571

Manual Cmos

Embed Size (px)

Citation preview

Master Index Product Selection Guide The Better Program B and UB Series Family Data CMOS Handling and Design Guidelines Data Sheets CMOS Reliability Equivalent Gate Count Packaging Information Including Surface Mounts

1 2 3 4 5 6 7 8 9

DATA CLASSIFICATIONProduct PreviewThis heading on a data sheet indicates that the device is in the formative stages or in design (under development). The disclaimer at the bottom of the first page reads: This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Advance InformationThis heading on a data sheet indicates that the device is in sampling, preproduction, or first production stages. The disclaimer at the bottom of the first page reads: This document contains information on a new product. Specifications and information herein are subject to change without notice.

Fully ReleasedA fully released data sheet contains neither a classification heading nor a disclaimer at the bottom of the first page. This document contains information on a product in full production. Guaranteed limits will not be changed without written notice to your local Motorola Semiconductor Sales Office.

ii

MOTOROLA CMOS LOGIC DATA

CMOS LOGIC DATAPrepared by Technical Information Center This book presents technical data for the broad line of CMOS logic integrated circuits and demonstrates Motorolas continued commitment to MetalGate CMOS. Complete specifications are provided in the form of data sheets. In addition, a Product Selector Guide and a Handling and Design Guidelines chapter have been included to familiarize the user with these circuits. Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Printed in U.S.A.

Series C MOTOROLA INC., 1991 Previous Edition 1990 All Rights Reserved

MOTOROLA CMOS LOGIC DATA

iii

iv

MOTOROLA CMOS LOGIC DATA

Master Index

1

MASTER INDEXThis index includes Motorolas entire MC14000 series CMOS products, although this book contains data sheets for Logic Devices only. Data sheets for devices in the CMOS/NMOS Special Functions Data book (DL130) are designated in the page number column as SF. Products which have been cancelled are designated in the page number column as . Device MC14000UB MC14001B MC14001UB MC14002B MC14002UB MC14006B MC14007UB MC14008B MC14011B MC14011UB MC14012B MC14012UB MC14013B MC14014B MC14015B MC14016B MC14017B MC14018B MC14020B MC14021B MC14022B MC14023B MC14023UB MC14024B MC14025B MC14025UB MC14027B MC14028B MC14029B MC14032B MC14034B MC14035B MC14038B MC14040B MC14042B MC14043B MC14044B MC14046BCHAPTER 1 12

Function Page Dual 3Input NOR Gate Plus Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Quad 2Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Quad 2Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Dual 4Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Dual 4Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 18Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619 Dual Complementary Pair Plus Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 4Bit Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 Quad 2Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Quad 2Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Dual 4Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Dual 4Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Dual D FlipFlop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 8Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 Dual 4Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641 Quad Analog Switch/Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 Decade Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 Presettable DividebyN Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 14Bit Binary Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 8Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 Octal Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 Triple 3Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Triple 3Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 7Stage Ripple Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 Triple 3Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Triple 3Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Dual JK FlipFlop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677 BCDtoDecimal/BinarytoOctal Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 681 Presettable Binary/BCD Up/Down Counter . . . . . . . . . . . . . . . . . . . . . . . . . . 686 Triple Serial Adder (Positive Logic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 8Bit Universal Bus Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 4Bit Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6104 Triple Serial Adder (Negative Logic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 12Bit Binary Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6108 Quad Transparent Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6112 Quad NOR RS Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6116 Quad NAND RS Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6116 PhaseLocked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6120MOTOROLA CMOS LOGIC DATA

Device MC14049B MC14049UB MC14050B MC14051B MC14052B MC14053B MC14060B MC14066B MC14067B MC14068B MC14069UB MC14070B MC14071B MC14072B MC14073B MC14075B MC14076B MC14077B MC14078B MC14081B MC14082B MC14093B MC14094B MC14097B MC14099B MC14106B MC14160B MC14161B MC14162B MC14163B MC14174B MC14175B MC14194B MC14415 MC14433 MC14442 MC14443

Function Page Hex Inverting Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6125 Hex Inverting Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6129 Hex Noninverting Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6125 8Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . . . . . . . 6133 Dual 4Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . . 6133 Triple 2Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . 6133 14Bit Binary Counter and Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6140 Quad Analog Switch/Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6144 16Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . . . . . . 6150 8Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Hex Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6158 Quad Exclusive OR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6160 Quad 2Input OR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Dual 4Input OR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Triple 3Input AND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Triple 3Input OR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Quad DType Register with TriState Outputs . . . . . . . . . . . . . . . . . . . . . . 6162 Quad Exclusive NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6160 8Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Quad 2Input AND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Dual 4Input AND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Quad 2Input NAND Schmitt Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6166 8Stage Shift/Store Register with TriState Outputs . . . . . . . . . . . . . . . . . 6170 Dual 8Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . . 6150 8Bit Addressable Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6174 Hex Schmitt Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6180 Synchronous Presettable BCD Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 6184 Synchronous Presettable 4Bit Binary Counter . . . . . . . . . . . . . . . . . . . . . 6184 Synchronous Presettable BCD Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 6184 Synchronous Presettable 4Bit Binary Counter . . . . . . . . . . . . . . . . . . . . . 6184 Hex D FlipFlop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6193 Quad D FlipFlop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6197 4Bit Universal Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6201 Quad Precision Timer/Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6205 31/2 Digit A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF MicroprocessorCompatible A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . SF 6Channel A/D Converter Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF

MOTOROLA CMOS LOGIC DATA

CHAPTER 1 13

Device MC14444 MC14447 MC14457 MC14458 MC14460 MC14466 MC144671 MC14468 MC14469 MC14490 MC144951 MC14497 MC14499 MC14500B MC14501UB MC14502B MC14503B MC14504B MC14506UB MC14508B MC14510B MC14511B MC14512B MC14513B MC14514B MC14515B MC14516B MC14517B MC14518B MC14519B MC14520B MC14521B MC14522B

Function Page MicroprocessorCompatible A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . SF 6Channel A/D Converter Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Remote Control Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Remote Control Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Automotive Speed Control Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Low Cost Smoke Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Low Cost Smoke Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Interconnectable Smoke Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Addressable Asynchronous Receiver/Transmitter . . . . . . . . . . . . . . . . . . . . . . SF Hex Contact Bounce Eliminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6210 Hexadecimalto7 Segment Latch/Decoder ROM/Driver . . . . . . . . . . . . . . . SF PCM Remote Control Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF 7Segment LED Display Decoder/Driver with Serial Interface . . . . . . . . . . . SF Industrial Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6217 Triple Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6223 Strobed Hex Inverter/Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6227 Hex 3State Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6231 TTL or CMOS to CMOS Hex Level Shifter . . . . . . . . . . . . . . . . . . . . . . . . . 6235 Dual Expandable AOI Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6238 Dual 4Bit Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6243 Presettable BCD Up/Down Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6248 BCDto7Segment Latch/Decoder/Driver . . . . . . . . . . . . . . . . . . . . . . . . 6256 8Channel Data Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6262 BCDto7Segment Latch/Decoder/Driver with Ripple Blanking . . . . . . 6266 4Bit Transparent Latch/4to16 Line Decoder (High) . . . . . . . . . . . . . . . 6274 4Bit Transparent Latch/4to16 Line Decoder (Low) . . . . . . . . . . . . . . . 6274 Presettable Binary Up/Down Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6280 Dual 64Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6288 Dual BCD Up Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6292 4Bit AND/OR Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6297 Dual Binary Up Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6292 24Stage Frequency Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6301 Presettable BCD Down Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6307

CHAPTER 1 14

MOTOROLA CMOS LOGIC DATA

Device MC14526B MC14527B MC14528B MC14529B MC14530B MC14531B MC14532B MC14534B MC14536B MC14538B MC14539B MC14541B MC14543B MC14544B MC14547B MC14549B MC14551B MC14553B MC14554B MC14555B MC14556B MC14557B MC14558B MC14559B MC14560B MC14561B MC14562B MC14566B MC14568B MC14569B MC14572UB MC14573 MC14574 MC14575 MC14580B MC14581B MC14582B

