV data statements may not be mixed, i.e., they may not follow the same KVALUE statement. UFT1, UFT2, and UFT3 are aliases for the UNIFT1, UNIFT2, and UNIFT3 data keywords.

POYNTING This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method

LIBRARY Selects the LIBRARY liquid density method.

BANK This option selects one or more banks from which to retrieve vapor and/or liquid phase binary interaction data.

SIMSCI Selects the SimSci standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

II-6-26 Liquid Activity Methods

Page 219: Manual de Modelos Termodinamicos

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

AZEOTROPE

This selects the azeotrope databank used for retrieving azeotropic data for binary pairs. Current options are SIMSCI (default) or NONE or bankid.

WRITE This option writes the binary interaction parameters for the liquid activity coefficient K-value method to a file. The format of this file is suitable for inclusion into an input file.

fileid This name identifies the file containing the binary interaction data. It may be any valid file name allowed on the particular operating system being used, but must not include a suffix. The program will automatically add a suffix (e.g., FIL on PCs).

UNIFAC This statement allows entry of the group interaction data parameters for the UNIFAC liquid activity coefficient method. See “UNIFAC” on page 6-14 for further details.

UFT1 This selects the Lyngby modification of the UNIFAC method. The data entered are the temperature-dependent group interaction parameters alk, blk and clk. The liquid activity for each component is calculated from:

Similar to the UNIFAC method except

Amk amk bmk T To–( ) cmk TToT-----ln T To–+⎝ ⎠

⎛ ⎞+ +=

where:

To 298.25K=

γicln

ωixi-----ln 1

ωixi-----–+= , ωi

ri2 3⁄ xi

rj2 3⁄ xj

j 1=

NOC

-------------------------=

PRO/II Thermodynamic Data Keyword Input Manual II-6-27

Page 220: Manual de Modelos Termodinamicos

UFT2 This statement allows entry of the temperature-dependent group interaction data for the Dortmund modification of the UNIFAC method. The liquid activity coefficients are calculated from the following equations:

Similar to the UNIFAC method, except

Amk amk bmkT cmkT2+ +=

γicln

ωixi-----ln 1

ωixi-----

Zqi2

--------Φiln

θi----------- 1

Φiθi------–+⎝ ⎠

⎛ ⎞––+=

ωiri

3 4⁄ xi

rj3 4⁄ xj

j 1=

NOC

-------------------------=

UFT3 This selects temperature-dependent group interaction data for a modification of the UNIFAC method. The liquid activity coefficients are computed using the equations following:

Similar to the UNIFAC method, except

Amk amk bmkT cmkT3+ +=

UNFV This option is for entering free volume data for polymer systems. This model uses the same liquid activity coefficient combinatorial and residual terms as UNIFAC, in addition to a free volume effect term. The liquid activity equations are given by:

γiln γiCln γi

R γiFVln+ln+=

γiFVln 3Ci

Vi1 3⁄

1–

Vm1 3⁄

1–--------------------

⎝ ⎠⎜ ⎟⎛ ⎞

ln Ci

Vi

Vm------- 1–

⎝ ⎠⎜ ⎟⎛ ⎞

1 1

Vi1 3⁄

-----------–---------------------

⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞

–=

ViVi

15.17br'i----------------------= , r'i

1Mi------ νk

i Rk

k 1=

NK

∑=

VmViwi Vjwj+

15.17b r'iwi r'jwj+( )--------------------------------------------------= , b 1.28=

where:

II-6-28 Liquid Activity Methods

Page 221: Manual de Modelos Termodinamicos

Data input using the UNIFAC, UFT1, UFT2, UFT3, UNFV, AZEO-TROPE, INFINITE, MUTUAL and IDEAL statements is used in preference to any data retrieved from the databanks or estimated using FILL options. See “Filling in Missing Parameters” on page 6-57, for further details.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ... MOLVOL(unit) i, value / ... VANDERWAALS i, value / ... . . .

Properties may be supplied that are active only when a specific method is used. VANDERWAALS may be supplied only if UNFV is used. For a further description of these input parameters see Chapter 9, “Method-specific Pure Component Data”. Note that of these properties, only the van der Waals area and volume (VANDERWAALS) has any direct effect on the calculation of liq-uid activity coefficients, but may only be supplied in the Compo-nent Data Category. The vapor pressure also has a direct effect on K-values, but may only be supplied globally for all sets in the Com-ponent Data Category. Tc, Pc and the acentric factor will have an impact if a cubic equation of state is chosen for vapor phase fugaci-ties. Molar volume will have an impact on the Poynting correction factor.

Vi = volume per gram of solvent i

Mi = molecular weight of solvent i

Wi = weight fraction of component i

Ci = number of degrees of freedom per molecule of solvent i (=3.3)

AZEOTROPE and/or INFINITE and/or MUTUAL

These statements are used to enter data for binary pairs. This data will be regressed to the coefficients for the liquid activity method used to generate the K-values. Multiple statements may be used to enter data with different units or the data can be entered on a single statement.

and/or IDEAL

This statement sets the binary interaction parameters to zero.

PRO/II Thermodynamic Data Keyword Input Manual II-6-29

Page 222: Manual de Modelos Termodinamicos

Examples5.7: Using the UFT1 liquid activity method, model a 50/40/10

mix of DIPE, IPA and water at 50 psia and 50% vaporization.

TITLE PROB=UFT1PRINT INPUT=ALL

COMPONENT DATALIBID 1,DIPE/ 2,IPA/ 3,H2O

THERMO DATAMETHOD SYSTEM=UFT1

STREAMPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/50UNIT OPERATION

FLASH UID=FLSHFEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

5.8: For the same problem, use UFT2 K-values, IDEAL enthalpies and liquid densities and SRK vapor densities..

THERMO DATA METHOD KVALUE=UFT2, ENTHALPY=IDEAL, &

DENSITY(L)=IDEAL, DENSITY(V)=SRK

Wilson

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, CHTHERMO DATA

METHOD SYSTEM=WILSONSTREAM DATA

. . .

II-6-30 Liquid Activity Methods

Page 223: Manual de Modelos Termodinamicos

General InformationThe WILSON liquid activity method is used to predict VLE phase behavior. This method does not support free water decant.

The WILSON liquid activity method is generally useful for slightly non-ideal applications. Refer to the PRO/II Reference Manual for additional information.

Table 6-6: Attributes of WILSON MethodsProperties predicted by WILSON methods

K-values

Required pure component properties1

Vapor pressure Liquid molar volume

PHI=IDEAL and POYNTING=OFF

Vapor pressure Critical temperature Critical pressure Acentric factor Liquid molar volume

When used with PHI=SRK or PR or SRKM or PRM or SRH or PRH or SRP or PRP or SRKS or SRKKD or BWRS or UNIWAAL or HOCV

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported 1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

Input Description

The METHOD StatementMETHOD SYSTEM(VLE)=WILSON, PHI=IDEAL, {HENRY},..orMETHOD KVALUE(VLE)=WILSON, PHI=IDEAL, {HENRY}, ...

SYSTEM

Selects a combination of compatible thermodynamic property generators. When SYSTEM=WILSON is chosen, WILSON K-values, LIBRARY vapor enthalpies, IDEAL vapor densities, IDEAL liquid densities, and LIBRARY liquid enthalpies are default.

KVALUE

Selects the method for K-value calculations. Only VLE K-value calculations are available with the WILSON method.

PRO/II Thermodynamic Data Keyword Input Manual II-6-31

Page 224: Manual de Modelos Termodinamicos

K-value Data (optional )KVALUE(VLE)POYNTING=OFF or ON, MOLVOL=STANDARD or

RACKETT or RCK2 or LIBRARY, FILL=NONE or UNIFAC or UFT1 or FLORY or REGULAR, AZEOTROPE=SIMSCI or NONE or bankid, WRITE=fileid

WILSON(K or KCAL or KJ or NODIME) I, j, aij, aji / ...and/orAZEOTROPE(basis, punit, tunit) i, j, pres, temp, xi / ...and/orINFINITE(tunit) I, j, temp, γi

oo , γj oo / ...

and/orMUTUAL(basis, tunit) i, j, temp, xi

I, xjII

/ ...and/orIDEAL i, j / ...

PHI Selects the option used to calculate pure component and mixture vapor phase fugacity coefficients (φi). A vapor fugacity method should generally be selected for high pressure applications. The options are the equations of state methods SRK, PR, SRKM, PRM, SRKH, PRH, SRKP, PRP, SRKS, SRKKD, BWRS and UNIWAAL (see Chapter 4) and HOCV (the Hayden-O'Connell method), TVIRIAL (the Truncated Virial method) and the IDIMER method. See “Hayden-O’Connell Vapor Fugacity” on page 6-69, “Truncated Virial Vapor Fugacity” on page 6-73, and “IDIMER Vapor Fugacity” on page 6-78 for details on these last three options. The default is PHI=IDEAL.

HENRY This option selects Henry's Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. See “Henry’s Law for Non-condensible Components” on page 6-63 for further details.

Note: A heat of mixing option, HMIX, is available for the enthalpy method selected. See “Redlich-Kister, Gamma Heat of Mixing” on page 6-82 for further information on the use of this option.

II-6-32 Liquid Activity Methods

Page 225: Manual de Modelos Termodinamicos

Note: The WILSON, AZEOTROPE, INFINITE, MUTUAL and/or IDEAL statements must follow the KVALUE statement.

POYNTING

This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

FILL This selects the method used for estimating values for binary interaction data missing from the input file and any selected databank libraries. See “Filling in Missing Parameters” on page 6-57 for further details on these options.

AZEOTROPE

This selects the azeotrope databank used for retrieving azeotropic data for binary pairs. Current options are SIMSCI (default) or NONE or bankid.

WRITE This option writes the binary interaction parameters for the liquid activity coefficient K-value method to a file. The format of this file is suitable for inclusion into an input file.

fileid This name identifies the file containing the binary interaction data. It may be any valid file name allowed on the particular operating system being used, but must not include a suffix. The program will automatically add a suffix (e.g., .FIL on PCs).

PRO/II Thermodynamic Data Keyword Input Manual II-6-33

Page 226: Manual de Modelos Termodinamicos

Data input using the WILSON, AZEOTROPE, INFINITE, MUTUAL and IDEAL statements is used in preference to any data retrieved from the databanks or estimated using FILL options. See “Filling in Missing Parameters” on page 6-57 for further details.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ...MOLVOL(unit) i, value / ... . . .

WILSON This statement allows entry of the binary interaction data for the WILSON liquid activity coefficient method. The statements can be mixed in order to enter the data in the most convenient form. If the NODIME option is used, however, different unit statements cannot be mixed. The binary parameters aij and aij are related to the liquid activity coefficients γi by the following equations:

γiln 1 xjAijxkAki

xjAkj

j 1=

N

----------------------k 1=

N

∑–j 1=

N

∑ln–=

where:

AijVj

L

ViL

------aij–T

---------⎝ ⎠⎛ ⎞exp=

(when unit is K)

AijVj

L

ViL

------aij–

RT---------⎝ ⎠

⎛ ⎞exp=(when unit is KCAL or KJ)

Aij aij= (when unit is NODIME)

and VLi is the liquid molar volume of component i.

AZEOTROPE and/or INFINITE and/or MUTUAL

These statements are used to enter data for binary pairs. These data will be regressed to the coefficients for the liquid activity method used to generate the K-values. Multiple statements may be used to enter data with different units, or the data can be entered on a single statement.

and/or IDEAL

This statement sets the binary interaction parameters to zero.

II-6-34 Liquid Activity Methods

Page 227: Manual de Modelos Termodinamicos

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters see Chapter 9, “Method-specific Pure Component Data”. Note that of these properties only the molar volume (MOLVOL) has any direct effect on the calculation of liquid activity coefficients. The vapor pressure also has a direct effect on K-values, but may only be supplied globally for all sets in the Component Data Category. Tc, Pc and the acentric factor will have an impact if a cubic equation of state is chosen for vapor phase fugacities. Molar volume will also have an impact on the Poynting correction factor.

Examples5.9: Using the WILSON system, model a 50/40/10 mix of

DIPE, IPA and water at 50 psia and 50% vaporization.

TITLE PROB=WILSONPRINT INPUT=ALL

COMPONENT DATALIBID 1,DIPE/ 2,IPA/ 3,H2O

THERMO DATAMETHOD SYSTEM=WILSON

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/40/10UNIT OPERATION

FLASH UID=FLSHFEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

5.10: For the same problem, use WILSON K-values, IDEAL enthalpies and liquid densities and SRK vapor densities..

THERMO DATA METHOD KVALUE=WILSON, ENTHALPY=IDEAL, &

DENSITY(L)=IDEAL, DENSITY(V)=SRK

Van Laar

Typical Usage

...

PRO/II Thermodynamic Data Keyword Input Manual II-6-35

Page 228: Manual de Modelos Termodinamicos

COMPONENT DATALIBID 1, IPA/ 2, H2O/ 3, CH

THERMO DATAMETHOD SYSTEM=VANLAAR

STREAM DATA . . .

General InformationThe VANLAAR liquid activity method is used to predict VLE and VLLE phase behavior. This method does not support free water decant.

The VANLAAR liquid activity method is generally useful for slightly non-ideal applications. Refer to the PRO/II Reference Man-ual for additional information.

Table 6-7: Attributes of VANLAAR MethodsProperties predicted by VANLAAR methods

K-values

Required pure component properties1

Vapor pressure PHI=IDEAL and POYNTING=OFF

Vapor pressure Critical temperature Critical pressure Acentric factor

When used with PHI=SRK or PR or SRKM or PRM or SRH or PRH or SRP or PRP or SRKS or SRKKD or BWRS or UNIWAAL or HOCV

Vapor pressure Liquid molar volume

When used with POYNTING=ON

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported1Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=VANLAAR,

PHI=IDEAL, {HENRY},...or

II-6-36 Liquid Activity Methods

Page 229: Manual de Modelos Termodinamicos

METHOD KVALUE(VLE and/or LLE or VLLE)=VANLAAR, PHI=IDEAL, {HENRY}, ...

SYSTEM Selects a combination of compatible thermodynamic property generators. When SYSTEM=VANLAAR is chosen, VANLAAR K-values, LIBRARY vapor enthalpies, IDEAL vapor densities, IDEAL liquid densities, and LIBRARY liquid enthalpies are default.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the VANLAAR method. The VLLE option automatically selects both. See “Vapor-liquid-liquid Equilibrium Considerations” on page 1-37 for more details on liquid-liquid equilibrium calculations.

PHI Selects the option used to calculate pure component and mixture vapor phase fugacity coefficients (φi). A vapor fugacity method should generally be selected for high pressure applications. The options are the equations of state methods SRK, PR, SRKM, PRM, SRKH, PRH, SRKP, PRP, SRKS, SRKKD, BWRS and UNIWAAL (see Chapter 4) and HOCV (the Hayden-O'Connell method), TVIRIAL (the Truncated Virial method) and the IDIMER method. See “Hayden-O’Connell Vapor Fugacity” on page 6-69, “Truncated Virial Vapor Fugacity” on page 6-73, and “IDIMER Vapor Fugacity” on page 6-78 for details on these last three options. The default is PHI=IDEAL.

HENRY This option selects Henry's Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. See “Henry’s Law for Non-condensible Components” on page 6-63 for further details.

.

Note: A heat of mixing option, HMIX, is available for the enthalpy method selected. See “Redlich-Kister, Gamma Heat of Mixing” on page 6-82 for further information on the use of this option.

PRO/II Thermodynamic Data Keyword Input Manual II-6-37

Page 230: Manual de Modelos Termodinamicos

K-value Data (optional )KVALUE(VLE OR LLE OR VLLE)

POYNTING=OFF or ON, MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY, FILL=NONE or

UNIFAC or UFT1 or FLORY or REGULAR, AZEOTROPE=SIMSCI or NONE or bankid, WRITE=fileid

VANLAAR I, j, aij, aji / ...and/or

AZEOTROPE(basis, punit, tunit) i, j, pres, temp, xi / ...and/or

INFINITE(tunit) I, j, temp, γioo , γj

oo / ...and/or

MUTUAL(basis, tunit) i, j, temp, xiI, xj

II / ...

and/orIDEAL i, j / ...

Note: The VANLAAR, AZEOTROPE, INFINITE, MUTUAL and/or IDEAL statements must follow the KVALUE statement.

POYNTING This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

II-6-38 Liquid Activity Methods

Page 231: Manual de Modelos Termodinamicos

FILL This selects the method used for estimating values for binary interaction data missing from the input file and any selected databank libraries. See “Filling in Missing Parameters” on page 6-57 for further details on these options.

AZEOTROPE This selects the azeotrope databank used for retrieving azeotropic data for binary pairs. Current options are SIMSCI (default) or NONE or bankid.

WRITE This option writes the binary interaction parameters for the liquid activity coefficient K-value method to a file. The format of this file is suitable for inclusion into an input file.

fileid This name identifies the file containing the binary interaction data. It may be any valid file name allowed on the particular operating system being used, but must not include a suffix. The program will automatically add a suffix (e.g., .FIL on PCs).

VANLAAR This statement allows entry of the binary interaction data for the VANLAAR liquid activity coefficient method. The binary parameters aij and aij are related to the liquid activity coefficients γi by the following equations:

γiln ailZl

i 1=

N

∑ aijZiZjj 1=

N

∑– 12--- ajk

aijaji------ZjZk

k 1=

N

∑j 1=j k i≠,

N

∑–=

where:

Zlxl

xjailali------⎝ ⎠

⎛ ⎞

j 1=

N

--------------------------=

AZEOTROPE and/or INFINITE and/or MUTUAL

These statements are used to enter data for binary pairs. This data will be regressed to the coefficients for the liquid activity method used to generate the K-values. Multiple statements may be used to enter data with different units, or the data can be entered on a single statement.

and/or IDEAL

This statement sets the binary interaction parameters to zero.

PRO/II Thermodynamic Data Keyword Input Manual II-6-39

Page 232: Manual de Modelos Termodinamicos

Data input using the VANLAAR, AZEOTROPE, INFINITE, MUTUAL and IDEAL statements is used in preference to any data retrieved from the databanks or estimated using FILL options. See “Filling in Missing Parameters” on page 6-57 for further details.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ...MOLVOL(unit) i, value / ... . . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”. The vapor pressure also has a direct effect on K-values, but may only be sup-plied globally for all sets in the Component Data Category. Tc, Pc and the acentric factor will have an impact if a cubic equation of state is chosen for vapor phase fugacities. Molar volume will have an impact on the Poynting correction factor.

Examples5.11: Using the VANLAAR system, model a 50/40/10 mix of

DIPE, IPA and water at 50 psia and 50% vaporization.

TITLE PROB=VANLAARPRINT INPUT=ALL

COMPONENT DATALIBID 1,DIPE/ 2,IPA/ 3,H2O

THERMO DATAMETHOD SYSTEM=VANLAAR

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/40/10UNIT OPERATION

FLASH UID=FLSHFEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

5.12: For the same problem, use VANLAAR K-values, IDEAL enthalpies and liquid densities and SRK vapor densities.

II-6-40 Liquid Activity Methods

Page 233: Manual de Modelos Termodinamicos

THERMO DATA METHOD KVALUE=VANLAAR, ENTHALPY=IDEAL, &

DENSITY(L)=IDEAL, DENSITY(V)=SRK

PRO/II Thermodynamic Data Keyword Input Manual II-6-41

Page 234: Manual de Modelos Termodinamicos

Margules

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, CHTHERMO DATA

METHOD SYSTEM=MARGULESSTREAM DATA

. . .

General InformationThe MARGULES liquid activity method is used to predict VLE and VLLE phase behavior. This method does not support free water decant.

The MARGULES liquid activity method is generally useful for slightly non-ideal applications. Refer to the PRO/II Reference Man-ual for additional information.

Table 6-8: Attributes of MARGULES MethodsProperties predicted by MARGULES methods

K-values

Required pure component properties1

Vapor pressure PHI=IDEAL and POYNTING=OFF

Vapor pressure Critical temperature Critical pressure Acentric factor

When used with PHI=SRK or PR or SRKM or PRM or SRH or PRH or SRP or PRP or SRKS or SRKKD or BWRS or UNIWAAL or HOCV

Vapor pressure Liquid molar volume

When used with POYNTING=ON

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported1Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

II-6-42 Liquid Activity Methods

Page 235: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=MARGULES, PHI=IDEAL,

{HENRY},...orMETHOD KVALUE(VLE and/or LLE or VLLE)=MARGULES,

PHI=IDEAL, {HENRY}, ...

SYSTEM Selects a combination of compatible thermodynamic property generators. When SYSTEM=MARGULES is chosen, MARGULES K-values, LIBRARY vapor enthalpies, IDEAL vapor densities, IDEAL liquid densities, and LIBRARY liquid enthalpies are default.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the Margules method. The VLLE option automatically selects both. See “Vapor-liquid-liquid Equilibrium Considerations” on page 1-37 for more details on liquid-liquid equilibrium calculations.

PHI

Selects the option used to calculate pure component and mixture vapor phase fugacity coefficients (φi). A vapor fugacity method should generally be selected for high pressure applications. The options are the equations of state methods SRK, PR, SRKM, PRM, SRKH, PRH, SRKP, PRP, SRKKD, BWRS and UNIWAAL (see Chapter 4) and HOCV (the Hayden-O'Connell method) and TVIRIAL (the Truncated Virial method). See “Hayden-O’Connell Vapor Fugacity” on page 6-69, “Truncated Virial Vapor Fugacity” on page 6-73, and “IDIMER Vapor Fugacity” on page 6-78 for details on these last three options. The default is PHI=IDEAL.

HENRY This option selects Henry's Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. See “Henry’s Law for Non-condensible Components” on page 6-63 for further details.

Note: A heat of mixing option, HMIX, is available for the enthalpy method selected. See “Henry’s Law for Non-condensible Components” on page 6-63 for further information on the use of this option.

PRO/II Thermodynamic Data Keyword Input Manual II-6-43

Page 236: Manual de Modelos Termodinamicos

K-value Data (optional )KVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON,

MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY, FILL=NONE or UNIFAC or UFT1 or FLORY or REGULAR, AZEOTROPE=SIMSCI or NONE or bankid, WRITE=fileid

MARGULES I, j, aij, aji, dij / ...and/or

AZEOTROPE(basis, punit, tunit) i, j, pres, temp, xi / ...and/or

INFINITE(tunit) I, j, temp, γioo , γj

oo / ...and/or

MUTUAL(basis, tunit) i, j, temp, xiI, xj

II / ...

and/orIDEAL i, j / ...

Note: The MARGULES, AZEOTROPE, INFINITE, MUTUAL and/or IDEAL statements must follow the KVALUE statement.

POYNTING This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD

The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

FILL This selects the method used for estimating values for binary interaction data missing from the input file and any selected databank libraries. See “Filling in Missing Parameters” on page 6-57 for further details on these options.

AZEOTROPE

This selects the azeotrope databank used for retrieving azeotropic data for binary pairs. Current options are SIMSCI (default) or NONE or bankid.

II-6-44 Liquid Activity Methods

Page 237: Manual de Modelos Termodinamicos

Data input using the MARGULES, AZEOTROPE, INFINITE, MUTUAL and IDEAL statements is used in preference to any data

WRITE This option writes the binary interaction parameters for the liquid activity coefficient K-value method to a file. The format of this file is suitable for inclusion into an input file.

fileid This name identifies the file containing the binary interaction data. It may be any valid file name allowed on the particular operating system being used, but must not include a suffix. The program will automatically add a suffix (e.g., .FIL on PCs).

MARGULES

This statement allows entry of the binary interaction data for the MARGULES liquid activity coefficient method. The binary parameters aij, aji and dij are related to the liquid activity coefficients γi by the following equations:

γiln 1 xi–( )2 Ai 2 Bi Ai– Di–( )xi 3Dixi2+ +[ ]=

where:

Ai xjaij

j 1=

N

∑=

Bi xjaji

j 1=

N

∑=

Di xjdij

j 1=

N

∑=

dij dji=

AZEOTROPE and/or INFINITE and/or MUTUAL

These statements are used to enter data for binary pairs. This data will be regressed to the coefficients for the liquid activity method used to generate the K-values. Multiple statements may be used to enter data with different units or the data can be entered on a single statement.

and/or IDEAL

This statement sets the binary interaction parameters to zero.

PRO/II Thermodynamic Data Keyword Input Manual II-6-45

Page 238: Manual de Modelos Termodinamicos

retrieved from the databanks or estimated using FILL options. See “Filling in Missing Parameters” on page 6-57 for further details.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ...MOLVOL(unit) i, value / ... . . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”. The vapor pressure also has a direct effect on K-values, but may only be sup-plied globally for all sets in the Component Data Category. Tc, Pc and the acentric factor will have an impact if a cubic equation of state is chosen for vapor phase fugacities. Molar volume will have an impact on the Poynting correction factor.

Examples5.13: Using the MARGULES system, model a 50/40/10 mix of

DIPE, IPA and water at 50 psia and 50% vaporization.

TITLE PROB=MARGULESPRINT INPUT=ALL

COMPONENT DATALIBID 1,DIPE/ 2,IPA/ 3,H2O

THERMO DATAMETHOD SYSTEM=MARGULES

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/40/10UNIT OPERATION

FLASH UID=FLSHFEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

5.14: For the same problem, use MARGULES K-values, IDEAL enthalpies and liquid densities and SRK vapor densities..

II-6-46 Liquid Activity Methods

Page 239: Manual de Modelos Termodinamicos

THERMO DATA METHOD KVALUE=MARGULES, ENTHALPY=IDEAL, &

DENSITY(L)=IDEAL, DENSITY(V)=SRK

Regular Solution

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, CHTHERMO DATA

METHOD SYSTEM=REGULARSTREAM DATA

. . .

General InformationThe REGULAR liquid activity method is used to predict VLE and VLLE phase behavior. It is generally useful for slightly non-ideal applications. Refer to the PRO/II Reference Manual for additional information.

Table 6-9: Attributes of REGULAR MethodsProperties predicted by REGULAR methods

K-values

Required pure component properties1

Vapor pressure Liquid molar volume Solubility parameter

PHI=IDEAL and POYNTING=OFF

Vapor pressure Critical temperature Critical pressure Acentric factor Liquid molar volume Solubility parameter

When used with PHI=SRK or PR or SRKM or PRM or SRH or PRH or SRP or PRP or SRKS or SRKKD or BWRS or UNIWAAL or HOCV

Two liquid phase behavior

Free-water decant - Supported

VLLE - Supported

PRO/II Thermodynamic Data Keyword Input Manual II-6-47

Page 240: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=REGULAR,

PHI=IDEAL, {HENRY}, ...orMETHOD KVALUE(VLE and/or LLE or VLLE)=REGULAR,

PHI=IDEAL, {HENRY}, ...

SYSTEM Selects a combination of compatible thermodynamic property generators. When SYSTEM=REGULAR is chosen, REGULAR K-values, LIBRARY vapor enthalpies, IDEAL vapor densities, IDEAL liquid densities, and LIBRARY liquid enthalpies are default.

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the Regular method. The VLLE option automatically selects both. See “Vapor-liquid-liquid Equilibrium Considerations” on page 1-37 for more details on liquid-liquid equilibrium calculations.

PHI Selects the option used to calculate pure component and mixture vapor phase fugacity coefficients (φi). A vapor fugacity method should generally be selected for high pressure applications. The options are the equations of state methods SRK, PR, SRKM, PRM, SRKH, PRH, SRKP, PRP, SRKS, SRKKD, BWRS and UNIWAAL (see Chapter 4) and HOCV (the Hayden-O'Connell method), TVIRIAL (the Truncated Virial method) and the IDIMER method. See “Hayden-O’Connell Vapor Fugacity” on page 6-69, “Truncated Virial Vapor Fugacity” on page 6-73, and “IDIMER Vapor Fugacity” on page 6-78 for details on these last three options. The default is PHI=IDEAL.

HENRY This option selects Henry's Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. See “Henry’s Law for Non-condensible Components” on page 6-63 for further details.

1Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

II-6-48 Liquid Activity Methods

Page 241: Manual de Modelos Termodinamicos

Note: A heat of mixing option, HMIX, is available for the enthalpy method selected. See “Redlich-Kister, Gamma Heat of Mixing” on page 6-82 for further information on the use of this option.

K-value Data (optional)KVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON,

MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY

POYNTING This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD

The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

The Regular Solution Method is derived from the Scatchard-Hilde-brand equation where the liquid activity coefficient γi of a solution is given by the following equations:

ln γiVi

L δi δm–( )2

RT-------------------------------=

where:

VLi = Liquid molar volume of component i

δi = Solubility parameter of component i

and

PRO/II Thermodynamic Data Keyword Input Manual II-6-49

Page 242: Manual de Modelos Termodinamicos

δm

xiViLδi

i 1=

N

xiViL

i 1=

N

-------------------------=

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ...MOLVOL(unit) i, value / ... SOLUPARA i, value / ... . . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”. Note that only two of these properties (MOLVOL and SOLUPARA) have any direct effect on the calculation of liquid activity coefficients, but may only be supplied in the Component Data Category. The vapor pressure also has a direct effect on K-values, but may only be sup-plied globally for all sets in the Component Data Category. Tc, Pc and the acentric factor will have an impact if a cubic equation of state is chosen for vapor phase fugacities. Molar volume will also have an impact on the Poynting correction factor.

Examples5.15: Using the REGULAR system, model a 50/40/10 mix of

DIPE, IPA and water at 50 psia and 50% vaporization.

TITLE PROB=REGULARPRINT INPUT=ALL

COMPONENT DATALIBID 1,DIPE/ 2,IPA/ 3,H2O

THERMO DATAMETHOD SYSTEM=REGULAR

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/40/10UNIT OPERATION

FLASH UID=FLSHFEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

II-6-50 Liquid Activity Methods

Page 243: Manual de Modelos Termodinamicos

END

PRO/II Thermodynamic Data Keyword Input Manual II-6-51

Page 244: Manual de Modelos Termodinamicos

5.16: For the same problem, use REGULAR K-values, IDEAL enthalpies and liquid densities and SRK vapor densities.

THERMO DATA METHOD KVALUE=REGULAR, ENTHALPY=IDEAL, &

DENSITY(L)=IDEAL, DENSITY(V)=SRK

Flory-Huggins

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, CHTHERMO DATA

METHOD SYSTEM=FLORYSTREAM DATA

. . .

General InformationThe FLORY-HUGGINS liquid activity method is used to predict VLE and VLLE phase behavior. This method does not support free water decant.

The FLORY-HUGGINS liquid activity method is generally useful for mixtures of components that differ vastly in size, e.g., polymer solutions. Refer to the PRO/II Reference Manual for additional information.

II-6-52 Liquid Activity Methods

Page 245: Manual de Modelos Termodinamicos

Table 6-10: Attributes of FLORY MethodsProperties predicted by FLORY methods

K-values

Required pure component properties1

Vapor pressure Liquid molar volume Solubility parameter

PHI=IDEAL and POYNTING=OFF

Vapor pressure Critical temperature Critical pressure Acentric factor Liquid molar volume Solubility parameter

When used with PHI=SRK or PR or SRKM or PRM or SRH or PRH or SRP or PRP or SRKS or SRKKD or BWRS or UNIWAAL or HOCV

Two liquid phase behavior

Free-water decant - Not supported

VLLE - Supported1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-

library components.

Input Description

The METHOD StatementMETHOD SYSTEM(VLE or VLLE)=FLORY, PHI=IDEAL, {HENRY},...orMETHOD KVALUE(VLE and/or LLE or VLLE)=FLORY,

PHI=IDEAL, {HENRY}, ...

SYSTEM Selects a combination of compatible thermodynamic property generators. When SYSTEM=FLORY is chosen, FLORY K-values, LIBRARY vapor enthalpies, IDEAL vapor densities, IDEAL liquid densities, and LIBRARY liquid enthalpies are default.

PRO/II Thermodynamic Data Keyword Input Manual II-6-53

Page 246: Manual de Modelos Termodinamicos

K-value Data (optional)KVALUE(VLE or LLE or VLLE) POYNTING=OFF or ON,

MOLVOL=STANDARD or RACKETT or RCK2 or LIBRARY,WRITE=fileid

FLORY I, j, cij / ..

KVALUE Selects the method for K-value calculations. Both VLE and LLE K-value calculations are available with the Margules method. The VLLE option automatically selects both. See “Vapor-liquid-liquid Equilibrium Considerations” on page 1-37 for more details on liquid-liquid equilibrium calculations.

PHI Selects the option used to calculate pure component and mixture vapor phase fugacity coefficients (φi). A vapor fugacity method should generally be selected for high pressure applications. The options are the equations of state methods SRK, PR, SRKM, PRM, SRKH, PRH, SRKP, PRP, SRKS, SRKKD, BWRS and UNIWAAL (see Chapter 4) and HOCV (the Hayden-O'Connell method), TVIRIAL (the Truncated Virial method) and the IDIMER method. See “Hayden-O’Connell Vapor Fugacity” on page 6-69, “Truncated Virial Vapor Fugacity” on page 6-73, and “IDIMER Vapor Fugacity” on page 6-78 for details on these last three options. The default is PHI=IDEAL.

HENRY This option selects Henry's Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. See “Henry’s Law for Non-condensible Components” on page 6-63 for further details.

Note: A heat of mixing option, HMIX, is available for the enthalpy method selected. See “Redlich-Kister, Gamma Heat of Mixing” on page 6-82 for further information on the use of this option.

II-6-54 Liquid Activity Methods

Page 247: Manual de Modelos Termodinamicos

.

POYNTING

This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

WRITE This option writes the binary interaction parameters for the liquid activity coefficient K-value method to a file. The format of this file is suitable for inclusion into an input file.

fileid This name identifies the file containing the binary interaction data. It may be any valid file name allowed on the particular operating system being used, but must not include a suffix. The program will automatically add a suffix (e.g., .FIL on PCs).

FLORY This statement allows entry of the c binary interaction parameters for the Flory-Huggins liquid activity coefficient method. It should be noted that χij = χji Therefore, the order of the indices (i,j or j,i) is unimportant. The binary parameters are related to the liquid activity coefficients by the following equation:

γjln 1ϕixi-----ln mi χijϕj

j i≠

n

∑ χjkϕjϕk

k j>

n

∑j

n

∑––+=

PRO/II Thermodynamic Data Keyword Input Manual II-6-55

Page 248: Manual de Modelos Termodinamicos

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ... MOLVOL(unit) i, value / ... SOLUPARA i, value / ... . . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”. Note that only two of these properties (MOLVOL and SOLUPARA) have any direct effect on the calculation of liquid activity coefficients. The vapor pressure also has a direct effect on K-values. Tc, Pc and the acentric factor will have an impact if a cubic equation of state is chosen for vapor phase fugacities. Molar volume will also have an impact on the Poynting correction factor.

where:

xi, φi, and mi are the mole fraction, volume fraction and number of segments of component i.

The volume fraction is defined by:

ϕixivi

xivi

i

n

----------------=

where:

vi = the liquid molar volume of component i.

The number of segments is calculated as:

mivi

vmin----------=

where:

vmin = the smallest molar volume in the system.

Missing χ parameters are estimated as:

χjkvminRT

---------- δj δk–( )2=

where:

δj and δk are solubility parameters of components j and k, respectively.

II-6-56 Liquid Activity Methods

Page 249: Manual de Modelos Termodinamicos

Examples5.17: Using the FLORY-HUGGINS system, model a 50/40/10

mix of DIPE, IPA, and water at 50 psia and 50% vaporization.