Function Page Presettable 4Bit Binary Down Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 6307 BCD Rate Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6315 Dual Monostable Multivibrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6321 Dual 4Channel Analog Data Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6327 Dual 5Input Majority Logic Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6333 12Bit Parity Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6338 8Bit Priority Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6341 5 Cascaded BCD Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6347 Programmable Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6354 Dual Precision Monostable Multivibrator . . . . . . . . . . . . . . . . . . . . . . . . . . . 6365 Dual 4Channel Data Selector/Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . 6373 Programmable Oscillator/Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6377 BCDto7Segment Latch/Decoder/Driver for Liquid Crystals . . . . . . . . 6382 BCDto7Segment Latch/Decoder/Driver with Ripple Blanking . . . . . . 6387 HighCurrent BCDto7Segment Decoder/Driver . . . . . . . . . . . . . . . . . 6393 Successive Approximation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6398 Quad 2Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . 6405 3Digit BCD Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6412 2 X 2Bit Parallel Binary Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6418 Dual Binary to 1of4 Decoder (Active High Outputs) . . . . . . . . . . . . . . . 6422 Dual Binary to 1of4 Decoder (Active Low Outputs) . . . . . . . . . . . . . . . . 6422 1to64 Bit Variable Length Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . 6425 BCDto7 Segment Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6429 Successive Approximation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6398 NBCD Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6434 9s Complementer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6445 128Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6451 Industrial Time Base Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6455 Phase Comparator and Programmable Counters . . . . . . . . . . . . . . . . . . . 6461 Programmable Dual 4Bit Binary/BCD Down Counter . . . . . . . . . . . . . . . 6471 Hex Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6481 Quad Programmable Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Quad Programmable Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Programmable Dual Op Amp/Dual Comparator . . . . . . . . . . . . . . . . . . . . . . . . SF 4 X 4 Multiport Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6484 4Bit Arithmetic Logic Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6489 LookAhead Carry Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6494

MOTOROLA CMOS LOGIC DATA

CHAPTER 1 15

Device MC14583B MC14584B MC14585B MC14597B MC14598B MC14599B MC144110 MC144111 MC145000 MC145001 MC145026 MC145027 MC145028 MC145029 MC145040 MC145041 MC145104 MC145106 MC145107 MC145109 MC145112 MC145143 MC145144 MC1451451 MC1451461 MC1451511 MC1451521 MC1451551 MC1451561 MC1451571 MC1451581 MC1451591 MC145453

Function Page Dual Schmitt Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6498 Hex Schmitt Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6504 4Bit Magnitude Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6507 8Bit BusCompatible Counter Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6511 8Bit BusCompatible Addressable Latch . . . . . . . . . . . . . . . . . . . . . . . . . 6511 8Bit Addressable Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6174 Hex D/A Converter with Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Quad D/A Converter with Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF 48Segment Multiplexed LCD Driver (Master) . . . . . . . . . . . . . . . . . . . . . . . . . SF 44Segment Multiplexed LCD Driver (Slave) . . . . . . . . . . . . . . . . . . . . . . . . . . SF Remote Control Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Remote Control Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Remote Control Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Remote Control Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF AnalogtoDigital Converter with Serial Interface . . . . . . . . . . . . . . . . . . . . . . SF AnalogtoDigital Converter with Serial Interface . . . . . . . . . . . . . . . . . . . . . . SF PLL Frequency Synthesizer (Not Recommended for New Designs) . . . . . . SF PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF PLL Frequency Synthesizer (Not Recommended for New Designs) . . . . . . SF PLL Frequency Synthesizer (Not Recommended for New Designs) . . . . . . SF PLL Frequency Synthesizer (Not Recommended for New Designs) . . . . . . SF PLL Frequency Synthesizer (Not Recommended for New Designs) . . . . . . SF 4Bit Data Bus Input PLL Frequency Synthesizer (Not Recommended for New Designs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF 4Bit Data Bus Input PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . SF 4Bit Data Bus Input PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . SF Parallel Input PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Parallel Input PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Serial Input PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Serial Input PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Serial Input PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Serial Input PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SF Serial Input PLL Frequency Synthesizer with Analog Phase Detector . . . . . SF 33Segment LCD Driver with Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . SF

CHAPTER 1 16

MOTOROLA CMOS LOGIC DATA

Product Selection Guide

2

CMOS Selection Guide by FunctionDevice NAND Gates MC14011B MC14011UB MC14093B MC14023B MC14023UB MC14012B MC14012UB MC14068B NOR Gates MC14001B MC14001UB MC14025B MC14025UB MC14000UB MC14002B MC14002UB MC14078B AND Gates MC14081B MC14073B MC14082B OR Gates MC14071B MC14075B MC14072B Complex Gates MC14070B MC14077B MC14501UB MC14506UB MC14530B MC14519B MC14572UB Function Page

Quad 2Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Quad 2Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Quad 2Input NAND Schmitt Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6166 Triple 3Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Triple 3Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Dual 4Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Dual 4Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 8Input NAND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Quad 2Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Quad 2Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Triple 3Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Triple 3Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Dual 3Input NOR Gate Plus Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Dual 4Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Dual 4Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 8Input NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Quad 2Input AND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Triple 3Input AND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Dual 4Input AND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Quad 2Input OR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Triple 3Input OR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Dual 4Input OR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Quad Exclusive OR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quad Exclusive NOR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Triple Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dual Expandable AOI Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dual 5Input Majority Logic Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Bit AND/OR Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hex Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6160 6160 6223 6238 6333 6297 6481

Inverters/Buffers/Level Translator MC14007UB Dual Complementary Pair Plus Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 MC14049B Hex Inverting Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6125 MC14049UB Hex Inverting Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6129 MC14050B Hex Noninverting Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6125 MC14069UB Hex Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6158 MC14502B Strobed Hex Inverter/Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6227 MC14503B Hex 3State Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6231 MC14504B TTL or CMOS to CMOS Hex Level Shifter . . . . . . . . . . . . . . . . . . . . . . . . . 6235 MC14584B Hex Schmitt Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6504CHAPTER 2 22 MOTOROLA CMOS LOGIC DATA

Device Decoders/Encoders MC14028B MC14511B MC14513B MC14543B MC14544B MC14547B MC14558B MC14514B MC14515B MC14532B MC14555B MC14556B

Function

Page

BCDtoDecimal/BinarytoOctal Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 681 BCDto7Segment Latch/Decoder/Driver . . . . . . . . . . . . . . . . . . . . . . . . 6256 BCDto7Segment Latch/Decoder/Driver with Ripple Blanking . . . . . . 6266 BCDto7Segment Latch/Decoder/Driver for Liquid Crystals . . . . . . . . 6382 BCDto7Segment Latch/Decoder/Driver with Ripple Blanking . . . . . . 6387 HighCurrent BCDto7Segment Decoder/Driver . . . . . . . . . . . . . . . . . 6393 BCDto7Segment Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6429 4Bit Transparent Latch/4to16 Line Decoder (High) . . . . . . . . . . . . . . . 6274 4Bit Transparent Latch/4to16 Line Decoder (Low) . . . . . . . . . . . . . . . 6274 8Bit Priority Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6341 Dual Binary to 1of4 Decoder (Active High Outputs) . . . . . . . . . . . . . . . 6422 Dual Binary to 1of4 Decoder (Active Low Outputs) . . . . . . . . . . . . . . . . 6422

Multiplexers/Demultiplexers/Bilateral Switches MC14016B Quad Analog Switch/Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 MC14066B Quad Analog Switch/Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6144 MC14551B Quad 2Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . 6405 MC14053B Triple 2Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . 6133 MC14052B Dual 4Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . . 6133 MC14097B Dual 8Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . . 6150 MC14529B Dual 4Channel Analog Data Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6327 MC14539B Dual 4Channel Data Selector/Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . 6373 MC14067B 16Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . . . . . . 6150 MC14051B 8Channel Analog Multiplexer/Demultiplexer . . . . . . . . . . . . . . . . . . . . . . . 6133 MC14512B 8Channel Data Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6262 MC14519B 4Bit AND/OR Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6297 Schmitt Triggers MC14093B MC14583B MC14106B MC14584B FlipFlops/Latches MC14042B MC14043B MC14044B MC14076B MC14175B MC14013B MC14027B MC14508B MC14174B MC14099B MC14597B MC14598B MC14599B

Quad 2Input NAND Schmitt Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dual Schmitt Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hex Schmitt Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hex Schmitt Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6166 6498 6180 6504