TITLE PROB=FLORYPRINT INPUT=ALL

COMPONENT DATALIBID 1,DIPE/ 2,IPA/ 3,H2O

THERMO DATAMETHOD SYSTEM=FLORY

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/40/10UNIT OPERATION

FLASH UID=FL1FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

5.18: For the same problem, use FLORY K-values, IDEAL enthalpies and liquid densities and SRK vapor densities.

THERMO DATA METHOD KVALUE=FLORY, ENTHALPY=IDEAL, &

DENSITY(L)=IDEAL, DENSITY(V)=SRK

Filling in Missing Parameters

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, CHTHERMO DATA

METHOD SYSTEM=NRTLKVALUE FILL=UNIFAC

STREAM DATA . . .

PRO/II Thermodynamic Data Keyword Input Manual II-6-57

Page 250: Manual de Modelos Termodinamicos

General InformationThe program has an extensive facility to backfill missing binary interaction data for liquid activity methods. If liquid activity coeffi-cients are unavailable, they may be estimated automatically if mutual solubility, infinite dilution or azeotropic data are supplied. If none of these is available, the program seeks to find azeotropic data in the SIMSCI databank. If these data are unavailable, the FILL option can be used to estimate the required coefficients using group contribution methods (UNIFAC or UFT1), regular solution theory, or Flory-Huggins. If none of these methods are possible, the pro-gram then sets the binary interaction parameters to zero. For solid-liquid equilibria, the FILL option may be used to estimate solubility data missing from the databank, or not given by the user. Missing values may be estimated using the ideal (van’t Hoff) solubility equation, or the solubilities may be set to 1.0 (completely soluble), or solvents missing solubility data may be ignored in the solubility calculation.

Table 6-11: Attributes of the FILL OptionProperties predicted by FILL

Binary interaction parameters Binary solubilities

(liquid activity methods) (solid-liquid equilibria)

Required pure component properties1

None FILL=NONE or VANTHOFF or ONE or FREE

Solubility parameters and liquid molar volumes

FILL=REGULAR or FLORY

UNIFAC structure and group area and volume data

FILL=UNIFAC or UFT1

1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD SYSTEM=NRTL or UNIQUAC or WILSON or

VANLAAR or MARGULES. . .

orMETHOD KVALUE=NRTL or UNIQUAC or WILSON or VANLAAR

or MARGULES or SOLDATA. . .

II-6-58 Liquid Activity Methods

Page 251: Manual de Modelos Termodinamicos

SYSTEM A liquid activity method system must be chosen if the FILL option is to be used.

KVALUE Selects the method for K-value calculations. Only liquid activity methods and the user-supplied solubility method SOLDATA can be used with the FILL option.

K-value DataKVALUE(VLE) FILL=NONE or UNIFAC or UFT1 or REGULAR or

FLORY, AZEOTROPE=SIMSCI or NONE or bankid

orKVALUE(LLE) FILL=NONE or UNIFAC or UFT1 or REGULAR or

FLORY, AZEOTROPE=SIMSCI or NONE or bankid

orKVALUE(SLE) FILL=VANTHOFF or ONE or FREE

FILL This statement is used to supply parameters missing for the calculation of liquid activity coefficients. The FILL option regresses the missing parameters from the option selected to fit the previously specified K-value liquid activity method. The FILL options are detailed in Table5-. It should be noted that, of the VLE and LLE FILL options, only FILL=UNIFAC will produce LLE parameters that are different from the VLE parameters. The VANTHOFF or ONE or FREE fill options may only be used if the KVALUE(SLE)= SOLDATA statement has been specified.

If the FILL=UNIFAC or UFT1 option is selected, and a component has no defined UNIFAC structure or includes a group that is missing its area and volume parameters, then a warning message is issued. The FILL option then sets the interaction parameters to zero for any pair containing that component. The UNIFAC component structure and UNIFAC group area and volume data can be supplied in the COMPONENT DATA section. See Volume I, “UNIFAC Structural Groups” for more information on entering UNIFAC structural data.

PRO/II Thermodynamic Data Keyword Input Manual II-6-59

Page 252: Manual de Modelos Termodinamicos

AZEOTROPE This statement is used to supply parameters missing for the calculation of liquid activity coefficients. By default, the AZEOTROPE option regresses the missing parameters from the azeotropic databank.

II-6-60 Liquid Activity Methods

Page 253: Manual de Modelos Termodinamicos

Table 6-12: Data Estimation OptionsKVALUE( ) DESCRIPTION

FILL=

NONE No Estimates For Missing Data.

UNIFAC VLE, LLE UNIFAC group contribution method.

UFT1 VLE, LLE Modified UNIFAC method

REGULAR VLE, LLE Regular Solution Theory

FLORY VLE, LLE Flory Huggins method

ONE SLE Missing binary solubilities set to 1.0 (i.e., all unspecified solids are completely soluble).

VANTHOFF SLE Missing binary solubilities calculated with the van’t Hoff equation

FREE SLE Solvents missing binary solubility data are ignored in the solubility calculation.

AZEOTROPE=

SIMSCI VLE, LLE Estimates for missing data made from azeotropic data.

NONE No estimates for missing data.

bankid Estimates for missing data made from user-created databank.

Examples5.19: Using the VLLE NRTL liquid activity method, and the

Henry’s Law option, determine the solubility of O2 in a methanol/ethanol/benzene/water/IPA system.

NRTL binary interaction parameters are provided for the ethanol-IPA and benzene-ethanol pairs. Data are provided for the azeotrope formed between ethanol and water. Mutual solubility data are provided between water and benzene, while infinite dilution data are given for the methanol-water pair.

The pairs ethanol-methanol and methanol-IPA are defined as ideal pairs in the liquid phase. Supply data for the O2-IPA pair via a HENDATA statement, and retrieve data for the other pairs from the SIMSCI databank. Use the

PRO/II Thermodynamic Data Keyword Input Manual II-6-61

Page 254: Manual de Modelos Termodinamicos

FILL=UNIFAC option to estimate any missing parameters.

TITLE PROB=MISSING PARAMETERSPRINT INPUT=ALL

COMPONENT DATALIBID 1,MEOH/ 2,H2O/ 3,ETOH/ 4,BENZENE/ 5,IPA/ 6,O2

THERMO DATAMETHOD SYSTEM(VLLE)=NRTL, HENRYKVALUE(VLE) FILL=UNIFACINFI 1, 2, 70.0, 1.79, 2.16MUTU(W) 2, 4, 20.0, 5.823E-04, 1.732E-03AZEO(W,F) 2, 3, 1.013, 172.7, 4.61E-02NRT3(KCAL) 3, 5, 48.9, 49.3, 3.96E-01NRTL(K) 4, 3, -2.75, 1472.2, -4.5E-01, 440.5, 5.34E-01KVALUE(LLE) FILL=UNIFACIDEAL 1, 3/ 1, 5HENRYSOLUTE 6HENDATA 6, 5, -36, 2000, 6.5

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=10/50/20/10/7/3UNIT OPERATION

FLASH UID=FL1FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

II-6-62 Liquid Activity Methods

Page 255: Manual de Modelos Termodinamicos

Henry’s Law for Non-condensible Components

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, 02THERMO DATA

METHOD SYSTEM=NRTL, HENRYSTREAM DATA

. . .

General InformationThe HENRY option is used to predict gas solubilities, especially for modeling supercritical components using a liquid activity method. It is especially useful for environmental applications such as model-ing trace organics in aqueous streams.

Table 6-13: Attributes of the Henry’s Law OptionProperties predicted by HENRY

K-values

Required pure component properties1

Vapor pressure

Suggested application ranges

Components - Supercritical gases, trace organics in water

Two liquid phase behavior

Free-water decant - Not supported

VLLE - The HENRY option only calculates gas solubilities. However, VLLE methods may also be used.

1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

PRO/II Thermodynamic Data Keyword Input Manual II-6-63

Page 256: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM=NRTL or UNIQUAC or UNIFAC or UFT1 or

UFT2 or UFT3 or UNFV or WILSON or VANLAAR or MARGULES or REGULAR or FLORY,HENRY, . . .

orMETHOD KVALUE=NRTL or UNIQUAC or UNIFAC or UFT1 or

UFT2 or UFT3 or UNFV or WILSON or VANLAAR or MARGULES or REGULAR or FLORY,HENRY, . . .

SYSTEM A liquid activity method system must be chosen if the HENRY option is to be used.

KVALUE Selects the method for K-value calculations. Only liquid activity methods can be used with the HENRY option.

HENRY This option selects Henry’s Law data (either user-supplied or from databanks) to model dissolved gases in a liquid solution. This option is only available when using a liquid activity method for K-value calculations. Table 6-14 shows some of the binary gas-solvent pairs available in PRO/II. Some additional Henry’s Law data for hydrofluorocarbons (HFCs) and chlorofluorocarbons (CFCs) are also available in the databanks.

II-6-64 Liquid Activity Methods

Page 257: Manual de Modelos Termodinamicos

Table

Co

Etha

ndio

l

Water X

Acetic

Formic

m-cres

Methan

Ethano

n-prop

isoprop

n-butan

sec-but

tert-bu

3-meth

n-penta

Ethylen

Triethy

Acetald

Methyl

Ethyl e

Isoprop

Tetrahy

Dibenz

Methyl

Methyl

Ethyl a

Isopen

n-penta

2-meth

n-hexa

6-14: Henry’s Law Package Available PairsGas Components

Liquidmponents

Hyd

roge

n

Hel

ium

Arg

on

Nitr

ogen

Oxy

gen

Car

bon

Mon

oxid

e

Car

bon

Dio

xide

Hyd

roge

n Su

lfide

Am

mon

ia

Nitr

ous O

xide

Hyd

roge

n C

hlor

ide

Sulfu

r Dio

xide

Met

hane

Etha

ne

Prop

ane

Isob

utan

e

N-b

utan

e

Ace

tyle

ne

Ethy

lene

Prop

ylen

e

Car

toon

Dis

ulfid

e

Met

hane

thio

l

X X X X X X X X X X X X X X X X X X X X

Acid X X X X X

Acid X X X X

ol X X

ol X X X X X X X X X X

l X X X X X X X

anol X X X X X X X

anol X X X X X X X

ol X X X X X X

anol X X X X

tanol X X X X

yl-1butanol X X X X

nol X X X X

e Glycol X X

lene Glycol X X X X X X X X X X

ehyde X X X X

ether X X X X

ther X X X X

yl ether X X X X

drofuran X

ofuran X

formate X X X X

acetate X X X X

cetate X X X X

tane X X X X

ne X X X X X

ylpentane X X X X

ne X X X X X

PRO/II Thermodynamic Data Keyword Input Manual II-6-65

Page 258: Manual de Modelos Termodinamicos

2-4 dim

3-meth

n-hepta

2-4- di

n-octan

n-nona

n-decan

n-dode

n-tetrad

n-hexa

Eicosan

Docosa

Dotriac

Cyclop

Methyl

Cycloh

Methyl

1-T-2-D

1-T-2-C

Bicyclo

1-hexe

Freon 1

Benzen X

Chloro

Toluen

m-xyle

1-C1-n

Diphen

1,3,5-tr

9,10 di

Tetralin

2-ethyl

9-meth

Table

Co

Etha

ndio

l

ethylpentane X X X X

ylhexane X X X X

ne X X X X X X

methylhexane X X X X

e X X

ne X X

e X X X X X X

cane X

ecane X

decane X X X X X X X X X

e X

ne X

ontane X

entane X X X X

cyclopentane X X X X

exane X X X X

cyclohexane X X X X X

MCP X X X X

-4MCP X X X X

hexyl X X X X X

ne X X X X

13 X X

e X X X X

benzene X X

e X X X X X X

ne X X X

aphthalene X X X X X

ylmethane X X X X

i-C1-benzene X

hydrophenanthrene X

X

anthracene X

ylanthracene X

6-14: Henry’s Law Package Available PairsGas Components

Liquidmponents

Hyd

roge

n

Hel

ium

Arg

on

Nitr

ogen

Oxy

gen

Car

bon

Mon

oxid

e

Car

bon

Dio

xide

Hyd

roge

n Su

lfide

Am

mon

ia

Nitr

ous O

xide

Hyd

roge

n C

hlor

ide

Sulfu

r Dio

xide

Met

hane

Etha

ne

Prop

ane

Isob

utan

e

N-b

utan

e

Ace

tyle

ne

Ethy

lene

Prop

ylen

e

Car

toon

Dis

ulfid

e

Met

hane

thio

l

II-6-66 Liquid Activity Methods

Page 259: Manual de Modelos Termodinamicos

Hydrog

Aceton

Methyl

Methyl

Methyl

n-meth

Quinol

Sulfola

Hydrog

Ammo

Chlorid

Table

Co

Etha

ndio

l

Henry’s Law DataHENRY BANK=SIMSCI or NONE or bankidSOLUTE i, j, ...HENDATA(punit, tunit) i, l, C1, C2, C3, C4 / ...

en fluoride X X X

e X X X X X X

ethyl ketone X X X X

n-butyl ketone X

propyl ketone X

yl-2-pyrrolidone X X X X X X

ine X X

ne X X X X

en chloride X

nia X X

e X

6-14: Henry’s Law Package Available PairsGas Components

Liquidmponents

Hyd

roge

n

Hel

ium

Arg

on

Nitr

ogen

Oxy

gen

Car

bon

Mon

oxid

e

Car

bon

Dio

xide

Hyd

roge

n Su

lfide

Am

mon

ia

Nitr

ous O

xide

Hyd

roge

n C

hlor

ide

Sulfu

r Dio

xide

Met

hane

Etha

ne

Prop

ane

Isob

utan

e

N-b

utan

e

Ace

tyle

ne

Ethy

lene

Prop

ylen

e

Car

toon

Dis

ulfid

e

Met

hane

thio

l

BANK This option selects one or more databanks from which to retrieve Henry’s Law data. Options available are:

SIMSCI Selects the SIMSCI standard databank (default).

NONE This option disables all data retrieval from databanks for Henry’s Law data.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

If the data for any component designated as a Henry component is missing from the supplied databank and is not supplied via a HENDATA statement, the Henry’s law constant is obtained by extrapolation of the component vapor pressure data.

PRO/II Thermodynamic Data Keyword Input Manual II-6-67

Page 260: Manual de Modelos Termodinamicos

Method-specific Pure Component Properties (optional)VP. . .

Vapor pressure data may only be specified globally for all thermo-dynamic sets in the Component Data Category in tabular or equa-tion form. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

SOLUTE This statement is used to enter the component ID numbers for the components to be treated as solutes.

HENDATA This statement allows entry of the Henry coefficients for solute i in solvent l. The coefficients C1, C2, C3, and C4 are related to the Henry’s Law constant Hi (and the K-value) by the following equations for one or more solutes in a pure solvent:

Hi( )ln C1C2T

------ C3 T( )ln C4 P( )+ + +=

andKi

HiP-----=

For a mixture of solvents, the following mixing rules are used for determining Hi,mix and Ki:

Hi mix,( )ln xl Hi l,( )lnl 1=

N

∑=

andKi

HiP-----=

II-6-68 Liquid Activity Methods

Page 261: Manual de Modelos Termodinamicos

Examples5.20: Using the NRTL liquid activity method, and the Henry’s

Law option determine the solubility of CO in a methanol/water system. Data for the CO-methanol pair are supplied via a HENDATA statement, while data for the other pairs are retrieved from the SIMSCI databank.

TITLE PROB=HENRYPRINT INPUT=ALL

COMPONENT DATALIBID 1,N2/ 2,CO/ 3,H2O/ 4,MEOH

THERMO DATAMETHOD SYSTEM=NRTL, HENRYHENRYSOLUTE 1, 2HENDATA 2, 4, 152.4, -8000, -20, 0

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=2/3/70/25UNIT OPERATION

FLASH UID=FLSHFEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

Hayden-O’Connell Vapor Fugacity

Typical Usage

...COMPONENT DATA

LIBID 1, ACETIC/ 2, ACRYLIC/ 3, H2OTHERMO DATA

METHOD SYSTEM=NRTL, PHI=HOCV, & ENTHALPY(V)=HOCV, DENSITY(V)=HOCVKVALUE FILL=UNIFAC

STREAM DATA . . .

PRO/II Thermodynamic Data Keyword Input Manual II-6-69

Page 262: Manual de Modelos Termodinamicos

General InformationThe HOCV method predicts vapor fugacities, vapor enthalpies, vapor entropies and vapor densities. It is especially useful for sys-tems where dimers form in the vapor phase, e.g., carboxylic acid systems. A liquid activity method must be used in conjunction with the HOCV method.

Table 6-15: Attributes of the HOCV Vapor Fugacity MethodProperties predicted by HOCV

Vapor fugacities vapor enthalpies

Hayden-O’Connell Vapor Fugacity:

Required pure component properties1

Critical temperature Critical pressure van der Waals area and

volume Dipole moment Radius of gyration

PHI=HOCV

Suggested application ranges

Components - Carboxylic acids, polar components

Two liquid phase behavior

Free-water decant - Not supported

VLLE - HOCV only calculates vapor phase properties, but VLLE methods may be used with HOCV methods.

1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD SYSTEM=NRTL or UNIQUAC or UNIFAC or UFT1 or

UFT2 or UFT3 or UNFV or WILSON or VANLAAR or MARGULES or REGULAR or FLORY, PHI=HOCV, ENTHALPY(V)=HOCV, ENTROPY(V)=HOCV, DENSITY(V)=HOCV, . . .

orMETHOD KVALUE=NRTL or UNIQUAC or UNIFAC or UFT1 or

UFT2 or UFT3 or UNFV or WILSON or VANLAAR or MARGULES or REGULAR or FLORY, PHI=HOCV, ENTHALPY(V)=HOCV, ENTROPY(V)=HOCV, DENSITY(V)=HOCV, . . .

II-6-70 Liquid Activity Methods

Page 263: Manual de Modelos Termodinamicos

SYSTEM A liquid activity method system must be chosen if the HOCV method is to be used.

KVALUE Selects the method for K-value calculations. Only liquid activity methods can be used with the HOCV method.

PHI and/or ENTHALPY(V) and/or ENTROPY(V) and/or DENSITY(V)

Selects the HOCV method for vapor phase fugacities, and/or enthalpies and/or entropies and/or densities.

K-value Data (optional)KVALUE POYNTING=ON or OFF, MOLVOL=STANDARD

or RACKETT or RCK2 or LIBRARY, BANK=SIMSCI or NONE or bankid, FILL=NONE or UNIFAC or UFT1 or FLORY or REGULAR.

POYNTING This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

Vapor Fugacity DataPHI BANK=SIMSCI or NONE or bankidHOCV i, i, nii/ i, j, nij/ . . .

PRO/II Thermodynamic Data Keyword Input Manual II-6-71

Page 264: Manual de Modelos Termodinamicos

Note: The HOCV statements must follow the PHI statement.

BANK This option selects one or more databanks from which to retrieve vapor phase binary interaction data.

SIMSCI Selects the SIMSCI standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

HOCV This statement supplies interaction data for the Hayden-O’Connell vapor fugacity method. This method may be used for components forming dimers, particularly carboxylic acids. nii is the association parameter for component i while nij is the solvation parameter for components i and j.

Enthalpy, Entropy and Density DataENTHALPY(V) BANK=SIMSCI or NONE or bankidENTROPY(V) BANK=SIMSCI or NONE or bankidDENSITY(V) BANK=SIMSCI or NONE or bankidHOCV i, i, nii/ i, j, nij/ . . .

HOCV vapor interaction data may be selected for enthalpy, entropy and density methods. Normally, these features are selected for the vapor fugacity method and are automatically carried over for these other methods. If, however, the vapor fugacity method is not HOCV, you can supply these parameters independently.

See above under Vapor Fugacity Data for format and definition of these entries.

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... VANDERWAALS i, value / ... DIPOLE(unit) i, value / ... RADIUS i, value / ... . . .

II-6-72 Liquid Activity Methods

Page 265: Manual de Modelos Termodinamicos

Properties may be supplied that are active only when a specific method is used. VANDERWAALS must be supplied in the Compo-nent Data Category. For a further description of these input parame-ters, see Chapter 9, “Method-specific Pure Component Data”.

Examples5.21: Using the HOCV vapor fugacity method with the NRTL

liquid activity method, model a 50/50 mix of acetic and acrylic acids at 100 psia and 100 F.

TITLE PROB=HOCVCOMPONENT DATA

LIBID 1,ACETIC/ 2,ACRYLICTHERMO DATA

METHOD SYSTEM=NRTL, PHI=HOCV, & ENTHALPY(V)=HOCV, ENTROPY(V)=HOCV, & DENSITY(V)=HOCV

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/50UNIT OPERATION

FLASH UID=FL1FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

5.22: For the same problem, use HOCV for vapor fugacities and SRK for vapor enthalpies, entropies and densities. Specify API liquid densities.

THERMODYNAMIC DATAMETHOD SYSTEM=NRTL, PHI=HOCV, &

ENTHALPY(V)=SRK, ENTROPY(V)=SRK, & DENSITY(V)=HOCV, DENSITY(L)=API

Truncated Virial Vapor Fugacity

Typical Usage

...COMPONENT DATA

LIBID 1, ACETIC/ 2, ACRYLIC/ 3, H2O

PRO/II Thermodynamic Data Keyword Input Manual II-6-73

Page 266: Manual de Modelos Termodinamicos

THERMO DATAMETHOD SYSTEM=NRTL, PHI=TVIRIAL

STREAM DATA . . .

General InformationThe TVIRIAL method predicts vapor fugacities. It is useful for sys-tems where dimers form in the vapor phase, e.g., carboxylic acid systems. A liquid activity method must be used in conjunction with the TVIRIAL method.

Table 6-16: Attributes of the TVIRIAL Vapor Fugacity MethodProperties predicted by HOCV

Vapor fugacities

Required pure component properties1

Critical temperature Critical pressure Critical volume

Acentric factor Dipole moment

Suggested application ranges

Components - Carboxylic acids

Two liquid phase behavior

Free-water decant - Not supported

VLLE - TVIRIAL only calculates vapor phase properties, but VLLE methods may be used with TVIRIAL methods.

1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD SYSTEM=NRTL or UNIQUAC or UNIFAC or UFT1 or

UFT2 or UFT3 or UNFV or WILSON or VANLAAR or MARGULES or REGULAR or FLORY, PHI=TVIRIAL

orMETHOD KVALUE=NRTL or UNIQUAC or UNIFAC or UFT1 or

UFT2 or UFT3 or UNFV or WILSON or VANLAAR or MARGULES or REGULAR or FLORY, PHI=TVIRIAL

II-6-74 Liquid Activity Methods

Page 267: Manual de Modelos Termodinamicos

SYSTEM A liquid activity method system must be chosen if the TVIRIAL method is to be used.

KVALUE Selects the method for K-value calculations. Only liquid activity methods can be used with the TVIRIAL method.

PHI Selects the TVIRIAL method for vapor phase fugacities.

K-value Data (optional)KVALUE POYNTING=ON or OFF, MOLVOL=STANDARD

or RACKETT or RCK2 or LIBRARY, BANK=SIMSCI or NONE or bankid, FILL=NONE or UNIFAC or UFT1 or FLORY or REGULAR.

POYNTING

This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

STANDARD The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

Vapor Fugacity DataPHITVIRIAL i, ηi

Note: The TVIRIAL statements must follow the PHI statement.

PRO/II Thermodynamic Data Keyword Input Manual II-6-75

Page 268: Manual de Modelos Termodinamicos

TVIRIAL This statement supplies interaction data for the Truncated Virial vapor fugacity method. This method may be used for components forming dimers, particularly carboxylic acids. ηi is the Truncated Virial Coefficient for component i.

II-6-76 Liquid Activity Methods

Page 269: Manual de Modelos Termodinamicos

Method-specific Pure Component Properties (optional)TC(unit) i, value / ... PC(unit) i, value / ... ACENTRIC i, value / ... DIPOLE(unit) i, value / ... . . .

Properties may be supplied that are active only when a specific method is used. For a further description of these input parameters, see Chapter 9, “Method-specific Pure Component Data”.

Examples5.23: Using the TVIRIAL vapor fugacity method with the

NRTL liquid activity method, model a 75/25 mix of ethanol and cyclohexane at 5 atm and 115 C.

TITLE PROB=TVIRIALPRINT INPUT=ALLDIME METRIC, PRES=ATM, TEMP=C

COMPONENT DATALIBID 1,ETHANOL/ 2,CYHX

THERMO DATAMETHOD SYSTEM=NRTL, PHI=TVIRIALKVALUE POYNTING=ONNRT6(K) 1, 2, -.1429, 472.71, -.01, 748.33, 0.3681, 2.871E-4PHITVIRIAL 1, 1.0/ 2, 0.0

STREAM DATAPROP STREAM=1, TEMP=115, PRES=5, &

COMP=75/25UNIT OPERATION

FLASH UID=FL1FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

5.24: For the same problem, use TVIRIAL for vapor fugacities and SRK for vapor enthalpies, entropies and densities. Specify API liquid densities.

THERMODYNAMIC DATAMETHOD SYSTEM=NRTL, PHI=TVIRIAL, &

ENTHALPY(V)=SRK, ENTROPY(V)=SRK, & DENSITY(V)=SRK, DENSITY(L)=API

PRO/II Thermodynamic Data Keyword Input Manual II-6-77

Page 270: Manual de Modelos Termodinamicos

IDIMER Vapor Fugacity

Typical Usage

...COMPONENT DATA

LIBID 1, ACETIC/ 2, ACRYLIC/ 3, H2OTHERMO DATA

METHOD SYSTEM=NRTL, PHI=IDIMER, & ENTHALPY(V)=IDIMER, DENSITY(V)=IDIMERKVALUE FILL=UNIFAC

STREAM DATA . . .

General InformationThe IDIMER method predicts vapor fugacities, vapor enthalpies, vapor entropies and vapor densities. It is especially useful for sys-tems where dimers form in the vapor phase, e.g., carboxylic acid systems. A liquid activity method must be used in conjunction with the IDIMER method.

Table 6-17: Attributes of the IDIMER Vapor Fugacity MethodProperties predicted by HOCV

Vapor fugacities vapor enthalpies

Vapor densities Vapor entropies

Required pure component properties1

None

Suggested application ranges

Components - Carboxylic acids, polar components

Two liquid phase behavior

Free-water decant - Not supported

VLLE - IDIMER only calculates vapor phase properties, but VLLE methods may be used with IDIMER methods.

1 Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

II-6-78 Liquid Activity Methods

Page 271: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementMETHOD SYSTEM=NRTL or UNIQUAC or UNIFAC or UFT1 or

UFT2 or UFT3 or UNFV or WILSON or VANLAAR or MARGULES or REGULAR or FLORY, PHI=IDIMER, ENTHALPY(V)=IDIMER, ENTROPY(V)=IDIMER, DENSITY(V)=IDIMER, . . .

orMETHOD KVALUE=NRTL or UNIQUAC or UNIFAC or UFT1 or

UFT2 or UFT3 or UNFV or WILSON or VANLAAR or MARGULES or REGULAR or FLORY, PHI=IDIMER, ENTHALPY(V)=IDIMER, ENTROPY(V)=IDIMER, DENSITY(V)=IDIMER, . . .

SYSTEM A liquid activity method system must be chosen if the IDIMER method is to be used.

KVALUE Selects the method for K-value calculations. Only liquid activity methods can be used with the IDIMER method.

PHI and/or ENTHALPY(V) and/or ENTROPY(V) and/or DENSITY(V)

Selects the IDIMER method for vapor phase fugacities, and/or enthalpies and/or entropies and/or densities.

K-value Data (optional)KVALUE POYNTING=ON or OFF, MOLVOL=STANDARD

or RACKETT or RCK2 or LIBRARY, BANK=SIMSCI or NONE or bankid, FILL=NONE or UNIFAC or UFT1 or FLORY or REGULAR.

POYNTING

This option selects whether to apply the Poynting correction to fugacities of components in the liquid phase. The default is OFF unless a PHI method is selected, in which case the default is ON.

MOLVOL This selects the method used to calculate the liquid molar volume necessary for computing the Poynting correction factor. Options are:

PRO/II Thermodynamic Data Keyword Input Manual II-6-79

Page 272: Manual de Modelos Termodinamicos

Vapor Fugacity DataPHI BANK=SIMSCI or NONE or bankidIDIMER(tunit, punit, log or ln)i, i, Aii, Bii/ i, j, Aij, Bij/ . . .

Note: The IDIMER statements must follow the PHI statement.

BANK This option selects one or more databanks from which to retrieve vapor phase binary interaction data.

SIMSCI Selects the SIMSCI standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

IDIMER This statement supplies interaction data for the IDIMER vapor fugacity method. This method may be used for components forming dimers, particularly carboxylic acids. Aii and Bii are the association parameter for component i, while Aii and Bii are the solvation parameter for components i and j.

Enthalpy, Entropy and Density DataENTHALPY(V) BANK=SIMSCI or NONE or bankidENTROPY(V) BANK=SIMSCI or NONE or bankidDENSITY(V) BANK=SIMSCI or NONE or bankidIDIMER(tunit, punit, log or ln) i, i, Aii, Bii/ i, j, Aij, Bij/ . . .

IDIMER vapor interaction data may be selected for enthalpy, entropy and density methods. Normally, these features are selected

STANDARD The default. Selects the standard method for calculating the liquid molar volume at standard conditions (25 C, 1 atm).

RACKETT Selects the Rackett liquid density method.

RCK2 Selects the Rackett 2 liquid density method.

LIBRARY Selects the LIBRARY liquid density method.

II-6-80 Liquid Activity Methods

Page 273: Manual de Modelos Termodinamicos

for the vapor fugacity method and are automatically carried over for these other methods. If, however, the vapor fugacity method is not IDIMER, you can supply these parameters independently.

See above under Vapor Fugacity Data for format and definition of these entries.

Examples5.25: Use the IDIMER vapor fugacity method with the NRTL

liquid activity method for a mix of associating acids.

TITLE PROB=IDIMERPRINT INPUT=ALL

COMPONENT DATALIBID 1, HFOR/ 2, ACETIC/ 3, HPRP

THERMO DATAMETHOD SYSTEM=NRTL, PHI=IDIMER, &

ENTHALPY(V)=IDIMER, ENTROPY(V)=IDIMER, & DENSITY(V)=IDIMER

PHI BANK=SIMSCIIDIME(K, MMHG, LOG) 1,1,-10.743,3083.0IDIME(K, MMHG, LOG) 2,2,-10.421,3166.0IDIME(K, MMHG, LOG) 3,3,-10.843,3316.0IDIME(K, MMHG, LOG) 1,2,-10.356,3193.0

STREAM DATAPROP STREAM=1, TEMP=100, PRES=700, &

COMP=0.477/0.094/0.729UNIT OPERATION

FLASH UID=FL1FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

PRO/II Thermodynamic Data Keyword Input Manual II-6-81

Page 274: Manual de Modelos Termodinamicos

Redlich-Kister, Gamma Heat of Mixing

Typical Usage

...COMPONENT DATA

LIBID 1, IPA/ 2, H2O/ 3, CHTHERMO DATA

METHOD SYSTEM=NRTLENTHALPY(L) HMIX=RK1KVALUE FILL=UNIFAC

STREAM DATA . . .

General InformationThe Redlich-Kister and Gamma heat of mixing methods apply a correction to IDEAL enthalpy data. A liquid activity method must be used in conjunction with the Redlich-Kister or Gamma methods.

Table 6-18: Attributes of the Redlich-Kister, Gamma Heat of MixingProperties predicted by RK1, RK2, GAMMA

Liquid enthalpy heat of mixing corrections

Required pure component properties

None

Two liquid phase behavior

Free-water decant - N/A

VLLE - N/A

Input Description

The METHOD StatementMETHOD SYSTEM=NRTL or UNIQUAC or UNIFAC or UFT1 or

UFT2 or UFT3 or UNFV or WILSON or VANLAAR or MARGULES or REGULAR or FLORY

or

II-6-82 Liquid Activity Methods

Page 275: Manual de Modelos Termodinamicos

METHOD KVALUE=NRTL or UNIQUAC or UNIFAC or UFT1 or UFT2 or UFT3 or UNFV or WILSON or VANLAAR or MARGULES or REGULAR or FLORY, . . . , ENTHALPY(L)=IDEAL, . . .

SYSTEM A liquid activity method system must be chosen if the Gamma method is to be used.

KVALUE Selects the method for K-value calculations. Only liquid activity methods can be used with the Gamma method.

ENTHALPY(L)

Selects the IDEAL liquid enthalpy method for use with the Redlich-Kister or Gamma heat of mixing methods.

Enthalpy DataENTHALPY BANK=SIMSCI or NONE or bankid,

HMIX=NONE or RK1 or RK2 or GAMMARK1(K or KCAL or KJ) i, j, aij, bij, cij, dij, eij, fij, gij, hij/ . . .

orRK2(K or KCAL or KJ) i, j, aij, bij, cij, dij, eij, fij, gij, hij/ . . .

BANK This option selects one or more databanks from which to retrieve vapor phase binary interaction data.

SIMSCI Selects the SIMSCI standard databank (default).

NONE This option disables all data retrieval from databanks for interaction parameters.

bankid This option selects a user-created databank named “bankid” that is created and maintained with the LIBMGR program.

HMIX This statement selects the heat of mixing method to be applied to the liquid enthalpy method.

NONE No mixing enthalpy correction is applied (default).

RK1 or RK2

This option selects different formulations of the Redlich-Kister correlation.

PRO/II Thermodynamic Data Keyword Input Manual II-6-83

Page 276: Manual de Modelos Termodinamicos

GAMMA The heat of mixing is calculated through activity coefficient derivatives with respect to temperature.

RK1 or RK2

The RK1 or RK2 statements are used to supply interaction parameters for the Redlich-Kister heat of mixing correlation methods RK1 and RK2. The statement given here must correspond to the entry on the ENTHALPY property data statement. The statements RK1 and RK2 are exclusive of each other and cannot be mixed in the same property data section. The Redlich-Kister equation for the excess heat of mixing is given as:

when unit is K:

HEX

RT---------- 1

T--- xixj aij bijX cijX

2 dijX3 eijX

4 fijX5 gijX

6 hijX7+ + + + + + +( )

j∑

i∑=

when unit is KCAL or KJ:

HEX

RT---------- 1

RT------- xixj aij bijX cijX

2 dijX3 eijX

4 fijX5 gijX

6 hijX7+ + + + + + +( )

j∑

i∑=

where

X xi xj–= (form 1 of Redlich-Kister)

Xxi xj–xi xj+--------------=

(form 2 of Redlich-Kister)

II-6-84 Liquid Activity Methods

Page 277: Manual de Modelos Termodinamicos

Examples5.26: Using the NRTL liquid activity method, and correcting for

the heat of mixing using the Redlich-Kister method RK1, model a 50/50 mix of acetic and acrylic acids at 100 psia and 100 F.

TITLE PROB=RK1PRINT INPUT=ALL

COMPONENT DATALIBID 1, ACETIC/ 2, ACRYLIC

THERMO DATAMETHOD SYSTEM=NRTL, PHI=HOCVENTHALPY(L) HMIX=RK1

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/50UNIT OPERATION

FLASH UID=FL1FEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, & RATE, VALUE=0.5

END

5.27: For the same problem, use TVIRIAL for vapor fugacities and specify API liquid densities.