Quad Transparent Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6112 Quad NOR RS Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6116 Quad NAND RS Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6116 Quad DType Register with TriState Outputs . . . . . . . . . . . . . . . . . . . . . . 6162 Quad D FlipFlop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6197 Dual D FlipFlop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 Dual JK FlipFlop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677 Dual 4Bit Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6243 Hex D FlipFlop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6193 8Bit Addressable Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6174 8Bit BusCompatible Counter Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6511 8Bit BusCompatible Addressable Latch . . . . . . . . . . . . . . . . . . . . . . . . . 6511 8Bit Addressable Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6174

MOTOROLA CMOS LOGIC DATA

CHAPTER 2 23

Device Shift Registers MC14015B MC14517B MC14562B MC14557B MC14006B MC14014B MC14021B MC14034B MC14094B MC14035B MC14194B MC14549B MC14559B Counters MC14017B MC14018B MC14020B MC14022B MC14024B MC14029B MC14040B MC14060B MC14160B MC14161B MC14162B MC14163B MC14510B MC14516B MC14518B MC14520B MC14522B MC14526B MC14534B MC14553B MC14566B MC14569B Oscillators/Timers MC14521B MC14536B MC14541B Multivibrators MC14528B MC14538B

Function

Page

Dual 4Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641 Dual 64Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6288 128Bit Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6451 1to64 Bit Variable Length Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . 6425 18Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619 8Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 8Bit Static Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 8Bit Universal Bus Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 8Stage Shift/Store Register with TriState Outputs . . . . . . . . . . . . . . . . . 6170 4Bit Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6104 4Bit Universal Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6201 Successive Approximation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6398 Successive Approximation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6398

Decade Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 Presettable DividebyN Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 14Bit Binary Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 Octal Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 7Stage Ripple Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 Presettable Binary/BCD Up/Down Counter . . . . . . . . . . . . . . . . . . . . . . . . . . 686 12Bit Binary Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6108 14Bit Binary Counter and Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6140 Synchronous Presettable BCD Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 6184 Synchronous Presettable 4Bit Binary Counter . . . . . . . . . . . . . . . . . . . . . 6184 Synchronous Presettable BCD Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 6184 Synchronous Presettable 4Bit Binary Counter . . . . . . . . . . . . . . . . . . . . . 6184 Presettable BCD Up/Down Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6248 Presettable Binary Up/Down Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6280 Dual BCD Up Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6292 Dual Binary Up Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6292 Presettable BCD Down Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6307 Presettable 4Bit Binary Down Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 6307 5 Cascaded BCD Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6347 3Digit BCD Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6412 Industrial Time Base Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6455 Programmable Dual 4Bit Binary/BCD Counter . . . . . . . . . . . . . . . . . . . . . 6471

24Stage Frequency Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6301 Programmable Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6354 Programmable Oscillator/Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6377

Dual Monostable Multivibrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6321 Dual Precision Monostable Multivibrator . . . . . . . . . . . . . . . . . . . . . . . . . . . 6365

CHAPTER 2 24

MOTOROLA CMOS LOGIC DATA

Device Adders/Comparators MC14008B MC14032B MC14038B MC14560B MC14561B MC14582B MC14585B ALU/Rate Multipliers MC14527B MC14554B MC14581B Parity Checker MC14531B Memory MC14580B

Function

Page

4Bit Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 Triple Serial Adder (Positive Logic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 Triple Serial Adder (Negative Logic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 NBCD Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6434 9s Complementer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6445 LookAhead Carry Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6494 4Bit Magnitude Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6507

BCD Rate Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6315 2 X 2 Bit Parallel Binary Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6418 4Bit Arithmetic Logic Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6489

12Bit Parity Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6338

4 X 4 Multiport Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6484

Microprocessor/Industrial Control MC14500B Industrial Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6217 Other Complex Functions MC14046B PhaseLocked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14415 Quad Precision Timer/Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14490 Hex Contact Bounce Eliminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MC14568B Phase Comparator and Programmable Counters . . . . . . . . . . . . . . . . . . .

6120 6205 6210 6461

MOTOROLA CMOS LOGIC DATA

CHAPTER 2 25

The Better Program

3

THE BETTER" PROGRAMThe BETTER program is offered on logic only, in dualinline plastic packages.

Better Processing Standard Product Plus:Level II (Suffix D) 100% burnin to MILSTD883 test conditions 160 hours at + 125C or 1.0 eV Arrhenus time/temperature equivalent. 100% post burnin functional and dc parametric tests at 25C (or max rated TA at Motorolas option). Maximum PDA of 2% (functional) and 5% (DC and functional).

HOW TO ORDERMC14000B Part Identification CP Standard Package Suffix D BETTER PROCESSING LEVEL II = SUFFIX D

Part MarkingThe Standard Motorola part number with the corresponding BETTER suffix can be order from your local authorized Motorola distributor or Motorola sales offices. BETTER pricing will be quoted as an adder to standard commercial product price.

RAP Reliability Audit Program For Logic Integrated Circuits1.0 INTRODUCTIONThe Reliability Audit Program developed in March 1977 is the Motorola internal reliability audit which is designed to assess outgoing product performance under accelerated stress conditions. Logic Reliability Engineering has overall responsibility for RAP, including updating its requirements, interpreting its results, administration at offshore locations, and monthly reporting of results. These reports are available at all sales offices. Also available is the Reliability and Quality Handbook which contains data for all Motorola Semiconductors (#BR518S). RAP is a system of environmental and electrical tests performed periodically on randomly selected samples of standard products. Each sample receives the tests specified in section 2.0. Frequency of testing is specified per internal document 12MRM15301A.

CHAPTER 3 32

MOTOROLA CMOS LOGIC DATA

2.0 RAP TEST FLOWPull 500* piece sample from lot following Group A acceptance.45* 340 INITIAL SEAL** OP LIFE 40 HOURS PTHB 48 HRS PTH*** 48 HRS TEMP CYCLES 40 CYCLES INTERIM ELECTRICAL INTERIM TEST OP LIFE 210 HRS (ADDITIONAL) ADD 460 CYCLES INTERIM ELECTRICAL INTERIM TEST ADD 500 CYCLES FINAL INTERIM* TEST PTH 48 HRS (ADDITIONAL) TEMP CYCLES # 1000 CYCLES (ADDITIONAL) FINAL ELECTRICAL (48 HRS) FINAL ELECTRICAL (96 HRS) FINAL ELECTRICAL & SEAL** (2000 CYCLES) SCRAP SCRAP SCRAP FINAL # ELECTRICAL (1000 HRS) OP LIFE # 750 HRS (ADDITIONAL) FINAL INTERIM # ELECTRICAL 100

#One sample per month for FAST, LS, 10H, 10K, MG CMOS, and HSL CMOS. * PTHB or PTH not required for hermetic products: reduce total sample size to 450 pcs. ** Seal (Fine & Gross Leak) required only for hermetic products. *** PTH to be used when sockets for PTHB are not available.

3.0 TEST CONDITIONS AND COMMENTSPTHB 15 psig/121C/100% RH at rated VCC or VEE to be performed on plastic encapsulated devices only. TEMP CYCLING MILSTD883, Method 1010, Condition C, 65C/+ 150C. OP LIFE MILSTD883, Method 1005, Condition C (Power plus Reverse Bias), TA = 145C.

NOTES:1. All standard 25C dc and functional parameters will be measured Go/No/Go at each readout.