THERMODYNAMIC DATAMETHOD SYSTEM=NRTL, PHI=TVIRIAL, DENSITY(L)=APIENTHALPY(L) HMIX=RK1

PRO/II Thermodynamic Data Keyword Input Manual II-6-85

Page 278: Manual de Modelos Termodinamicos

II-6-86 Liquid Activity Methods

Page 279: Manual de Modelos Termodinamicos

Chapter 7 Solid Solubility Methods

The program provides a number of methods for handling solids, including the van't Hoff solubility method which calculates solid-liquid equilibrium K-values.

Van't Hoff Solubility

Typical Usage...COMPONENT DATA

LIBID 1,H2O/ 2,TOLUENE/ 3,PXYLENETHERMODYNAMIC DATA

METHOD SYSTEM=IDEAL, KVALUE(SLE)=VANTHOFFSTREAM DATA

. . .

General InformationThe VANTHOFF solubility method is used to calculate solid-liquid equilibrium K-values for nearly ideal non-electrolyte systems using the van't Hoff ideal solubility equation.

PRO/II Thermodynamic Data Keyword Input Manual II-7-1

Page 280: Manual de Modelos Termodinamicos

Table 7-1: Attributes of the VANTHOFF MethodProperties predicted by the VANTHOFF method

SLE K-values

Required pure component properties1

Triple point temperature

Two liquid phase behavior

Free-water decant

- N/A

VLLE - N/A1Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD KVALUE(SLE)=VANTHOFF, ...

KVALUE

Selects the method for K-value calculations. Only SLE K-value calculations are available with the VANTHOFF method.

The solubility of solute i in solvent l at temperature T is given by:

xilnΔHmRT

----------- TTt---- 1–

ΔCpR

----------TtT---- 1–

ΔCpR

----------TtT----ln–+=

where:

ΔHm= enthalpy change of melting at Tt

ΔCp= heat capacity change of melting at Tt

Tt= triple point temperature

In practice, the more easily accessible solid melting temperature is usually used instead of the triple point temperature.

II-7-2 Solid Solubility Methods

Page 281: Manual de Modelos Termodinamicos

Examples7.1: Use the VANTHOFF method for a system containing p-

xylene.

TITLE PROJECT=MANUAL, PROB=VANTHOFFPRINT INPUT=ALL

COMP DATALIBID 1,TOLU/ 2,PXYLENE/ 3,MXYLENE/ 4,OXYLENE/ 5,EBZN/ &

6,ETLN/ 7,C3, BANK=SIMSCIATTR COMP=2, PSD(MIC)=0., 10., 25., 50., 75., 100., &

250., 500., 1000., 5000., 10000.THERMO DATA

METHOD SYSTEM=IDEAL, KVALUE(SLE)=VANTHOFF, &TRANSPORT=PURE

STREAM DATA. . .END

7.2: For the same problem, use the VANLAAR method for VLE calculations.

THERMO DATAMETHOD SYSTEM(VLE)=VANLAAR, &

KVALUE(SLE)=VANTHOFF, TRANSPORT=PURE

User-supplied Solubility

Typical Usage...COMPONENT DATA

LIBID 1,H2O/ 2,NACL/ 3,CACL2THERMODYNAMIC DATA

METHOD SYSTEM=IDEAL, KVALUE(SLE)=SOLDATAKVALUE(SLE)SOLUTE 2,3SOLDATA 2,1,-2.3/ 3,1,1.937,-1213

STREAM DATA . . .

General InformationThe SOLDATA solubility method is used to calculate solid-liquid equilibrium K-values using user-supplied solubility data.

PRO/II Thermodynamic Data Keyword Input Manual II-7-3

Page 282: Manual de Modelos Termodinamicos

Table 7-2: Attributes of the SOLDATA MethodProperties predicted by the SOLDATA method

K-values

Required pure component properties1

None

Two liquid phase behavior

Free-water decant

- N/A

VLLE - N/A1Automatically supplied for library and petroleum components. Must be supplied by the user for non-library components.

Input Description

The METHOD StatementMETHOD KVALUE(SLE)=SOLDATA, ...

KVALUE Selects the method for K-value calculations. Only SLE K-value calculations are available with the SOLDATA method.

K-value DataKVALUE(SLE) FILL=VANTHOFF or ONE or FREE

SOLUTE i, j, k,...SOLDATA(tunit) i, l, c1, c2, c3 { , tmin, tmax}.

FILL The fill option selects the method used to estimate binary interaction data missing from the selected databank and not given via SOLDATA statements. The options available are:

VANTHOFF van't Hoff ideal solubility equation. This is the default.

ONE Missing binary solubilities set to 1.0 (i.e., all unspecified solids completely soluble).

II-7-4 Solid Solubility Methods

Page 283: Manual de Modelos Termodinamicos

FREE If a solvent k is missing binary solubility data for a solute, the solvent is ignored in the solubility calculation. That is, the solvent mole fractions are normalized to a k-free basis.

SOLUTE Specifies the solutes i, j, k ... in the system.

SOLDATA This statement supplies the molar solubility of a solute i in a mixture of i and solvent l, as a function of temperature according to the following equations:

xilln c1c2T----- c3 Tln+ +=

The solubility of i in a multi-component stream is given as:

xi mix,( )ln xl xi l,( )lnl 1=l i≠

NOC

∑=

The temperature units (tunit) may only be given in Kelvin or degrees Rankine.

Note: When the SOLDATA method is used for calculating the solid-liquid equilibrium K-values, the KVALUE(SLE) statement must be utilized. The SOLUTE and SOLDATA statements must follow the KVALUE(SLE) statement. The SOLDATA statement supplies values used for equilibrium calculations.

Note: While only 3 coefficients are recognized on the SOL-DATA statement, a total of five floating point values are allowed. The final two values are the minimum and maxi-mum applicable temperatures, respectively.

PRO/II Thermodynamic Data Keyword Input Manual II-7-5

Page 284: Manual de Modelos Termodinamicos

Examples7.3: Use the SOLDATA method and supplied solubility data,

for a system containing p-xylene. Binary interaction data not supplied via SOLDATA statements are retrieved from the van't Hoff method by the selection of the FILL=VANTHOFF option.

TITLE PROJECT=MANUAL,PROB=SOLDATAPRINT INPUT=ALL

COMP DATALIBID 1,TOLU/2,PXYLENE/3,MXYLENE/4,OXYLENE/5,EBZN/ &

6,ETLN/7,C3, BANK=SIMSCIATTR COMP=2, PSD(MIC)=0., 10., 25., 50., 75., 100., &

250., 500., 1000., 5000., 10000.THERMO DATA

METHOD SYSTEM=IDEAL, KVALUE(SLE)=SOLDATA, & TRANSPORT=PURE

KVALUE(SLE) FILL=VANTHOFFSOLUTE 2SOLDATA 2,1,-0.6,0.02,0.01

STREAM DATA. . .END

7.4: For the same problem, use SRK for VLE calculations and set all missing binary interaction data for SLE calculations equal to 1.0.

THERMODYNAMIC DATA METHOD SYSTEM=SRK, KVALUE(SLE)=SOLDATA, & TRANSPORT=PURE

KVALUE(SLE) FILL=ONE

II-7-6 Solid Solubility Methods

Page 285: Manual de Modelos Termodinamicos

Chapter 8Transport and Special Properties

The program provides a number of methods for calculating trans-port properties, and various stream properties such as kinematic vis-cosities, cloud and flash point temperatures and sulfur content.

Transport Properties

Typical Usage

...COMPONENT DATA

LIBID 1,C3/ 2,IC4/ 3,NC4THERMO DATA

METHOD SYSTEM=SRK, TRANSPORT=PURESTREAM DATA

. . .

General InformationThe TRANSPORT keyword is used to provide transport properties, including liquid and vapor viscosities, liquid and vapor thermal conductivities, and liquid surface tension values. Liquid diffusivi-ties may be computed by selecting the DIFFUSIVITY(L) keyword.

PRO/II Thermodynamic Data Keyword Input Manual II-8-1

Page 286: Manual de Modelos Termodinamicos

Table 8-1: Attributes of the TRANSPORT MethodProperties predicted by the SHELL, PURE and PETRO methods

Liquid/vapor viscosities Liquid/vapor thermal conductivities Liquid surface tensions

Properties predicted by the SIMSCI and API methods

Liquid viscosities

Properties predicted by the TRAPP method

Liquid/vapor viscosities Liquid/vapor thermal conductivities

Properties predicted by the TACITE method

Liquid viscosities Liquid/vapor thermal conductivities

Required pure component properties1

Varies with method and property; see the PRO/II Reference Manual for more information 1 Automatically supplied for library and petroleum components. Must be supplied by the user for

non-library components.

Input Description

The METHOD Statement

METHOD . . .,

TRANSPORT=NONE or TRANSPORT=PURE or PETRO or TRAPP or TACITE or U1 or U2 ... or U5, DIFFUSIVITY(L)=NONE or DIFFUSIVITY(L)=WILKE or DIFDATA,{VISCOSITY(VL)=NONE or VISCOSITY(VL)= PURE or PETRO or TRAPP or U1 or U2 or ...U5, CON-DUCTIVITY(VL)=NONE or CONDUCTIVITY(VL)= PURE or PETRO or TRAPP or U1 or U2 or ... U5, SURFACE(L)=NONE or SURFACE(L)=PURE or PETRO or PARACHOR or U1 or U2 ... or U5}

or

VISCOSITY(VL)=NONE or VISCOSITY(VL)=PURE or PETRO or TRAPP or U1 or U2 ... or U5 or VISCOSITY(V)=PURE or PETRO or TRAPP or U1 or U2 ... or U5 or API

and/or

VISCOSITY(L)= PURE or PETRO or TRAPP or KVIS or LBC or U1 or U2 ... or U5 or SIMSCI or API

and/orCONDUCTIVITY(VL)=NONE or

II-8-2 Transport and Special Properties

Page 287: Manual de Modelos Termodinamicos

CONDUCTIVITY(VL or V and/or L)= PURE or PETRO or TRAPP or U1 or U2 ... or U5,

and/or

SURFACE(L)=NONE or SURFACE(L)=PURE or PETRO or PARACHOR or U1 or U2 ... or U5,

and/or

DIFFUSIVITY(L)=NONE or DIFFUSIVITY(L)=WILKE or DIFDATA

TRANSPORT This keyword selects the method used for calculation of transport properties including liquid and vapor viscosities, liquid and vapor thermal conductivities and liquid surface tension values. If the TRANSPORT keyword is absent, the default is that no transport method is selected. If the TRANSPORT keyword is present, the available options are:

PURE This option applies simple mixing rules to the temperature-dependent pure component values available in the selected databanks to calculate mixture transport properties. Saturation values are used and no pressure corrections apply. This method is the default if only the TRANSPORT keyword is present.

PETRO This option uses predictive correlations that apply to bulk hydrocarbon mixtures. Pressure corrections apply.

TRAPP This option uses a one fluid conformal TRAPP model to calculate vapor and liquid viscosities and thermal conductivities for hydrocarbons. The PETRO method is used to calculate surface tension.

TACITE This option uses the Lohrenz-Bray-Clark (LBC) liquid viscosity method, the TRAPP conductivity methods, and the PARACHOR surface tension method.

PRO/II Thermodynamic Data Keyword Input Manual II-8-3

Page 288: Manual de Modelos Termodinamicos

U1-U5 This option selects one of the up to 5 user-defined subroutines that are available to compute transport properties.

VISCOSITY (VL or V and/or L)

This keyword requests the calculation of vapor and liquid viscosities. The options available with this keyword are:

PURE This option applies simple mixing rules to the temperature-dependent pure component values available in the selected databanks to calculate mixture transport properties. Saturation values are used and no pressure corrections apply. This option is available for both vapor and liquid viscosity calculations.

PETRO This option uses predictive correlations that apply to bulk hydrocarbon mixtures. Pressure corrections apply. This option is available for both vapor and liquid viscosity calculations.

TRAPP This option uses a one fluid conformal solution model to calculate vapor and liquid viscosities.

KVIS This option calculates the viscosity from the values of the kinematic viscosity and the density. For purposes of this calculation, the density is computed with the API method. In order to use this option, a KVIS method must be declared on the METHOD statement. This option is only available with the VISCOSITY(L) keyword.

LBC This is the Lohrenz-Bray-Clark prediction method for calculating liquid viscosities.

U1-U5 This option selects one of the up to 5 user-defined subroutines that are available to compute transport properties. This option is available for both vapor and liquid viscosity calculations.

II-8-4 Transport and Special Properties

Page 289: Manual de Modelos Termodinamicos

SIMSCI This option uses SimSci developed liquid viscosity values. This was known as the Twu method in PROCESS. This option is available only with the VISCOSITY(L) keyword.

API This option uses liquid viscosities from the API Technical Data Book. This option is available only with the VISCOSITY(L) keyword.

CONDUCTIVITY (VL or V and/or L)

This keyword requests the calculation of vapor and liquid thermal conductivities. The options available with this keyword are:

PURE This option applies simple mixing rules to the temperature-dependent pure component values available in the selected databanks to calculate mixture thermal conductivity properties. Saturation values are used, and no pressure corrections apply. This option is available for both vapor and liquid conductivity calculations.

PETRO This option uses predictive correlations that apply to bulk hydrocarbon mixtures. Pressure corrections apply. This option is available for both vapor and liquid conductivity calculations.

TRAPP This option uses a one fluid conformal solution model to calculate vapor and liquid conductivities.

U1-U5 This option selects one of the up to 5 user-defined subroutines that are available to compute transport properties. This option is available for both vapor and liquid thermal conductivity calculations.

SURFACE(L) This keyword selects the calculation method for liquid surface tensions. Options available are:

PURE This option applies simple mixing rules to the temperature-dependent pure component values available in the selected databanks to calculate mixture viscosity properties. Saturation values are used and no pressure corrections apply.

PRO/II Thermodynamic Data Keyword Input Manual II-8-5

Page 290: Manual de Modelos Termodinamicos

PETRO This option uses predictive correlations that apply to bulk hydrocarbon mixtures. Pressure corrections apply.

PARACHOR

This option uses the PARACHOR prediction method.

U1-U5 This option selects one of the up to 5 user-defined subroutines that are available to compute transport properties.

DIFFUSIVITY(L)

This keyword selects the diffusivity calculation method and/or provides diffusivity data. If the DIFFUSIVITY(L) keyword is absent, the default is that no diffusivity method is selected. If the DIFFUSIVITY(L) keyword is present, the Wilke-Chang correlation (WILKE) is the default. The other option is DIFDATA, which is selected when user-supplied data only are to be used.

Note: The TRANSPORT, VISCOSITY, CONDUCTIVITY, SUR-FACE and DIFFUSIVITY statements are usually optional but are required when certain features or unit operations are used. Table 8-2 gives the PRO/II features that require transport properties.

Table 8-2: Features that Require Transport PropertiesFeature Property

Stream Output Transport properties option

TRANSPORT

HCURVE Transport properties tables

TRANSPORT

COLUMN Tray vapor/liquid transport properties printoutSieve tray sizing/ratingPacked columns

TRANSPORT

VISCOSITY(VL)

VISCOSITY(L)1 & SURFACE(L)2

HXRIG VISCOSITY(VL) & CONDUCTIVITY(VL)

PIPE VISCOSITY(VL) & SURFACE(L)3

ROTARY DRUM FILTER VISCOSITY(VL) & SURFACE(L)

FILTERING CENTRIFUGE VISCOSITY(VL) & SURFACE(L)

II-8-6 Transport and Special Properties

Page 291: Manual de Modelos Termodinamicos

DISSOLVER MASSTRANS not specified

DIFFUSIVITY(L)

1 If a liquid viscosity method is not explicitly defined, the viscosity contribution to the correlation is omitted.

2 Surface tension is required when the NORTON method is used for efficient capacity and HETP calculations.

3 Surface tension used for two-phase flow.

Table 8-2: Features that Require Transport Properties

PRO/II Thermodynamic Data Keyword Input Manual II-8-7

Page 292: Manual de Modelos Termodinamicos

Diffusivity Data DIFFUSIVITY(L)DIFDATA(tunit) i, j, c1, c2, c3/ ...

DIFFUSIVITY(L)

The DIFFUSIVITY statement signifies that diffusivity data is being supplied by the user.

DIFDATA This statement supplies the diffusivity of a solute i in a mixture of i and j. Diffusivity is a measure of the rate at which a solute diffuses through a given area in a given time period under a concentration gradient. The dimensions of diffusivity are always in m2/sec. The diffusivity is given as a function of temperature according to the following equation:ln Dij = c1 + c2 / T + c3 ln T

where T is in absolute units (K or R).

Note: The program currently allows for the calculation of liquid diffusivities only when using a KVALUE(SLE) method. The DIFDATA statements may follow the DIFFUSIVITY(L) state-ment.

User-supplied Viscosity, Conductivity, and Surface Tension Data (optional)

VISCOSITYCONDUCTIVITYSURFACE

UDATA i, value/...

UDATA This statement supplies method-specific data that will be used by the user-added subroutine for the calculation of viscosity, conductivity, or surface tension values. See the PRO/II Data Transfer System and User-added Subroutines User's Guide for more information.

II-8-8 Transport and Special Properties

Page 293: Manual de Modelos Termodinamicos

Method-specific Pure Component Properties (optional)VISCOSITYCONDUCTIVITYSURFACE. . .

Note: These required pure component properties are all tempera-ture dependent and may not be supplied in the Thermodynamic Data Category. They may only be supplied globally in the Com-ponent Data Category. See “Component Properties” in Volume I, for details on format and entry.

The following data may be supplied in the Thermodynamic Data Category of input:

PARACHOR i, value/...PENELOUX(volunit) i, value/...

Examples8.1: In this example, an HCURVE unit operation is used to

generate heating curves and transport property tables for a crude feed stream.

TITLE PROBLEM=TRANSPORTDIMEN ENGLISH, LIQV=BBLPRINT RATE=M,STREAM=ALL,INPUT=ALL,TBP

COMPONENT DATALIBID 1,ETHANE/ 2,PROPANE/ 3,IBUTANE/ 4,BUTANE/ 5,PENTANETBPCUTS 115,300,6/ 400,10/ 650,8/ 800,4/ 1500,6

THERMODYNAMIC DATAMETHOD KVAUE(VLE)=BK10, ENTH(V)=JG, ENTH(L)=JG, &

ENTR(V)=CP, ENTR(L)=CP, DENS(V)=IDEA, &DENS(L)=API, TRANS=PETRO

STREAM DATAPROP STREAM=1,TEMP=375, PRES=300, PHASE=M, &

RATE(V)=3125, ASSAY=LVD86 STREAM=1, PRES(MMHG)=760, TEMP=F, &

DATA=8,135/25,210/43,370/67,565/75,665/82,800/92,990API STREAM=1, AVG=45.37, &

DATA=11.6,80.01/21.6,62.9/41.7,50.6/61.9,38.2/83.8,27.5MW STREAM=1, AVG=162.9, &

DATA=24.2,99.5/40.5,135/55,184.7/74.8,334.8/100,789LIGHT STREAM=1, PERCENT(W)=10.4, &

COMP(M)=1,0.1/2,1.4/3,0.65/4,3.15/5,5.1, NORMALIZEUNIT OPERATIONS

HCURVE UID=HC1, NAME=HEATING CRVADIA STREAM=1, TEMP=375, 690, PRES=300, 50, POINTS=20

PROP TRANSPORTEND

PRO/II Thermodynamic Data Keyword Input Manual II-8-9

Page 294: Manual de Modelos Termodinamicos

8.2: Using the van't Hoff method, calculate the amount of p-xylene dissolved in 10 ft3 of water at 40 F. Note that the WILKE method is used to calculate the p-xylene diffusivity.

TITLE PROB=DIFFUSIVITYCOMPONENT DATA

LIBID 1,H2O/2,PXYLENE/3,ETHANE, BANK=SIMSCIATTR COMP=2, PSD(MIC)=0., 50., 200., 1000., 5000.

THERMO DATAMETHOD SYSTEM(VLE)=SRKM, &

KVALUE(SLE)=VANTHOFF, TRANSPORT=PURE, &DIFFUSIVITY(L)=WILKE

STREAM DATAPROP STREAM=1, TEMP=40, PRES(PSIG)=0, COMP(M)=1,10/3, 0.5SOLID STREAM=1, COMP(M)=2,100

UNIT OPERATIONDISSOLVER UID=DIS

FEED 1PROD OVHD=2, BTMS=3PRINT CSDRATING VOLUME(FT3)=10OPERATION SOLUTE=2, SOLVENT=1, DP=0

END

II-8-10 Transport and Special Properties

Page 295: Manual de Modelos Termodinamicos

Special Properties

Typical Usage

...COMPONENT DATA

LIBID 1,IC4/ 2,NC4/ 3,NC5THERMO DATA

METHOD SYSTEM=LKP, CLOUD=INDEXSTREAM DATA

. . .

General InformationThe program provides numerous methods to compute special stream refinery properties. These properties include KVIS which calculates liquid kinematic viscosities, CLOUD and FLPT (cloud and flash point temperatures respectively), and SULF (sulfur con-tent). Descriptions of all the stream refinery special properties available are given in Table 8-3.

PRO/II Thermodynamic Data Keyword Input Manual II-8-11

Page 296: Manual de Modelos Termodinamicos

Table 8-3: Keywords for Special Stream Refinery Properties

Keyword Property

KVIS Kinematic viscosity

POUR Pour point temperature

CLOU Cloud point temperature

FRZP Freeze point temperature

CFPP Cold filter plug point

FLPT Flash point temperature

RON Research octane number

MON Motor octane number

IBP Initial boiling point

FBP Final boiling point

RCR Ramsbottom carbon

TAN Total acid number

OLEF Olefinic content

CETA Cetane index

CETN Cetane number

REFR Refractive index

ANIL Aniline point

AROM Aromatics content

WTAR Weight aromatic content

NAPH Naphthene content

WTNA Weight naphthenic content

PARA Paraffin content

WTPA Weight paraffinic content

NPHL Naphthalene content

H2 Hydrogen content

CARB Carbon content

CHRA Carbon-hydrogen ratio

SMOK Smoke point

LUMI Luminometer number

SULF Sulfur content

II-8-12 Transport and Special Properties

Page 297: Manual de Modelos Termodinamicos

Input Description

The METHOD StatementFor all stream refinery properties, the general METHOD statement is:

METHOD ..., property(qualifier, basis)=method, {REFPROP=SIMSCI}

The appropriate qualifier, basis, and method for each property are given in Table 8-4.

MERC Mercaptan content

ASUL Aliphatic sulfur content

NITR Nitrogen content

OXYG Oxygen content

CCR Conradson carbon residue

NICK Nickel content

VANA Vanadium content

IRON Iron content

ASPH Asphaltene content

PHEN Phenol content

ANEU Neutralize number

BROM Bromine number

MEAB Mean average boiling point

CABP Cubic average boiling point

MOAB Molal average boiling point

NHV Net heating value

WAX Wax content

ASH Ash content

NOAC Noack volatility

SOFT Softening point

PEN Penetration index

SPROP User-defined special property

Table 8-3: Keywords for Special Stream Refinery Properties

Keyword Property

PRO/II Thermodynamic Data Keyword Input Manual II-8-13

Page 298: Manual de Modelos Termodinamicos

Table 8-4: Special Refinery Property Entries for the METHOD Statement

Property Qualifier Basis Method

KVIS — M or WT or LV INDEX or SIMSCI

POUR — M or WT or LV INDEX

CLOU — M or WT or LV INDEX or SIMSCI

FRZP — M or WT or LV INDEX

CFPP — M or WT or LV INDEX

FLPT — M or WT or LV INDEX or NELSON or API

RON C or L M or WT or LV INDEX or SUM

MON C or L M or WT or LV INDEX or SUM

IBP — — SIMSCI

FBP — — SIMSCI

RCR — M or WT or LV INDEX or SIMSCI

TAN — M or WT or LV INDEX or SUM

OLEF MONO M or WT or LV INDEX or SUM

CETA — M or WT or LV ASTM D976

CETN — M or WT or LV INDEX or SUM

REFR C20 or C70 M or WT or LV INDEX or SUM

ANIL — M or WT or LV SUM

AROM TOTA or RING

M or WT or LV INDEX or SUM

WTAR — — SUM

NAPH — M or WT or LV INDEX or SUM

WTNA — — SUM

PARA — M or WT or LV INDEX or SUM

WTPA — — SUM

NPHL — WT or LV SUM

H2 — WT INDEX or SUM

CARB — WT INDEX or SUM

CHRA — WT INDEX or SUM

SMOK — M or WT or LV INDEX or SUM

II-8-14 Transport and Special Properties

Page 299: Manual de Modelos Termodinamicos

LUMI — WT INDEX or SUM or D1740

SULF — M or WT or LV INDEX or SUM

MERC — WT SUM

ASUL — WT SUM

NITR TOTA or BASI or NONB

WT INDEX or SUM

OXYG — WT INDEX or SUM

CCR — M or WT or LV INDEX or SUM

NICK — WT INDEX or SUM

VANA — WT INDEX or SUM

IRON — WT SUM

ASPH C5 or C7 WT INDEX or SUM

PHEN — WT SUM

ANEU — WT or LV SUM

BROM — WT or LV SUM

MEAB — — API

CABP — — API

MOAB — — API

NHV — — API

WAX — WT INDEX or SUM

ASH — WT INDEX or SUM

NOAC — WT INDEX or SUM

SOFT — WT or LV SUM

PEN — M or WT or LV INDEX or SUM

SPROP i M or WT or LV INDEX or SUM

Note: The Luminometer number (LUMI) is calculated from the Smoke Point (SMOK) for the D1740 method only. Therefore the SMOK entry must be provided on the METHOD statement and data supplied if the LUMI property is required when the D1740 method is selected. Otherwise, the LUMI number will be reported as missing.

Table 8-4: Special Refinery Property Entries for the METHOD Statement

Property Qualifier Basis Method

PRO/II Thermodynamic Data Keyword Input Manual II-8-15

Page 300: Manual de Modelos Termodinamicos

For example, when specifying the SIMSCI mixing method for KVIS using the default liquid volume basis, the METHOD statement becomes:

METHOD ..., KVIS=SIMSCI, ...

When specifying the INDEX mixing method for research octane number (RON) and using the default weight basis, the METHOD statement becomes:

METHOD ..., RON(L, WT)=INDEX, ...

REFPROP

This keyword is used to supply the default methods for calculating special stream refinery properties. The SIMSCI option is used to specify the PRO/II v3.3 calculation methods and PRO/II v3.3 properties. These properties are KVIS, CLOU, POUR, FLPT, SULF, and CETA.

The available mixing methods for special refinery properties are described below:

INDEX This mixing method sums the individual component indices on a weight or molar or liquid volume basis. The individual component index is calculated from the property itself using the following relationship:

INDEX( )og 1.0GAMMA------------------------⎠

⎞ VALUE( )log⎝⎛ CONSTANT+= (1)

The value of the CONSTANT for a particular property is calculated from the values supplied at a reference point (GAMMA, REFINDEX, REFVALUE) given using the data statement (see below for a description of these keywords).

SUM This mixing method sums the actual individual component property values.

SIMSCI This mixing rule is available for the cloud point (CLOU) and kinematic viscosity (KVIS) methods only. This mixing method sums the component property index values. However, a different formula than the one shown in equation (1) is used to convert to data values to indices. For CLOU, the conversion equation is:

II-8-16 Transport and Special Properties

Page 301: Manual de Modelos Termodinamicos

INDEX( )GAMMA CPF 460.0+6.39693 9.21034 GAMMA×–( )exp

------------------------------------------------------------------------------------------= (2)

For CLOU, GAMMA defaults to a value of 0.05.

For KVIS, the conversion equation is:

INDEX 72.0509 22.1322 KVIS( )ln– 4.35618 KVIS( )ln{ }2+= (3)

NELSON The Nelson method is an alternate method used to calculate the flash point temperature.

API The FLPT, MEAB, CABP, MOAB, and NHV properties may all be calculated using methods based on the API Technical Data Book.

D1740 The LUMI property may be calculated using the ASTM D1740 method. The Luminometer number (LUMI) is calculated from the Smoke Point (SMOK) for the D1740 method only. Therefore the SMOK entry must be provided on the METHOD statement and data supplied if the LUMI property is required when the D1740 method is selected. Otherwise, the LUMI number will be reported as missing.

SYMS This method is available for the RON and MON properties.

USFORM, USINDEX

These options select a user-added method for the property. The USFORM option requires that the FORTRAN routine SPUSER.FOR be in PROCALC.EXE and PROOUT.EXE. The USINDEX option requires that the FORTRAN routine CVUSER.FOR be compiled and linked into PROIN.EXE, PROCALC.EXE and PROOUT.EXE. See the PRO/II User-added Subroutines User's Manual for more information.

Note: The USINDEX option requires that DATA or INDEX val-ues or NCFILL option be provided for the property.

PRO/II Thermodynamic Data Keyword Input Manual II-8-17

Page 302: Manual de Modelos Termodinamicos

Special Property Methods Dataproperty(qualifier, basis) {GAMMA=value, REFINDEX=value,

REFVALUE(unit)=value},{NCFILL=ncfill},{NCBLEND=ncblend}

DATA(unit) i, datvalue/ ...INDEX i, ndvalue/ ...

For KVIS only:

KVIS(M or WT or LV) {GAMMA=value, REFINDEX=value,REFVALUE(kvisunit)=value,}{NCFILL=ncfill}, {NCBLEND=ncblend}

DATA(tunit, kvisunit) t1, t2, /i, p1, p2, /... INDEX(tunit) t1, t2, /i, p1, p2, /...

The entries and qualifiers for each special refinery property are given in Table 8-5.

Table 8-5: Special Refinery Property Data Entries

Property Qualifier1 Basis1 Unit NCFILL NCBLEND

KVIS — M or WT or LV

kvis-unit SIMSCI or ZERO or NOFILL or API

MISS or ZERO or EXCL

POUR — M or WT or LV

temp API or ZERO or NOFILL

MISS or ZERO or EXCL

CLOU — M or WT or LV

temp ZERO or NOFILL

MISS or ZERO or EXCL

FZPT — M or WT or LV

temp ZERO or NOFILL

MISS or ZERO or EXCL

CFPP — M or WT or LV

temp ZERO or NOFILL

MISS or ZERO or EXCL

FLPT — M or WT or LV

temp ZERO or NOFILL

MISS or ZERO or EXCL

RON C or L M or WT or LV

— ZERO or NOFILL

MISS or ZERO or EXCL

MON C or L M or WT or LV

— ZERO or NOFILL

MISS or ZERO or EXCL

1 For those properties with bases “frac,” “ppm,” or “pct,” any one of these three bases may be specified. The basis “frac” or “ppm” or pct” indicated is the default for that property.

II-8-18 Transport and Special Properties

Page 303: Manual de Modelos Termodinamicos

CETA — — No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

CETN — M or WT or LV

— ZERO or NOFILL

MISS or ZERO or EXCL

REFR C20 or C70 M or WT or LV

— ZERO or NOFILL or API

MISS or ZERO or EXCL

ANIL — M or WT or LV

No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

AROM TOTA or RING

M or WT or LV, frac

— ZERO or NOFILL or SIMSCI

MISS or ZERO or EXCL

OLEF MONO M or WT or LV, frac

— ZERO or NOFILL or SIMSCI

WTAR — — No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

NAPH — M or WT or LV, frac

— ZERO or NOFILLor SIMSCI

MISS or ZERO or EXCL

PARA TOTA or ISO

M or WT or LV, frac

— ZERO or NOFILL or SIMSCI

MISS or ZERO or EXCL

Table 8-5: Special Refinery Property Data Entries

Property Qualifier1 Basis1 Unit NCFILL NCBLEND

1 For those properties with bases “frac,” “ppm,” or “pct,” any one of these three bases may be specified. The basis “frac” or “ppm” or pct” indicated is the default for that property.

PRO/II Thermodynamic Data Keyword Input Manual II-8-19

Page 304: Manual de Modelos Termodinamicos

WTNA — — No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

WTPA — — No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

NPHL M or WT or LV

M or WT or LV

No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

H2 — WT, frac — SIMSCI ZERO or NOFILL

MISS or ZERO or EXCL

CARB — WT, frac — SIMSCI ZERO or NOFILL

MISS or ZERO or EXCL

CHRA — WT — SIMSCI ZERO or NOFILL

MISS or ZERO or EXCL

SMOK — M or WT or LV

— NELSON or ZERO or SIMSCI or NOFILL

MISS or ZERO or EXCL

LUMI — M or WT or LV

No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

SULF — M or WT or LV, frac

— ZERO or NOFILL

MISS or ZERO or EXCL

Table 8-5: Special Refinery Property Data Entries

Property Qualifier1 Basis1 Unit NCFILL NCBLEND

1 For those properties with bases “frac,” “ppm,” or “pct,” any one of these three bases may be specified. The basis “frac” or “ppm” or pct” indicated is the default for that property.

II-8-20 Transport and Special Properties

Page 305: Manual de Modelos Termodinamicos

MERC — WT, frac No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

ASUL — WT No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

NITR TOTA or BASI or NONB

TOTA or BASI or NONB

—ZERO or NOFILL

MISS or ZERO or EXCL

OXYG — WT, frac — ZERO or NOFILL

MISS or ZERO or EXCL

CCR — M or WT or LV, frac

— ZERO or NOFILL

MISS or ZERO or EXCL

NICK — WT, frac — ZERO or NOFILL

MISS or ZERO or EXCL

VANA — WT, frac — ZERO or NOFILL

MISS or ZERO or EXCL

IRON — WT No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

ASPH C5 or C7 WT, frac — ZERO or NOFILL

MISS or ZERO or EXCL

PHEN — WT No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

Table 8-5: Special Refinery Property Data Entries

Property Qualifier1 Basis1 Unit NCFILL NCBLEND

1 For those properties with bases “frac,” “ppm,” or “pct,” any one of these three bases may be specified. The basis “frac” or “ppm” or pct” indicated is the default for that property.

PRO/II Thermodynamic Data Keyword Input Manual II-8-21

Page 306: Manual de Modelos Termodinamicos

The program provides default values for GAMMA, REFINDEX, and REFVALUE for properties CLOU, POUR, FLSH, and KVIS only. These default values are given in Table 8-6.

ANEU — WT or LV No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

BROM — WT or LV No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

WAX — WT, frac — ZERO or NOFILL

MISS or ZERO or EXCL

ASH — WT, frac — ZERO or NOFILL

MISS or ZERO or EXCL

SOFT WT or LV WT or LV No GAMMA, REFI, or REFV entries allowed

ZERO or NOFILL

MISS or ZERO or EXCL

IBP — — temp SIMSCI —

FBP — — temp SIMSCI —

PEN M or WT or LV

M or WT or LV

— ZERO or NOFILL

MISS or ZERO or EXCL

Note: For the properties NOAC, MEAB, CABP, MOAB, and NHV no individual component data entries are possible. There-fore these properties do not require a special methods data state-ment.

Table 8-5: Special Refinery Property Data Entries

Property Qualifier1 Basis1 Unit NCFILL NCBLEND

1 For those properties with bases “frac,” “ppm,” or “pct,” any one of these three bases may be specified. The basis “frac” or “ppm” or pct” indicated is the default for that property.

II-8-22 Transport and Special Properties

Page 307: Manual de Modelos Termodinamicos

Table 8-6: Default GAMMA, REFI, and REFV values for CLOU, POUR, FLSH, KVIS

property GAMMA REFINDEX

REFVALUE

CLOU 0.05 10000 333.15 (degrees K)

POUR 0.08 10000 333.15 (degrees K)

FLSH -0.06 10000 255.372 (degrees K)

KVIS -3.5 71.5 1.0 (centistoke)

For user-defined special refinery properties, the data statement is:

SPROP(M or WT or LV, frac, i) {GAMMA=value, REFINDEX=value, REFVALUE=value, NAME=text}

DATA i, datvalue/... INDEX i, indvalue/ ...