2. Any indicated failure is first verified and then submitted to the Product Analysis Lab for detailed analysis. 3. Sampling to include all package types routinely. 4. Device types sampled will be by generic type within each logic I/C product family (CMOS, TTL, etc.) and will include all assembly locations (Korea, Philippines, Malaysia, etc.). 5. 16 hrs. PTHB is equivalent to approximately 800 hours of 85C/85% RH THB for VCC 15 V. 6. Only moisture related failures (like corrosion) are criteria for failure on PTHB test. 7. Special device specifications (48As) for logic products will reference 12MRM15301A as source of generic data for any customer required monthly audit reports.

v

MOTOROLA CMOS LOGIC DATA

CHAPTER 3 33

B and UB Series Family Data

4

B AND UB SERIES FAMILY DATAThe CMOS Devices in this volume which have a B or UB suffix meet the minimum values for the industrystandardized# family specification. These standardized values are shown in the Maximum Ratings and Electrical Characteristics Tables. In addition to a standard minimum specification for characteristics the B/UB devices feature: 318 volt operational limits Capable of driving two lowpower TTL loads or one low power Schottky TTL load over the rated temperature range Direct Interface to HighSpeed CMOS Maximum input current of 1 A at 15 volt power supply over the temperature range Parameters specified at 5.0, 10, and 15 volt supply Noise margins: B Series 1.0 V min @ 5.0 V supply 2.0 V min @ 10 V supply 2.5 V min @ 15 V supply UB Series 0.5 V min @ 5.0 V supply 1.0 V min @ 10 V supply 1.0 V min @ 15 V supply The industrystandardized maximum ratings are shown at the bottom of this page. Limits for the static characteristics are shown in two formats: Table 1 is in the industry format and Table 2 is in the equivalent Motorola format. The Motorola format is used throughout this data book. Additional specification values are shown on the individual data sheets. Switching characteristics for the B and UB series devices are specified under the following conditions: Load Capacitance, CL, of 50 pF Input Voltage equal to VSS VDD (RailtoRail swing) Input pulse rise and fall times of 20 ns Propagation Delay times measured from 50% point of input voltage to 50% point of output voltage Three different supply voltages: 5, 10, and 15 V Devices with specialized inputs, such as oscillator inputs, have unique input specifications.

Input VoltageThe input voltage specification is interpreted as the worstcase input voltage to produce an output level of 1 or 0. This 1 or 0 output level is defined as a deviation from the supply (VDD) and ground (VSS) levels. For a 5.0 V supply, this deviation is 0.5 V; for a 10 V supply, 1.0 V; and for 15 V, 1.5 V. As an example, in a device operating at a 5.0 V supply, the device with the input starting at ground is guaranteed to switch on or before 3.5 V and not to switch up to 1.5 V. Switching and not switching are defined as within 0.5 V of the ideal output level for the example with a 5.0 V supply. The actual switching level referred to the input is between 1.5 V and 3.5 V.

Noise MarginThe values for input voltages and the defined output deviations lead to the calculated noise margins. Noise margin is defined as the difference between V IL or V IH and Vout (output deviation). As an example, for a noninverting buffer at V DD = 5.0 volts: V IL = 1.5 volts and Vout = 0.5 volts. Therefore, Noise Margin equals V IL Vout = 1.0 volt. This figure is useful while cascading stages (See Figure 1). With the input to the first stage at a worstcase voltage level (V IL = 1.5 V), the output is guaranteed to be no greater than 0.5 volts with a 5.0 volt supply. Since the maximum allowable logic 0 for the second stage is 1.5 volts, this 0.5 volt output provides a 1.0 volt margin for noise to the next stage.

Output Drive CurrentDevices in the B Series are capable of sinking a minimum of 0.36 mA over the temperature range with a 5.0 V supply. This value guarantees that these CMOS devices will drive one lowpower Schottky TTL input.

B Series vs UB CMOSThe primary difference between B series and UB series devices is that UB series gates and inverters are constructed with a single inverting stage between input and output. The decreased gain caused by using a single stage results in less noise immunity and a transfer characteristic that is less ideal. The decreased gain is quite useful when CMOS Gates and inverters are used in a Linear mode to form oscillators, monostables, or amplifiers. The decreased gain results in increased stability and a cleaner output waveform. In addition to linear operation, the UB gates and inverters offer an increase in speed, since only a single stage is involved. The B and UB series, and devices with no suffix can be used interchangeably in digital circuits that interface to other CMOS devices, such as HighSpeed CMOS Logic.

Exceptions to the B and UB Series Family SpecificationThere are a number of devices which have a B or UB suffix whose inputs and/or outputs vary somewhat from the family specification because of functional requirements. Some categories of notable exceptions are: Devices with specialized outputs on the chip, such as NPN emitterfollower drivers or transmission gates, do not meet output specifications.#Specifications coordinated by EIA/JEDEC SolidState Products Council.

CHAPTER 4 42

MOTOROLA CMOS LOGIC DATA

ELECTRICAL CHARACTERISTICS MOTOROLA CMOS LOGIC DATASymbol VOH Iin, lout VOL IDD VIL VDD Tstg PD Parameter P Input Low Voltage# B Types HighLevel Output Voltage LowLevel Output Voltage Quiescent Device Current Storage Temperature DC Supply Voltage BUFFERS, FLIPFLOPS GATES MSI Temp T Range Comm Comm Comm Mil Mil Mil All All All

MAXIMUM RATINGS* (Voltages Referenced to VSS)Vin, Vout Power Dissipation, per Package Input or Output Current (DC or Transient), per Pin Input or Output Voltage (DC or Transient) Parameters 0.5 to VDD + 0.5 0.5 to + 18.0 65 to + 150 Value 10 500 Unit mW mA

TL Lead Temperature (8Second Soldering) 260 _C * Maximum Ratings are those values values beyond which damage to the device may occur. Temperature Derating: Plastic P and D/DW Packages: 7.0 mW/_C From 65_C To 125_C Ceramic L Packages: 12 mW/_C From 100_C To 125_C

Table 1. EIA/JEDEC Format for CMOS Industry B and UB Series Specifications

FIRST STAGE (NONINVERTING BUFFER)

VDD (Vdc)

5 10 15

5 10 15

5 10 15

5 10 15

5 10 15

5 10 15

5 10 15

5 10 15

5 10 15

VIL = 1.5 V

VO = 0.5V or 4.5V VO = 1.0V or 9.0V VO = 1.5V or 13.5V |IO| < 1 A VIN = VSS or VDD |IO| < 1 A VIN = VSS or VDD |IO| < 1 A All valid input combinations VIN = VSS or VDD All valid input combinations VIN = VSS or VDD All valid input combinations Vin = VSS or VDD Conditions C di i

Vout = 0.5 V

Figure 1.

5.0 V

VIL = 1.5 V SECOND STAGE (NONINVERTING BUFFER)

4.95 9.95 14.95

Min

TLOW*

Vout

_C

V

V

0.05 0.05 0.05

0.25 0.5 1.0

Max

1.5 3.0 4.0

1.0 2.0 4.0

1.0 2.0 4.0

20 40 80

5 10 20

4 8 16

4.95 9.95 14.95

Min

+ 25_C

Limits

0.05 0.05 0.05

0.25 0.5 1.0

Max

4.0 8.0 16.0

1.5 3.0 4.0

1.0 2.0 4.0

1.0 2.0 4.0

20 40 80

5 10 20

4.95 9.95 14.95

Min

THIGH*

0.05 0.05 0.05

Max

CHAPTER 4 43150 300 600 150 300 600 30 60 120 30 60 120 1.5 3.0 4.0 7.5 15 30 7.5 15 30 Units U i Adc Adc Adc Adc Adc Adc Vdc Vdc Vdc

* TLOW = 55_C for Military temperature range device, 40C for Commercial temperature range device. THIGH = + 125_C for Military temperature range device, + 85_C for Commercial temperature range device. #Applies for Worst Case input combinations.

ELECTRICAL CHARACTERISTICS

CHAPTER 4 44IOH CIN VIH VIH IOL VIL Ioz IIN Parameter Input Capacitance per unit load 3State Output Leakage Current Input Current Output High (Source) Current Output Low (Sink) Current Input High Voltage# UB Types Input High Voltage# B Types Input Low Voltage# UB Types Temp Range Mil Comm Mil Comm Com Com Mil Mil All All All All VDD (Vdc) 15 15 15 15 15 10 15 10 15 10 15 10 5 10 15 5 10 15 5 10 15 5 5 5 5 Any Input VIN = 0 or 15V VIN = 0 or 15V VIN = 0 or 15V VIN = 0 or 15V VO = 4.6V, VIN = 0 or 5V VO = 9.5V, VIN = 0 or 10V VO = 13.5V VIN = 0 or 15V VO = 4.6V, VIN = 0 or 5V VO = 9.5V, VIN = 0 or 10V VO = 13.5V, VIN = 0 or 15V VO = 0.4V, VIN = 0 or 5V VO = 0.5V, VIN = 0 or 10V VO = 1.5V, VIN = 0 or 15V VO = 0.4V, VIN = 0 or 5V VO = 0.5V, VIN = 0 or 10V VO = 1.5V, VIN = 0 or 15V VO = 0.5V or 4.5V VO = 1.0V or 9.0V VO = 1.5V or 13.5V |IO| < 1 A VO = 0.5V or 4.5V VO = 1.0V or 9.0V VO = 1.5V or 13.5V |IO| < 1 A VO = 0.5V or 4.5V VO = 1.0V or 9.0V VO = 1.5V or 13.5V |IO| < 1 A Conditions 0.62 0.25 1.8 1.4 0.5 0.2 0.52 0.64 4.0 8.0 12.5 3.5 7.0 11.0 Min 3.6 1.3 4.2 1.6 TLOW* 0.4 1.6 0.1 0.3 Max 1.0 2.0 2.5

Table 1. EIA/JEDEC Format for CMOS Industry B and UB Series Specifications (continued)

0.16

1.2

0.4

1.5

0.5

0.2

0.44

0.51

4.0 8.0 12.5

3.5 7.0 11.0

Min

3.0

1.1

3.4

1.3

+ 25_C

Limits

MOTOROLA CMOS LOGIC DATA 0.4 1.6 0.1 0.3 Max 1.0 2.0 2.5 7.5 0.12 0.35 0.14 1.0 0.3 1.1 0.36 0.36 4.0 8.0 12.5 3.5 7.0 11.0 Min 2.4 0.9 2.4 0.9 THIGH* 1.0 1.0 12 12 1.0 2.0 2.5 Max mAdc mAdc mAdc mAdc Units Adc Adc Adc Adc Vdc Vdc pF

ELECTRICAL CHARACTERISTICSLSI Quiescent Current MSI Quiescent Current (Per Package) FlipFlop and Buffer Quiescent Current (Per Package) Input Capacitance (Vin = 0) Gate Quiescent Current (Per Package) Output Drive Current Other Devices (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) Input Current (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc) Output Drive Current B Gates (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) Output Drive Current UB Gates (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) Input Voltage UB Types (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc) Input Voltage B Types (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc) Output Voltage Vin = VDD or 0

MOTOROLA CMOS LOGIC DATA(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc) Vin = 0 or VDD Characteristic Ch i i

Table 2. Motorola Format for CMOS Industry B and UB Series Specifications

0 Level

0 Level

0 Level

1 Level

1 Level

1 Level

Source

Source

Source

Sink

Sink

Sink

Symbol S b l

VOH

VOL

IOH

IOH

IOH

IDD

IDD

IDD

IDD

VIH

VIH

IOL

IOL

IOL

Iin Cin

VIL

VIL

VDD Vdc

5.0 10 15

5.0 10 15

5.0 10 15

5.0 10 15

5.0 10 15

5.0 10 15

5.0 5.0 10 15

5.0 10 15

5.0 5.0 10 15

5.0 10 15

5.0 10 15

5.0 10 15

5.0 10 15

5.0 10 15

5.0 10 15

15

0.64 1.6 4.2

1.2 0.25 0.62 1.8

3.0 0.64 1.6 4.2

4.95 9.95 14.95

0.64 1.6 4.2

0.64 1.6 4.2

0.64 1.6 4.2

4.0 8.0 12.5

Min

3.5 7.0 11

55_C

0.1

0.25 0.5 1.0

0.05 0.05 0.05

Max

5.0 10 20

1.0 2.0 4.0

1.0 2.0 2.5

1.5 3.0 4.0

See Individual Data Sheets.

0.51 1.3 3.4

2.4 0.51 1.3 3.4

4.95 9.95 14.95

1.0 0.2 0.5 1.5

0.51 1.3 3.4

0.51 1.3 3.4

0.51 1.3 3.4

4.0 8.0 12.5

Min

3.5 7.0 11

25_C

0.1

0.25 0.5 1.0

0.05 0.05 0.05

Max

5.0 10 20

1.0 2.0 4.0

7.5

1.0 2.0 2.5

1.5 3.0 4.0

0.36 0.9 2.4

0.7 0.14 0.35 1.1

1.7 0.36 0.9 2.4

4.95 9.95 14.95

0.36 0.9 2.4

0.36 0.9 2.4

0.36 0.9 2.4

4.0 8.0 12.5

Min

3.5 7.0 11

+ 125_C

1.0

0.05 0.05 0.05

Max

150 300 600

30 60 120

7.5 15 30

1.0 2.0 2.5

1.5 3.0 4.0

CHAPTER 4 45 mAdc mAdc mAdc Adc Adc Adc Adc Unit U i Vdc Vdc Vdc Vdc Vdc Vdc pF

CMOS Handling and Design Guidelines

5

HANDLING AND DESIGN GUIDELINESHANDLING PRECAUTIONSAll MOS devices have insulated gates that are subject to voltage breakdown. The gate oxide for Motorola CMOS devices is about 900 thick and breaks down at a gatesource potential of about 100 volts. To guard against such a breakdown from static discharge or other voltage transients, the protection networks shown in Figures 1A and 1B are used on each input to the CMOS device. Static damaged devices behave in various ways, depending on the severity of the damage. The most severely damaged inputs are the easiest to detect because the input has been completely destroyed and is either shorted to VDD, shorted to VSS, or opencircuited. The effect is that the device no longer responds to signals present at the damaged input. Less severe cases are more difficult to detect because they show up as intermittent failures or as degraded performance. Another effect of static damage is that the inputs generally have increased leakage currents. Although the input protection network does provide a great deal of protection, CMOS devices are not immune to large static voltage discharges that can be generated during handling. For example, static voltages generated by a person walking across a waxed floor have been measured in the 4 15 kV range (depending on humidity, surface conditions, etc.). Therefore, the following precautions should be observed: 1. Do not exceed the Maximum Ratings specified by the data sheet. 2. All unused device inputs should be connected to VDD or VSS. 3. All lowimpedance equipment (pulse generators, etc.) should be connected to CMOS inputs only after the device is powered up. Similarly, this type of equipment should be disconnected before power is turned off. 4. Circuit boards containing CMOS devices are merely extensions of the devices, and the same handling precautions apply. Contacting edge connectors wired directly to device inputs can cause damage. Plastic wrapping should be avoided. When external connections to a PC board are connected to an input of a CMOS device, a resistor should be used in series with the input. This resistor helps limit accidental damage if the PC board is removed and brought into contact with static generating materials. The limiting factor for the series resistor is the added delay. This is caused by the time constant formed by the series resistor and input capacitance. Note that the maximum input rise and fall times should not be exceeded. In Figure 2, two possible networks are shown using a series resistor to reduce ESD (Electrostatic Discharge) damage. For convenience, an equation for added propagation delay and rise time effects due to series resistance size is given. All CMOS devices should be stored or transported in materials that are antistatic. CMOS devices must not be inserted into conventional plastic snow, styrofoam, or plastic trays, but should be left in their original container until ready for use. All CMOS devices should be placed on a grounded bench surface and operators should ground themselves prior to handling devices, since a worker can be statically charged with respect to the bench surface. Wrist straps in contact with skin are strongly recommended. See Figure 3 for an example of a typical work station. Nylon or other static generating materials should not come in contact with CMOS devices. If automatic handlers are being used, high levels of static electricity may be generated by the movement of the device, the belts, or the boards. Reduce static build up by using ionized air blowers or room humidifiers. All parts of machines which come into contact with the top, bottom, or sides of IC packages must be grounded to metal or other conductive material. Cold chambers using CO2 for cooling should be equipped with baffles, and the CMOS devices must be contained on or in conductive material. When leadstraightening or handsoldering is necessary, provide ground straps for the apparatus used and be sure that soldering ties are grounded.

5.

6.

7. 8.

9.

10.