SPROP The user-defined special refinery property may be supplied on a molar, weight, or liquid volume basis.

i This integer value must be supplied and may be any number between 1 and 9999. The total number of SPROPs defined in any given problem must be less than or equal to 60.

NAME This entry is valid only for the SPROP statement and is used to supply a descriptive name for the user-defined special stream property. It may contain up to 24 alphanumeric characters including embedded blanks, but excluding delimiters. It serves only to identify the user-defined stream property in the stream summary, and does not have to be unique.

The following keyword descriptions apply to all the property data statements outlined in Table 8-5:

PRO/II Thermodynamic Data Keyword Input Manual II-8-23

Page 308: Manual de Modelos Termodinamicos

GAMMA, REFINDEX,REFVALUE

These entries must be supplied if the INDEX or SIMSCI stream mixing method is chosen on the METHOD statement. These entries are used to determine the inter-relationship between a property value and its corresponding index value. The equations used to convert from data value to index depends on the property. These equations (1-3) are given on page 8-16.

NCFILL Estimates refinery properties for narrow cuts generated from assay streams or PETRO components. For all special refinery properties except NOAC, MEAB, CABP, MOAB, and NHV, properties for narrow cuts may be estimated using the ZERO or NOFILL options.

ZERO Any missing data is set to 0.0.

NOFILL Any missing data is flagged with a warning message before being set to 0.0.

SIMSCI This fill option is available for KVIS, SMOK, H2, CARB, CHRA property methods. For KVIS, the Twu method is used to fill in missing data. For H2 and CARB, the missing data are estimated from the carbon-hydrogen ratio. For CHRA, the missing data are estimated from the Twu correlation for the number of carbon and hydrogen atoms.

NELSON This fill option is available for the SMOK method.

API This fill option is available for KVIS, POUR, REFR methods.

KSLA This fill option uses KSLA (option 26) methods to supply missing values.

NCBLEND

There are three options for filling in missing data when assay streams are blended. For all special refinery properties except NOAC, MEAB, CABP, MOAB, and NHV, the fill options for blending streams are ZERO, EXCLUDE, and MISSING.

ZERO Missing property data for narrow assay cuts is set to 0.0

EXCLUDE

The narrow cuts in the assay with no data are excluded from the blend when calculating the blended narrow cut property.

MISSING

The blended narrow cut property data is set to missing if any narrow cut in the blend has missing data.

II-8-24 Transport and Special Properties

Page 309: Manual de Modelos Termodinamicos

Most of the special properties shown in Table 8-5 may be defined on a molar (M) or weight (WT) or liquid volume (LV) basis.

The following section describes the other unique qualifiers avail-able for RON, MON, AROM, NITR, ASPH, and REFR:

For RON and MON:

L Leaded Ä 3 ml of lead tetraethyl added. C Unleaded.

For AROM:

TOTA Total aromatic content. RING Aromatic ring content.

DATA, INDEX

These entries are used to provide data or index values for stream special properties on a component basis. The unit qualifier on the DATA entry need not be consistent with property qualified on the REFVALUE keyword. The “kvisunit” qualifier for kinematic viscosity may be either CST (centistokes), IN/S (inch per second), or ST (stokes). If the unit qualifier is not given, the property unit defaults to input units based on the special property units. A data and an index entry cannot be given for the same component. The data and index values are related by the equations (1), (2) and (3) above.

t1, t2 These are the temperatures at which kinetic viscosity data and/or index values will be supplied. The tunit qualifier applies to t1 and t2 for temperatures. A maximum of two temperatures may be entered. If t2 is not given, it is set equal to t1. t1 and t2 must be the same for entries on the DATA and INDEX keywords in the same KVIS statement.

i This number provides the component id number.

p1, p2 These entries provide the kinematic viscosity data or index values at temperatures t1 and t2. If only one temperature (t1) is given, p2 entries are not allowed and are set internally equal to p1.

PRO/II Thermodynamic Data Keyword Input Manual II-8-25

Page 310: Manual de Modelos Termodinamicos

For NITR:

TOTA Total nitrogen content. BASIC Basic nitrogen content. NONB Non-basic content.

For ASPH:

C5 Measurements taken using a pentane-based solvent.

C7 Measurements taken using a heptane-based solvent.

For REFR:

C20 Measurements taken at 20°C. C70 Measurements taken at 70°C.

Examples8.3: Estimate the kinematic viscosity, pour point temperature,

carbon to hydrogen ratio, carbon content, refractive index, hydrogen content and smoke point temperature for an assay stream at 100 F and 15 psig. Use the SIMSCI fill methods for KVIS, CHRA, H2, and CARB. Use the NELSON fill method for SMOK, and the API fill method for POUT and REFR.

II-8-26 Transport and Special Properties

Page 311: Manual de Modelos Termodinamicos

TITLE PROB=SPECIAL DIME LIQVOL=BBL

COMPONENT DATA LIBID 1,H2O/ 2,C2/ 3,C3/ 4,IC4/ 5,NC4/ 6,PENTANE

THERMODYNAMIC DATA METHOD SYSTEM=SRKM, KVIS=INDEX, POUR=INDEX, &

CHRA=SUM, CARB=SUM, REFR=SUM, H2=SUM, & SMOK=SUM

KVIS NCFILL=SIMSCI POUR NCFILL=API REFR NCFILL=API SMOK NCFILL=NELSON CARB NCFILL=SIMSCI H2 NCFILL=SIMSCI CHRA NCFILL=SIMSCI

STREAM DATAPROP STREAM=1, TEMP=375, PRES=300, ASSAY=LV, &

RATE(LV)=3125 API STREAM=1, DATA=11.6,80.01/ 21.6,62.9/ 41.7,50.6/ &

61.9,38.2/ 3.8,27.5, AVG=45.37LIGHT STREAM=1, PERC(LV)=10.4, &

COMP(LV)=2, 0.1/ 1.4/ 0.65/ 3.15/ 5.0, NORMD86 STREAM=1, DATA= 8, 135/ 25, 210/ 43, 370/ 67, 565/ &

5, 665/ 82, 800/ 92, 990 UNIT OPERATION

FLASH UID=FLSHFEED 1PROD V=2, L=3ISO TEMP=100, PRES=15

END

PRO/II Thermodynamic Data Keyword Input Manual II-8-27

Page 312: Manual de Modelos Termodinamicos

II-8-28 Transport and Special Properties

Page 313: Manual de Modelos Termodinamicos

Chapter 9 Method-specific Pure Component Data

The calculation of thermodynamic properties requires various pure component data, e.g., critical temperature and pressure and liquid molar volume. The component data statements required for each thermodynamic generator are outlined in this section. Data are nor-mally found in the libraries or supplied in the Component Data Cat-egory. Supplying data in the Thermodynamic Data Category allows for the user to override pure component data within each individual method set.

Method-specific Pure Component Data

Typical Usage

...COMPONENT DATA

LIBID 1, IC4/ 2, NC4/ 3, NC5THERMO DATA

METHOD SYSTEM=SRKKVALUE TC 1, 373

STREAM DATA . . .

General InformationThe calculation of thermodynamic properties requires various pure component property data. The exact property data required depend on the thermodynamic methods that are selected. For example, the Soave modified Redlich-Kwong equation of state requires pure

PRO/II Thermodynamic Data Keyword Input Manual II-9-1

Page 314: Manual de Modelos Termodinamicos

component critical temperatures, pressures and acentric factors, but not normal boiling points. Components chosen from the SimSci library or characterized from assay data normally contain all the component data required. Non-library components must be given all the user-supplied pure component property data required for the thermodynamic method(s) selected.

Data are normally found in the libraries or supplied in the Compo-nent Data Category. Supplying data in the Thermodynamic Data Category allows for the user to override pure component data within each individual method set.

Input Description

The METHOD StatementMETHOD ..., property=method, ...

property data(unit) i, value/j,value/...

property This selects the thermodynamic property for which data are to be supplied. For example, this property could be the vapor density (DENSITY(V)). The calculation method could be the Soave modified Redlich-Kwong equation of state (SRK).

data This statement is used for inputting the data for the property method selected. Any data supplied here are used in preference to data supplied elsewhere or retrieved from data-banks. The hierarchy of data selection is discussed later on in this section. The keywords allowed for this entry appear on the following page.

Note: Data statements must appear immediately after a property statement. The data statement, property statement and method statement must all refer to the same property and method. Except for the K-value property, the values supplied on the data statement apply only to that property method calculation. They do not act as default values for any other property calculations. However, if values are supplied on the data statement only for the K-value property, these values act as defaults for other property calcula-tions using the same method.

II-9-2 Method-specific Pure Component Data

Page 315: Manual de Modelos Termodinamicos

Table

Meth q ρ

IDEA

GS

CS

IGS

GSE

CSE

CP C

BK1

JG

LK

API

RAC

COS

LIBR

The pure component data required for each generator are given in Table 9-1. Only temperature independent data may be given in the Thermodynamic Data Category. See “Solid Component Properties” and “Component Properties” in Volume I, for further details on for-mat and definition of these data entries.

HierarchyThe hierarchy that governs the use of pure component data is:

1. Any method-specific data supplied on the data statements for each property in each method set.

2. Applicable default values supplied on data statements follow-ing a KVALUE statement in the same method set.

3. Data supplied in the COMPONENT DATA statement.

4. Data stored in the component libraries as selected using the BANK option.

If data are still missing after steps 1-4 are completed, an error mes-sage is printed and the program is terminated after input processing is completed.

9-1: Required Pure Component Data For Property GeneratorsGeneralized Correlation Methods

od Tc Pc ω MV Vc Zc Zra vdW DM Rad NBP SP η μ κ α DataSPGR

orAPI

VP H0 Hvap Hli

L C C C C

X X X X X C C

X X X X X C C

X X X X X C C

X X X X X C C

X X X X X C C

X X X C C C

0 X X X X C

X X X C

X X X C C

C C C C

KETT X X X X C

TALD X X C

ARY C

PRO/II Thermodynamic Data Keyword Input Manual II-9-3

Page 316: Manual de Modelos Termodinamicos

Meth q ρ

SRKKH

SRKKS

PR,PM

UNIW

BWR

HEX

Meth q ρ

NRT C

UNIQUNQ

C

UNIF C

UFT C

UNF C

WILS C

VAN C

MAR C

REG C

FLOR C

HOC

TVIR

Meth q ρ

ALC C

GLY

SOU

GPSW

AMI

Table

Equation of State Methods

od Tc Pc ω MV Vc Zc Zra vdW DM Rad NBP SP η μ κ α DataSPGR

orAPI

VP H0 Hvap Hli

,SRKKD,SR X X X C C

P,SRKM,SR X X X C C

RH,PRP,PR X X X C C

AALS X X X C C

S X X X C C

AMER X X X C C

Liquid Activity Methods

od Tc Pc ω MV Vc Zc Zra vdW DM Rad NBP SP η μ κ α DataSPGR

orAPI

VP H0 Hvap Hli

L C C C C

UAC, 4

C C C C C

AC C C C C C

1/2/3 C C C C C

V C C C C

ON X C C C C

LAAR C C C C

GULES C C C C

ULAR C C C C C C

Y C X C C C C

V X X X X C

IAL X X C

Special Packages

od Tc Pc ω MV Vc Zc Zra vdW DM Rad NBP SP η μ κ α DataSPGR

orAPI

VP H0 Hvap Hli

OHOL C C C C C

COL C C

R C C

ATER C C

NE C C

9-1: Required Pure Component Data For Property Generators

II-9-4 Method-specific Pure Component Data

Page 317: Manual de Modelos Termodinamicos

U1-U

Meth q ρ

VAN

SOL

VISC

CON

SUR

Table

15 C

Additional Thermodynamic Generators

od Tc Pc ω MV Vc Zc Zra vdW DM Rad NBP SP η μ κ α DataSPGR

orAPI

VP H0 Hvap Hli

THOFF C

DATA C

OSITY X C

DUCT X C

FACE X C

Table 9-2: Legend

Legend Keyword Description Legend Keyword Description

Tc TC Critical temperature κ CONDUCTIVITY Thermal conductivity

Pc PC Critical pressure σ SURFACE Surface tension

w ACENTRIC Acentric factor ρ DENSITY (L) Liquid density

MV MOLVOL Liquid molar volume Data DATA or Special property data/index values

Vc VC Critical volume INDEX

Zc ZC Critical compressibility factor X The user may supply these data either globally in the Component Data Category or locally for a given method set in the Thermo-dynamic Data Category.

Zra RACKETT Rackett parameter

vdW VANDERWAALS van der Waals area and volume

DM DIPOLE Dipole moment

Rad RADIUS Radius of gyration

NBP NBP Normal boiling point (temperature)

C The user may supply these data onlyin the Component Data Category.SP SOLUPARA Hildebrand solubility parameter

H0 ENTHALPY (V) Ideal vapor enthalpy

Hvap LATENT Latent heat of vaporization A The user may supply these data orindex values either globally in theComponent Data or Stream DataCategories or locally in the Thermo-dynamic Data Category for a givenmethod sets.

Hliq ENTHALPY (L) Saturated liquid enthalpies

VP VP Vapor pressure

SpGr SPGR Specific gravity

API API API gravity

η ETA Truncated virial equation coefficients

μ VISCOSITY Viscosity

9-1: Required Pure Component Data For Property Generators

PRO/II Thermodynamic Data Keyword Input Manual II-9-5

Page 318: Manual de Modelos Termodinamicos

Examples9.1: Using SRKM, model a 50/50 mix of normal butane and

normal hexane at 50 psia and 50% vaporization. Input critical temperature data for calculation of vapor densities for components propane and n-butane. Note that the critical temperatures supplied on the TC statement apply only to the vapor density calculations. They do not act as default values for any other property calculations.

TITLE PROB=COMPDATACOMPONENT DATA

LIBID 1,NC4/ 2,NC6 THERMODYNAMIC DATA

METHOD SYSTEM=SRKM DENSITY(V) TC(K) 1,373.15/2,401.6

STREAM DATAPROP STREAM=1, TEMP=100, PRES=100, &

COMP=50/50 UNIT OPERATION

FLASH UID=FLSHFEED 1PROD V=2, L=3TPSPEC PRES=50SPEC STREAM=2, RATE, RATIO, STREAM=1, &

RATE, VALUE=0.5END

II-9-6 Method-specific Pure Component Data

Page 319: Manual de Modelos Termodinamicos

9.2: Using the same problem as above, supply the cloud point index for component 1 and the cloud point temperature for component 2.

TITLE PROB=COMPDATA CALCULATION COMPOSITIONAL, SINGLE

FCODE PIPE=BBMDIMENSION ENGLISHDEFAULT TAMBIENT=65, ROUGH(IN)=0.001, IDPIPE(IN)=32SEGMENT DLVERTICAL=6, DLHORIZONTAL=150

COMPONENT DATALIBID 1,NC4/ 2,NC6

THERMODYNAMIC DATAMETHOD SYSTEM=SRKM, CLOUD=SIMSCI DENSITY(V)

TC(K) 1,373.15/2,401.6CLOUDINDEX 1,20DATA 2,50

STRUCTURE DATASOURCE NAME=1, TEMP=100, PRES=100, &

COMP=50/50 PIPE LENGTH=3800, ECHG=-100

END

PRO/II Thermodynamic Data Keyword Input Manual II-9-7

Page 320: Manual de Modelos Termodinamicos

II-9-8 Method-specific Pure Component Data

Page 321: Manual de Modelos Termodinamicos

Index

AAlcohol Dehydration Systems, 2-12Alcohols

ALCOHOL Databank Components, 5-8Attributes of the ALCOHOL Package, 5-2Enthalpy, Entropy, and Density Data, 5-7Examples, 5-11K-value Data, 5-4METHOD Statement, 5-2Method-specific Pure Component Properties, 5-10Typical Usage, 5-1

Alpha FormulationsEnthalpy, Entropy, and Density Data, 4-32Examples, 4-33General Information, 4-29K-value Data, 4-30Typical Usage, 4-29Vapor Phase Fugacity Data, 4-32

Amine Systems, 2-7Amines

Attributes of the AMINE Package, 5-25Enthalpy, Entropy, and Density Data, 5-27Examples, 5-28K-value Data, 5-26METHOD Statement, 5-26Method-specific Pure Component Properties, 5-28Typical Usage, 5-24

API Liquid DensityAttributes of, 3-26Examples, 3-27METHOD Statement, 3-26Typical Usage, 3-26

Application Guidelines, 2-1Chemical and Environmental Applications, 2-13Examples, 2-15Natural Gas Systems, 2-5Petrochemical Applications, 2-8Refinery and Gas Processing, 2-2

Aromatic Systems, 2-9Aromatic/Non-aromatic Systems, 2-9Associating Hexamer Equation Of State

Enthalpy, Entropy, and Density Data, 4-39Examples, 4-40K-value Data, 4-39

METHOD Statement, 4-38Method-specific Pure Component Properties, 4-40Typical Usage, 4-37

BBenedict-Webb-Rubin-Starling

Attributes of, 4-34Enthalpy, Entropy, and Density Data, 4-35Examples, 4-36K-value Data, 4-35METHOD Statement, 4-34Method-specific Pure Component Properties, 4-36Typical Usage, 4-33Water Handling Options, 4-36

Binary Interaction DataBWRS Equation of State Data, 1-6Hayden-O’Connell Data, 1-7HEXAMER Equation of State Data, 1-6IDIMER Data, 1-7LKP Equation of State Data, 1-6Redlich-Kister Excess Properties Data, 1-7Truncated Virial Data, 1-7

Braun K10Attributes of, 3-18Examples, 3-19METHOD Statement, 3-19Method-specific Pure Component Properties, 3-19Typical Usage, 3-18Water Handling Options, 3-19