INPUT PROTECTION NETWORKVDD VDD

CMOS INPUT

< 1500

TO CIRCUIT

CMOS INPUT

300

VSS

VSS

Figure 1a. Input Protection Network Double Diode

Figure 1b. Input Protection Network Triple Diode

CHAPTER 5 52

MOTOROLA CMOS LOGIC DATA

11. The following steps should be observed during wave solder operations: a. The solder pot and conductive conveyor system of the wave soldering machine must be grounded to an earth ground. b. The loading and unloading work benches should have conductive tops which are grounded to an earth ground. c. Operators must comply with precautions previously explained. d. Completed assemblies should be placed in antistatic containers prior to being moved to subsequent stations. 12. The following steps should be observed during board cleaning operations: a. Vapor degreasers and baskets must be grounded to an earth ground. b. Brush or spray cleaning should not be used. c. Assemblies should be placed into the vapor degreaser immediately upon removal from the antistatic container. d. Cleaned assemblies should be placed in antistatic containers immediately after removal from the cleaning basket. e. High velocity air movement or application of solvents and coatings should be employed only when assembled printed circuit boards are grounded and a static eliminator is directed at the board.

13. The use of static detection meters for production line surveillance is highly recommended. 14. Equipment specifications should alert users to the presence of CMOS devices and require familiarization with this specification prior to performing any kind of maintenance or replacement of devices or modules. 15. Do not insert or remove CMOS devices from test sockets with power applied. Check all power supplies to be used for testing devices to be certain there are no voltage transients present. 16. Double check test equipment setup for proper polarity of VDD and VSS before conducting parametric or functional testing. 17. Do not recycle shipping rails or trays. Repeated use causes deterioration of their antistatic coating.

RECOMMENDED FOR READING:Total Control of the Static in Your Business Available by writing to: 3M Company Static Control Systems P.O. Box 2963 Austin, Texas 787692963 Or by Calling: 18003281368VDD

TO OFFBOARD CONNECTION

R1

CMOS INPUT OR OUTPUT

D1 TO OFFBOARD CONNECTION R2

CMOS INPUT OR OUTPUT

D2 Advantage: Disadvantage: Requires minimal board area R1 > R2 for the same level of protection, therefore rise and fall times, propagation delays, and output drives are severely affected. Advantage: VSS R2 < R1 for the same level of protection. Impact on ac and dc characteristics is minimized More board area, higher initial cost

Disadvantage:

Note: These networks are useful for protecting the following A digital inputs and outputs C 3state outputs B analog inputs and outputs D bidirectional (I/O) ports

PROPAGATION DELAY AND RISE TIME vs. SERIES RESISTANCER [ t C@k where: R = the maximum allowable series resistance in ohms t = the maximum tolerable propagation delay or rise time in seconds C = the board capacitance plus the driven devices = input capacitance in farads k = 0.7 for propagation delay calculations k = 2.3 for rise time calculations

Figure 1. Networks for Minimizing ESD and Reducing CMOS Latch Up Susceptibility

MOTOROLA CMOS LOGIC DATA

CHAPTER 5 53

4

1

2 5

3

NOTES: 1. 1/16 inch conductive sheet stock covering bench top work area. 2. Ground strap. 3. Wrist strap in contact with skin. 4. Static neutralizer. (Ionized air blower directed at work.) Primarily for use in areas where direct grounding is impractical. 5. Room humidifier. Primarily for use in areas where the relative humidity is less than 45%. Caution: building heating and cooling systems usually dry the air causing the relative humidity inside of buildings to be less than outside humidity.

RESISTOR = 1 MEGAOHM

Figure 2. Typical Manufacturing Work Station

POWER SUPPLIESCMOS devices have low power requirements and the ability to operate over a wide range of supply voltages. These two characteristics allow CMOS designs to be implemented using inexpensive, conventional power supplies, instead of switching power supplies and power supplies with cooling fans. In addition, batteries may be used as either a primary power source or for emergency backup. The absolute maximum power supply voltage for 14000 Series Metalgate CMOS is 18.0 Vdc. Figure 4 offers some insight as to how this specification was derived. In the figure, VS is the maximum power supply voltage and IS is the sustaining current of the latchup mode. The value of VS was chosen so that the secondary breakdown effect may be avoided. In an ideal system design, a power supply should be designed to deliver only enough current to insure proper operation of all devices. The obvious benefit of this type design is cost savings; an added benefit is protection against

the possibility of latchup related failures. This system protection can be provided by the power supply filter and/or voltage regulator. CMOS devices can be used with battery or battery backup systems. A few precautions should be taken when designing batteryoperated systems: 1. The recommended power supply voltage should be observed. For battery backup systems such as the one in Figure 5, the battery voltage must be at least 3.7 Volts (3 Volts from the minimum power supply voltage and 0.7 Volts to account for the voltage drop across the series diode). 2. Inputs that might go above the battery backup voltage should either use a series resistor to limit the input current to less than 10 mA or use the MC14049UB or MC14050B hightolow voltage translators. 3. Outputs that are subject to voltage levels above VDD or below VSS should be protected with a series resistor to limit the current to less than 10 mA or with clamping diodes.

IDD

LATCH UP MODE

SECONDARY BREAKDOWN LOW CURRENT JUNCTION AVALANCHE

IS

VS VS = DATA SHEET MAXIMUM SUPPLY RATING

VDD

Figure 3. Secondary Breakdown Characteristics

CHAPTER 5 54

MOTOROLA CMOS LOGIC DATA

POWER SUPPLY

LINE POWER ONLY SYSTEM

BATTERY BACKUP SYSTEM

BATTERY BACKUP RECHARGE

CMOS SYSTEM MC14049UB MC14050B

MC14049UB MC14050B

CMOS SYSTEM

Figure 4. Battery Backup Interface

INPUTSAll inputs, while in the recommended operating range (VSS < Vin < VDD) can be modeled as shown in Figure 6. For input voltages in this range, diodes D1 and D2 are modeled as resistors, representing the reverse bias impedance of the diodes. The maximum input current is worst case, 1 A, when the inputs are at VDD or VSS, and VDD = 15.0 V. This model does not apply to inputs with pullup or pulldown resistors.

VDD = 5.0 Vdc

Vout , OUTPUT VOLTAGE (V)

5.0 4.0 3.0 2.0 1.0 0

SINGLE INPUT NAND, AND MULTIPLE INPUT NOR, OR SINGLE INPUT NOR, OR MULTIPLE INPUT NAND, AND

VDD R1 = R2 = HIGH Z R1

0

1.0

2.0

3.0 4.0 5.0 Vin, INPUT VOLTAGE (V)

Figure 6. Typical Transfer Characteristics for Buffered Devices7.5 pF

R2

Figure 5. Input Model for VSS

v Vin v VDD

For these reasons, all unused inputs should be connected either to VDD or VSS. For applications with inputs going to edge connectors, a 100 kilohm resistor to VSS should be used, as well as a series resistor for static protection and current limiting (Figure 8). The 100 kilohm resistor will help eliminate any static charges that might develop on the printed circuit board. See Figure 2 for other possible protection arrangements.FROM EDGE CONNECTOR 100 k RS CMOS DEVICE

When left opencircuited, the inputs may selfbias at or near the typical switchpoint, where both the Pchannel and Nchannel transistors are conducting, causing excessive current drain. Due to the high gain of the inverters (see Figure 7), the device may also go into oscillation from any noise in the system. Since CMOS devices dissipate the most power during switching, this oscillation can cause very large current drain and undesired switching.

Figure 7. External Protection

MOTOROLA CMOS LOGIC DATA

CHAPTER 5 55

For input voltages outside of the recommended operating range, the CMOS input is modeled as in Figure 9. The resistordiode protection network allows the user greater freedom when designing a worst case system. The device inputs are guaranteed to withstand voltages from VSS 0.5 V to VDD + 0.5 V and a maximum current of 10 mA. With the above input ratings, most designs will require no special terminations or design considerations.

D1

1.5 kD2 7.5 pF

CMOS outputs are limited to externally forced output voltages of VSS 0.5 V Vout VDD + 0.5 V. When voltages are forced outside of this range, a silicon controlled rectifier (SCR) formed by parasitic transistors can be triggered, causing the device to latch up. For more information on this, see the explanation of CMOS Latch Up in this section. The maximum rated output current for most outputs is 10 mA. The output shortcircuit currents of these devices typically exceed these limits. Care must be taken not to exceed the maximum ratings found on every data sheet. For applications that require driving high capacitive loads where fast propagation delays are needed (e.g., driving power MOSFETs), two or more outputs on the same chip may be externally paralleled.

v

v

CMOS LATCH UPLatch up will not be a problem for most designs, but the designer should be aware of it, what causes it, and how to prevent it. Figure 11 shows the crosssection of a typical CMOS inverter and Figure 12 shows the parasitic bipolar devices. The circuit formed by the parasitic transistors and resistors is the basic configuration of a silicon controlled rectifier, or SCR. In the latch up condition, transistors Q1 and Q2 are turned ON, each providing the base current necessary for the other to remain in saturation, thereby latching the devices in the ON state. Unlike a conventional SCR, where the device is turned ON by applying a voltage to the base of the NPN transistor, the parasitic SCR is turned ON by applying a voltage to the emitter of either transistor. The two emitters that trigger the SCR are the same point, the CMOS output. Therefore, to latch up the CMOS device, the output voltage must be greater than VDD + 0.5 V or less than VSS 0.5 V and have sufficient current to trigger the SCR. The latchup mechanism is similar for the inputs. Once a CMOS device is latched up, if the supply current is not limited, the device will be destroyed. Ways to prevent such occurrences are listed below: 1. Insure that inputs and outputs are limited to the maximum rated values, as follows: 0.5 V Vin or Vout VDD + 0.5 V (referenced to VSS) |Iin or Iout| 10 mA (unless otherwise indicated on the data sheet) 2. If voltage transients of sufficient energy to latch up the device are expected on the inputs or outputs, external protection diodes can be used to clamp the voltage. Another method of protection is to use a series resistor to limit the expected worst case current to the maximum rating of 10 mA. (See Figure 2). 3. Sequence power supplies so that the inputs or outputs of CMOS devices are not active before the supply pins are powered up (e.g., recessed edge connectors and/ or series resistors may be used in plugin board applications). 4. Voltage regulating or filtering should be used in board design and layout to insure that powersupply lines are free of excessive noise. 5. Limit the available power supply current to the devices that are subject to latchup conditions. This can be accomplished with the power supply filtering network or with a currentlimiting regulator.

Figure 8. Input Model for Vin > VDD or Vin < VSS Other specifications that should be noted are the maximum input rise and fall times. Figure 10 shows the oscillations that may result from exceeding the 15 s maximum rise and fall time at VDD = 5.0 V, 5 s at 10 V, or 4 s at 15 V. As the voltage passes through the switching threshold region with a slow rise time, any noise that is on the input is amplified, and passed through to the output, causing oscillations. The oscillation may have a low enough frequency to cause succeeding stages to switch, giving unexpected results. If input rise or fall times are expected to exceed 15 s at 5.0 V, 5 s at 10 V, or 4 s at 15 V, Schmitttrigger devices such as the MC14093B, MC14583B, MC14584B, MC14106B, HC14, or HC132 are recommended for squaringup these slow transitions.

VDD Vin VSS

v

v

VOH Vout VOL

Figure 9. Maximum Rise and Fall Time Violations

OUTPUTSAll CMOS BSeries outputs are buffered to insure consistent output voltage and current performance. All buffered outputs have guaranteed output voltages of VOL = 0.05 V and VOH = VDD 0.05 V for Vin = VDD or VSS and lout = 0 A. The output drives for all buffered CMOS devices are such that 1 LSTTL load can be driven across the full temperature range.

CHAPTER 5 56

MOTOROLA CMOS LOGIC DATA

PCHANNEL INPUT VDD VDD PCHANNEL OUTPUT OUTPUT

NCHANNEL

NCHANNEL OUTPUT

VSS

N+

FIELD OXIDE

P+

P+

FIELD OXIDE

N+

N SUBSTRATE

Figure 10. CMOS Wafer Cross Section

NCHANNEL OUTPUT N+ VSS

Q1 N+ P N N P+ P Q2 VDD PCHANNEL OUTPUT NSUBSTRATE RESISTANCE VDD

VSS

PWELL RESISTANCE

Figure 11. Latch Up Circuit Schematic

MOTOROLA CMOS LOGIC DATA

P WELL

N+

P+

FIELD OXIDE

P+

CHAPTER 5 57

CMOS Handling and Design Guidelines

5

HANDLING AND DESIGN GUIDELINESHANDLING PRECAUTIONSAll MOS devices have insulated gates that are subject to voltage breakdown. The gate oxide for Motorola CMOS devices is about 900 thick and breaks down at a gatesource potential of about 100 volts. To guard against such a breakdown from static discharge or other voltage transients, the protection networks shown in Figures 1A and 1B are used on each input to the CMOS device. Static damaged devices behave in various ways, depending on the severity of the damage. The most severely damaged inputs are the easiest to detect because the input has been completely destroyed and is either shorted to VDD, shorted to VSS, or opencircuited. The effect is that the device no longer responds to signals present at the damaged input. Less severe cases are more difficult to detect because they show up as intermittent failures or as degraded performance. Another effect of static damage is that the inputs generally have increased leakage currents. Although the input protection network does provide a great deal of protection, CMOS devices are not immune to large static voltage discharges that can be generated during handling. For example, static voltages generated by a person walking across a waxed floor have been measured in the 4 15 kV range (depending on humidity, surface conditions, etc.). Therefore, the following precautions should be observed: 1. Do not exceed the Maximum Ratings specified by the data sheet. 2. All unused device inputs should be connected to VDD or VSS. 3. All lowimpedance equipment (pulse generators, etc.) should be connected to CMOS inputs only after the device is powered up. Similarly, this type of equipment should be disconnected before power is turned off. 4. Circuit boards containing CMOS devices are merely extensions of the devices, and the same handling precautions apply. Contacting edge connectors wired directly to device inputs can cause damage. Plastic wrapping should be avoided. When external connections to a PC board are connected to an input of a CMOS device, a resistor should be used in series with the input. This resistor helps limit accidental damage if the PC board is removed and brought into contact with static generating materials. The limiting factor for the series resistor is the added delay. This is caused by the time constant formed by the series resistor and input capacitance. Note that the maximum input rise and fall times should not be exceeded. In Figure 2, two possible networks are shown using a series resistor to reduce ESD (Electrostatic Discharge) damage. For convenience, an equation for added propagation delay and rise time effects due to series resistance size is given. All CMOS devices should be stored or transported in materials that are antistatic. CMOS devices must not be inserted into conventional plastic snow, styrofoam, or plastic trays, but should be left in their original container until ready for use. All CMOS devices should be placed on a grounded bench surface and operators should ground themselves prior to handling devices, since a worker can be statically charged with respect to the bench surface. Wrist straps in contact with skin are strongly recommended. See Figure 3 for an example of a typical work station. Nylon or other static generating materials should not come in contact with CMOS devices. If automatic handlers are being used, high levels of static electricity may be generated by the movement of the device, the belts, or the boards. Reduce static build up by using ionized air blowers or room humidifiers. All parts of machines which come into contact with the top, bottom, or sides of IC packages must be grounded to metal or other conductive material. Cold chambers using CO2 for cooling should be equipped with baffles, and the CMOS devices must be contained on or in conductive material. When leadstraightening or handsoldering is necessary, provide ground straps for the apparatus used and be sure that soldering ties are grounded.

5.

6.

7. 8.

9.

10.

INPUT PROTECTION NETWORKVDD VDD

CMOS INPUT

< 1500

TO CIRCUIT

CMOS INPUT

300

VSS

VSS

Figure 1a. Input Protection Network Double Diode

Figure 1b. Input Protection Network Triple Diode

CHAPTER 5 52

MOTOROLA CMOS LOGIC DATA

11. The following steps should be observed during wave solder operations: a. The solder pot and conductive conveyor system of the wave soldering machine must be grounded to an earth ground. b. The loading and unloading work benches should have conductive tops which are grounded to an earth ground. c. Operators must comply with precautions previously explained. d. Completed assemblies should be placed in antistatic containers prior to being moved to subsequent stations. 12. The following steps should be observed during board cleaning operations: a. Vapor degreasers and baskets must be grounded to an earth ground. b. Brush or spray cleaning should not be used. c. Assemblies should be placed into the vapor degreaser immediately upon removal from the antistatic container. d. Cleaned assemblies should be placed in antistatic containers immediately after removal from the cleaning basket. e. High velocity air movement or application of solvents and coatings should be employed only when assembled printed circuit boards are grounded and a static eliminator is directed at the board.