CCarboxylic Acid Systems, 2-14CHAO-SEADER

Examples, 3-10Method-specific Pure Component Properties, 3-9

Chao-SeaderAttributes of, 3-8METHOD Statement, 3-9Typical Usage, 3-8Water Handling Options, 3-9

Chemical and Environmental ApplicationsCarboxylic Acid Systems, 2-14

PRO/II Component and Thermophysical Properties Reference Manual 1

Page 322: Manual de Modelos Termodinamicos

Environmental Applications, 2-14Non-Ionic Systems, 2-13Solid Applications, 2-15

Costald Liquid DensityAttributes of, 3-30Examples, 3-31Input Description, 3-30METHOD Statement, 3-30Method-specific Pure Component Properties, 3-30Typical Usage, 3-30

Curl-PitzerAttributes of, 3-15Examples, 3-16METHOD Statement, 3-15Method-specific Pure Component Properties, 3-16Typical Usage, 3-15

EEntropy

Features that Require Entropy, 1-20Environmental Applications, 2-14Equations of State, 4-1

Associating Hexamer Equation Of State, 4-37Benedict-Webb-Rubin-Starling, 4-33Cubic Equation Of State Alpha Formulations, 4-29Filling in Missing Parameters, 4-27Lee-Kesler-Plocker, 4-41Modified SRK and PR, 4-13Peng-Robinson, 4-7Soave Modified Redlich-Kwong, 4-1UNIWAALS, 4-23

ExamplesAlcohol, 5-11Alpha Formulations, 4-33API Liquid Density, 3-27Associating Hexamer Equation Of State, 4-40Benedict-Webb-Rubin-Starling, 4-36Braun K10, 3-19CHAO-SEADER, 3-10Chemical and Environmental Application, 2-18Costald Liquid Density, 3-31Cubic Equation Of State Alpha Formulations, 4-33Curl-Pitzer, 3-16Filling in Missing Parameters for Liquid Activity

Methods, 6-60Flory-Huggins, 6-55Free-water Decant, 1-34Glycol, 5-16GPA Sour Water, 5-24Grayson-Streed Method, 3-6

Hayden-O’Connell Vapor Fugacity, 6-72Henry’s Law, 6-68Ideal Methods, 3-3IDIMER Vapor Fugacity, 6-79Johnson-Grayson, 3-22Lee-Kesler, 3-25Lee-Kesler-Plocker, 4-44Margules, 6-45Method-specific Pure Component Data, 9-6Minimum Required User Input, 1-13Modifications to GS and CS, 3-13Modifications to UNIFAC, 6-35Modified Soave-Redlich-Kwong and Peng-

Robinson, 4-20Multiple Thermodynamic Sets, 1-30Natural Gas Application, 2-17NRTL, 6-6Peng-Robinson, 4-11Petrochemical Application, 2-18Rackett Liquid Density, 3-29Redlich-Kister, Gamma Heat of Mixing, 6-83Refinery Application, 2-16Regular Solution, 6-49Soave Modified Redlich-Kwong, 4-5Soave Redlich-Kwong, 4-5Solid Application, 2-19Sour Water, 5-20Sour Water Application, 2-16Special Properties, 8-25Transport Properties, 8-8Truncated Virial Vapor Fugacity, 6-75UNIFAC, 6-21UNIQUAC, 6-14UNIWAALS, 4-26User-added Subroutines, 5-32User-supplied K-value Data, 3-34User-supplied Solubility, 7-5Van Laar, 6-40Van’t Hoff Solubility, 7-3Vapor-liquid-liquid Equilibrium

Considerations, 1-41

FFCCU, 2-3Filling in Missing Parameters

Attributes of the FILL Option for Liquid Activity Methods, 6-58

Cubic Equations of State FILL options, 4-28Data Estimation Options for Liquid Activity

Methods, 6-60Examples for Liquid Activity Methods, 6-60

2

Page 323: Manual de Modelos Termodinamicos

General Information for Liquid Activity Methods, 6-57

K-value Data for Cubic EOS, 4-28K-value Data for Liquid Activity Methods, 6-58METHOD Statement for Cubic EOS, 4-28METHOD Statement for Liquid Activity

Methods, 6-58Typical Usage for Cubic EOS, 4-27Typical Usage for Liquid Activity Methods, 6-57

Flory-HugginsAttributes of FLORY Methods, 6-51Examples, 6-55K-value Data, 6-52METHOD Statement, 6-51Method-specific Pure Component Properties, 6-54Typical Usage, 6-50

Free-water Decant Considerations, 1-31Examples, 1-34General Information, 1-31Water Handling Statement, 1-32

GGeneralized Correlations

API Liquid Density, 3-26Braun K10, 3-18Chao-Seader, 3-8Costald Liquid Density, 3-30Curl-Pitzer, 3-15Grayson-Streed, 3-4Ideal and Library Methods, 3-1Ideal Methods, 3-1Johnson-Grayson, 3-21Lee-Kesler, 3-23Library Methods, 3-1Modifications to GS and CS, 3-11Rackett Liquid Density, 3-28Typical Usage, 3-1User-supplied K-value Data, 3-32

Glycol Dehydration Systems, 2-6Glycols

Attributes of the GLYCOL Package, 5-12Components Available for GLYCOL Package, 5-

15Enthalpy, Entropy, and Density Data, 5-15Examples, 5-16K-value Data, 5-13METHOD Statement, 5-13Method-specific Pure Component Properties, 5-16Typical Usage, 5-12

GPA Sour Water

Attributes of GPSWATER Package, 5-21Enthalpy, Entropy, and Density Data, 5-22Examples, 5-24METHOD Statement, 5-22Method-specific Pure Component Properties, 5-23Typical Usage, 5-21

Grayson-StreedAttributes of, 3-5METHOD Statement, 3-5Typical Usage, 3-4Water Handling Options, 3-6

Grayson-Streed MethodExamples, 3-6Method-specific Pure Component Properties, 3-6

HHayden-O’Connell Vapor Fugacity

Attributes of the HOCV Vapor Fugacity Method, 6-69

Enthalpy, Entropy and Density Data, 6-71Examples, 6-72K-value Data, 6-70METHOD Statement, 6-69Method-specific Pure Component Properties, 6-71Typical Usage, 6-68Vapor Fugacity Data, 6-70

Henry’s LawAttributes of the Henry’s Law Option, 6-62Examples, 6-68Henry’s Law Data, 6-66Henry’s Law Package Available Pairs, 6-64METHOD Statement, 6-63Method-specific Pure Component Properties, 6-67Typical Usage, 6-62

Hierarchy of Pure Component Data, 9-3High Pressure Crude Systems, 2-3Hydrofiners, 2-4

IIdeal Method

Attributes of, 3-2METHOD Statement, 3-2

Ideal MethodsExamples, 3-3

IDIMER Vapor FugacityAttributes of, 6-76Enthalpy, Entropy and Density Data, 6-78

PRO/II Component and Thermophysical Properties Reference Manual 3

Page 324: Manual de Modelos Termodinamicos

Examples, 6-79K-value Data, 6-77METHOD Statement, 6-77Typical Usage, 6-76Vapor Fugacity Data, 6-78

Input Description, 1-21

JJohnson-Grayson

Attributes of, 3-21Examples, 3-22METHOD Statement, 3-21Method-specific Pure Component Properties, 3-22Typical Usage, 3-21

LLee-Kesler

Attributes of, 3-23Examples, 3-25METHOD Statement, 3-24Method-specific Pure Component Properties, 3-24Typical Usage, 3-23

Lee-Kesler-PlockerAttributes of, 4-42Enthalpy, Entropy, and Density Data, 4-44Examples, 4-44K-value Data, 4-43METHOD Statement, 4-42Method-specific Pure Component Properties, 4-44Typical Usage, 4-41

Library MethodAttributes of, 3-2METHOD Statement, 3-2

Light Hydrocarbon Systems, 2-8Liquid Activity Methods

Filling in Missing Parameters, 6-57Flory-Huggins, 6-50Hayden-O’Connell Vapor Fugacity, 6-68Henry’s Law, 6-62IDIMER Vapor Fugacity, 6-76Margules, 6-41Modifications to UNIFAC, 6-22NRTL, 6-1Redlich-Kister, Gamma Heat of Mixing, 6-80Regular Solution, 6-46Truncated Virial Vapor Fugacity, 6-72UNIFAC, 6-14UNIQUAC, 6-7

Van Laar, 6-35Wilson, 6-30

Liquid Phase Activity Binary Interaction DataFlory-Huggins Data, 1-8Henry’s Law Data, 1-9Margules Data,, 1-8NRTL Data, 1-8Other Binary Data for Liquid Activity

Methods, 1-8UNIFAC Group Contribution Data, 1-9UNIQUAC Data, 1-8UNIWAALS Modified Group Contribution

Interaction Data, 1-9Van Laar Data, 1-8Wilson Data, 1-8

Low Pressure Crude Systems, 2-3Lube Oil Units, 2-4

MMain Coker Fractionators, 2-3Margules

Attributes of MARGULES Methods, 6-41Examples, 6-45K-value Data, 6-43METHOD Statement, 6-42Method-specific Pure Component Properties, 6-45Typical Usage, 6-41

METHOD Statement, 1-3Method-specific Pure Component Data, 1-11, 9-1

Examples, 9-6General Information, 9-1Hierarchy, 9-3METHOD Statement, 9-2Typical Usage, 9-1

Method-specific Water Handling Options, 1-4Minimum Required User Input, 1-12Modifications to GS and CS

Attributes of the Modified GS and CS Methods, 3-12

Erbar modifications to Grayson-Streed and Chao-Seader, 3-12

Examples, 3-13Improved Grayson-Streed, 3-12METHOD Statement, 3-12Method-specific Pure Component Properties, 3-13Typical Usage, 3-11Water Handling Options, 3-13

Modifications to UNIFACAttributes of Modified UNIFAC Methods, 6-23

4

Page 325: Manual de Modelos Termodinamicos

Examples, 6-35K-value Data, 6-25METHOD Statement, 6-23Method-specific Pure Component Properties, 6-

29, 6-34Typical Usage, 6-22UFT1-Lyngby modified UNIFAC, 6-25UFT2-Dortmund modified UNIFAC, 6-25UFT3-Modified UNIFAC, 6-25UNFV-Free Volume modification, 6-25

Modified SRK and PREnthalpy, Entropy, and Density Data, 4-19Examples, 4-20Huron-Vidal modifications to PR, 4-15Huron-Vidal modifications to SRK, 4-14Kabadi-Danner modifications to SRK, 4-15K-value Data, 4-16METHOD Statement, 4-14Method-specific Pure Component Properties, 4-19Modified Panagiotopoulos-Reid modifications to

PR, 4-15Modified Panagiotopoulos-Reid modifications to

SRK, 4-14Panagiotopoulos-Reid modifications to PR, 4-16SimSci modifications to SRK, 4-15Typical Usage, 4-13

Multiple Thermodynamic Sets, 1-28Avoiding Inconsistent Methods, 1-29Default Method Set, 1-28Examples, 1-30General Information, 1-28Method Set Requirements, 1-29Multiple Method Sets in Distillation Columns, 1-

29

NNatural Gas Systems, 2-5

Amine Systems, 2-7Glycol Dehydration Systems, 2-6Sour Water Systems, 2-7

Non-hydrocarbon Systems, 2-10Non-Ionic Systems, 2-13Notes Statement, 1-3, 1-12NRTL

Attributes of NRTL methods, 6-2Examples, 6-6K-value Data, 6-3METHOD Statement, 6-2Method-specific Pure Component Properties, 6-6Typical Usage, 6-1

OOrder of Input, 1-15

PPeng-Robinson, 4-7

Enthalpy, Entropy, and Density Data, 4-10Examples, 4-11K-value Data, 4-9METHOD Statement, 4-8Method-specific Pure Component Properties, 4-11Typical Usage, 4-7Water Handling Options, 4-11

Petrochemical ApplicationsAlcohol Dehydration Systems, 2-12Aromatic Systems, 2-9Aromatic/Non-aromatic Systems, 2-9HF Systems, 2-12Light Hydrocarbon Systems, 2-8Non-hydrocarbon Systems, 2-10

Predefined Systems, 1-25Property Statements

Density Options, 1-5Diffusivity Options, 1-5Enthalpy Options, 1-6Entropy Options, 1-6Henry’s Law Options, 1-5Liquid-Liquid Equilibrium Options, 1-5Solid-Liquid Equilibrium Options, 1-5Vapor Fugacity Options, 1-5Vapor-Liquid Equilibrium Options, 1-4

Pure Component Alpha Formulations, 1-10

RRackett Liquid Density

Examples, 3-29Input Description, 3-28METHOD Statement, 3-28Method-specific Pure Component Properties, 3-28Typical Usage, 3-28

Redlich-Kister, Gamma Heat of MixingAttributes of, 6-80Enthalpy Data, 6-81Examples, 6-83METHOD Statement, 6-80Typical Usage, 6-80

Refinery and Gas Processing, 2-2

PRO/II Component and Thermophysical Properties Reference Manual 5

Page 326: Manual de Modelos Termodinamicos

Refinery and Gas Processing ApplicationsFCCU, 2-3High Pressure Crude Systems, 2-3Low Pressure Crude Systems, 2-3Lube Oil and Solvent De-asphalting Units, 2-4Main Coker Fractionators, 2-3Reformers and Hydrofiners, 2-4Water Handling, 2-2

Reformers, 2-4Regular Solution

Attributes of REGULAR Methods, 6-46Examples, 6-49K-value Data, 6-48METHOD Statement, 6-47Method-specific Pure Component Properties, 6-49Typical Usage, 6-46

SSelecting Individual Methods, 1-3Soave Redlich-Kwong, 4-1

Attributes of, 4-2Enthalpy, Entropy, and Density Data, 4-4Examples, 4-5K-value Data, 4-3METHOD Statement, 4-2Method-specific Pure Component Properties, 4-5Typical Usage, 4-1Water Handling Options, 4-5

Solid Applications, 2-15Solid Solubility Methods, 7-1

User-supplied Solubility, 7-3Van’t Hoff Solubility, 7-1

Solvent De-asphalting Units, 2-4Sour Water, 5-17

Attributes of SOUR Package, 5-18Enthalpy, Entropy, and Density Data, 5-19Examples, 5-20METHOD Statement, 5-18Method-specific Pure Component Properties, 5-20Typical Usage, 5-17

Sour Water Systems, 2-7Special Packages

Alcohols, 5-1Amines, 5-24Glycols, 5-12GPA Sour Water, 5-21Sour Water, 5-17User-added Subroutines, 5-29

Special Properties, 8-10

Examples, 8-25General Information, 8-10Keywords for Special Stream Refinery

Properties, 8-11METHOD Statement, 8-12Special Property Methods Data, 8-17Special Refinery Property Entries, 8-13Typical Usage, 8-10

Special Property Methods Data, 1-10SRK or PR Equation of State Interaction

Parameters, 1-7Systems of Thermodynamic Methods, 1-26

TThermodynamic Data

General Information, 1-1Thermodynamic Generators, 1-18Thermodynamic Sets, 1-16Transport Properties, 8-1

Diffusivity Data, 8-7Examples, 8-8General Information, 8-1METHOD Statement, 8-2Method-specific Pure Component Properties, 8-8Typical Usage, 8-1User-supplied Conductivity Data, 8-7User-supplied Surface Tension Data, 8-7User-supplied Viscosity Data, 8-7

Truncated Virial Vapor FugacityAttributes of the TVIRIAL Vapor Fugacity

Method, 6-73Examples, 6-75K-value Data, 6-74METHOD Statement, 6-73Method-specific Pure Component Properties, 6-75Typical Usage, 6-72Vapor Fugacity Data, 6-74

UUNIFAC

Attributes of UNIfAC Methods, 6-15Available UNIFAC Interaction Parameters, 6-21Examples, 6-21K-value Data, 6-17METHOD Statement, 6-16Method-specific Pure Component Properties, 6-20Typical Usage, 6-14

UNIQUAC

6

Page 327: Manual de Modelos Termodinamicos

Attributes of UNIQUAC Methods, 6-8Examples, 6-14K-value Data, 6-9METHOD Statement, 6-8Method-specific Pure Component Properties, 6-12Typical Usage, 6-7

UNIWAALS, 4-23Attributes of, 4-23Enthalpy, Entropy, and Density Data, 4-25Examples, 4-26K-value Data, 4-24METHOD Statement, 4-24Method-specific Pure Component Properties, 4-26Typical Usage, 4-23

User-added Subroutine Data, 1-11User-added Subroutines

Attributes of, 5-29Enthalpy, Entropy, and Density Data, 5-31Examples, 5-32K-value Data, 5-31METHOD Statement, 5-31Typical Usage, 5-29, 5-32

User-supplied K-value Data, 1-6Attributes of, 3-32Examples, 3-34Input Description, 3-33K-value Data (required), 3-33METHOD Statement, 3-33Typical Usage, 3-32

User-supplied SolubilityExamples, 7-5General Information, 7-3K-value Data, 7-4METHOD Statement, 7-4Typical Usage, 7-3

VVan Laar

Attributes of VANLAAR Methods, 6-36Examples, 6-40K-value Data, 6-37METHOD Statement, 6-36Method-specific Pure Component Properties, 6-39Typical Usage, 6-35

Van’t Hoff SolubilityExamples, 7-3General Information, 7-1METHOD Statement, 7-2Typical Usage, 7-1

Vapor-liquid-liquid Equilibrium Considerations, 1-34Available Databanks, 1-36Declaring a VLLE set, 1-34Examples, 1-41K-value Data, 1-40METHOD Statement, 1-40Specifying Key Components, 1-38Specifying Separate VLE and LLE Models, 1-38VLLE Predefined Systems and K-value

Generators, 1-35

WWater Handling, 2-2

PRO/II Component and Thermophysical Properties Reference Manual 7

Page 328: Manual de Modelos Termodinamicos

8