13. The use of static detection meters for production line surveillance is highly recommended. 14. Equipment specifications should alert users to the presence of CMOS devices and require familiarization with this specification prior to performing any kind of maintenance or replacement of devices or modules. 15. Do not insert or remove CMOS devices from test sockets with power applied. Check all power supplies to be used for testing devices to be certain there are no voltage transients present. 16. Double check test equipment setup for proper polarity of VDD and VSS before conducting parametric or functional testing. 17. Do not recycle shipping rails or trays. Repeated use causes deterioration of their antistatic coating.

RECOMMENDED FOR READING:Total Control of the Static in Your Business Available by writing to: 3M Company Static Control Systems P.O. Box 2963 Austin, Texas 787692963 Or by Calling: 18003281368VDD

TO OFFBOARD CONNECTION

R1

CMOS INPUT OR OUTPUT

D1 TO OFFBOARD CONNECTION R2

CMOS INPUT OR OUTPUT

D2 Advantage: Disadvantage: Requires minimal board area R1 > R2 for the same level of protection, therefore rise and fall times, propagation delays, and output drives are severely affected. Advantage: VSS R2 < R1 for the same level of protection. Impact on ac and dc characteristics is minimized More board area, higher initial cost

Disadvantage:

Note: These networks are useful for protecting the following A digital inputs and outputs C 3state outputs B analog inputs and outputs D bidirectional (I/O) ports

PROPAGATION DELAY AND RISE TIME vs. SERIES RESISTANCER [ t C@k where: R = the maximum allowable series resistance in ohms t = the maximum tolerable propagation delay or rise time in seconds C = the board capacitance plus the driven devices = input capacitance in farads k = 0.7 for propagation delay calculations k = 2.3 for rise time calculations

Figure 1. Networks for Minimizing ESD and Reducing CMOS Latch Up Susceptibility

MOTOROLA CMOS LOGIC DATA

CHAPTER 5 53

4

1

2 5

3

NOTES: 1. 1/16 inch conductive sheet stock covering bench top work area. 2. Ground strap. 3. Wrist strap in contact with skin. 4. Static neutralizer. (Ionized air blower directed at work.) Primarily for use in areas where direct grounding is impractical. 5. Room humidifier. Primarily for use in areas where the relative humidity is less than 45%. Caution: building heating and cooling systems usually dry the air causing the relative humidity inside of buildings to be less than outside humidity.

RESISTOR = 1 MEGAOHM

Figure 2. Typical Manufacturing Work Station

POWER SUPPLIESCMOS devices have low power requirements and the ability to operate over a wide range of supply voltages. These two characteristics allow CMOS designs to be implemented using inexpensive, conventional power supplies, instead of switching power supplies and power supplies with cooling fans. In addition, batteries may be used as either a primary power source or for emergency backup. The absolute maximum power supply voltage for 14000 Series Metalgate CMOS is 18.0 Vdc. Figure 4 offers some insight as to how this specification was derived. In the figure, VS is the maximum power supply voltage and IS is the sustaining current of the latchup mode. The value of VS was chosen so that the secondary breakdown effect may be avoided. In an ideal system design, a power supply should be designed to deliver only enough current to insure proper operation of all devices. The obvious benefit of this type design is cost savings; an added benefit is protection against

the possibility of latchup related failures. This system protection can be provided by the power supply filter and/or voltage regulator. CMOS devices can be used with battery or battery backup systems. A few precautions should be taken when designing batteryoperated systems: 1. The recommended power supply voltage should be observed. For battery backup systems such as the one in Figure 5, the battery voltage must be at least 3.7 Volts (3 Volts from the minimum power supply voltage and 0.7 Volts to account for the voltage drop across the series diode). 2. Inputs that might go above the battery backup voltage should either use a series resistor to limit the input current to less than 10 mA or use the MC14049UB or MC14050B hightolow voltage translators. 3. Outputs that are subject to voltage levels above VDD or below VSS should be protected with a series resistor to limit the current to less than 10 mA or with clamping diodes.

IDD

LATCH UP MODE

SECONDARY BREAKDOWN LOW CURRENT JUNCTION AVALANCHE

IS

VS VS = DATA SHEET MAXIMUM SUPPLY RATING

VDD

Figure 3. Secondary Breakdown Characteristics

CHAPTER 5 54

MOTOROLA CMOS LOGIC DATA

POWER SUPPLY

LINE POWER ONLY SYSTEM

BATTERY BACKUP SYSTEM

BATTERY BACKUP RECHARGE

CMOS SYSTEM MC14049UB MC14050B

MC14049UB MC14050B

CMOS SYSTEM

Figure 4. Battery Backup Interface

INPUTSAll inputs, while in the recommended operating range (VSS < Vin < VDD) can be modeled as shown in Figure 6. For input voltages in this range, diodes D1 and D2 are modeled as resistors, representing the reverse bias impedance of the diodes. The maximum input current is worst case, 1 A, when the inputs are at VDD or VSS, and VDD = 15.0 V. This model does not apply to inputs with pullup or pulldown resistors.

VDD = 5.0 Vdc

Vout , OUTPUT VOLTAGE (V)

5.0 4.0 3.0 2.0 1.0 0

SINGLE INPUT NAND, AND MULTIPLE INPUT NOR, OR SINGLE INPUT NOR, OR MULTIPLE INPUT NAND, AND

VDD R1 = R2 = HIGH Z R1

0

1.0

2.0

3.0 4.0 5.0 Vin, INPUT VOLTAGE (V)

Figure 6. Typical Transfer Characteristics for Buffered Devices7.5 pF

R2

Figure 5. Input Model for VSS

v Vin v VDD

For these reasons, all unused inputs should be connected either to VDD or VSS. For applications with inputs going to edge connectors, a 100 kilohm resistor to VSS should be used, as well as a series resistor for static protection and current limiting (Figure 8). The 100 kilohm resistor will help eliminate any static charges that might develop on the printed circuit board. See Figure 2 for other possible protection arrangements.FROM EDGE CONNECTOR 100 k RS CMOS DEVICE

When left opencircuited, the inputs may selfbias at or near the typical switchpoint, where both the Pchannel and Nchannel transistors are conducting, causing excessive current drain. Due to the high gain of the inverters (see Figure 7), the device may also go into oscillation from any noise in the system. Since CMOS devices dissipate the most power during switching, this oscillation can cause very large current drain and undesired switching.

Figure 7. External Protection

MOTOROLA CMOS LOGIC DATA

CHAPTER 5 55

For input voltages outside of the recommended operating range, the CMOS input is modeled as in Figure 9. The resistordiode protection network allows the user greater freedom when designing a worst case system. The device inputs are guaranteed to withstand voltages from VSS 0.5 V to VDD + 0.5 V and a maximum current of 10 mA. With the above input ratings, most designs will require no special terminations or design considerations.

D1

1.5 kD2 7.5 pF

CMOS outputs are limited to externally forced output voltages of VSS 0.5 V Vout VDD + 0.5 V. When voltages are forced outside of this range, a silicon controlled rectifier (SCR) formed by parasitic transistors can be triggered, causing the device to latch up. For more information on this, see the explanation of CMOS Latch Up in this section. The maximum rated output current for most outputs is 10 mA. The output shortcircuit currents of these devices typically exceed these limits. Care must be taken not to exceed the maximum ratings found on every data sheet. For applications that require driving high capacitive loads where fast propagation delays are needed (e.g., driving power MOSFETs), two or more outputs on the same chip may be externally paralleled.

v

v

CMOS LATCH UPLatch up will not be a problem for most designs, but the designer should be aware of it, what causes it, and how to prevent it. Figure 11 shows the crosssection of a typical CMOS inverter and Figure 12 shows the parasitic bipolar devices. The circuit formed by the parasitic transistors and resistors is the basic configuration of a silicon controlled rectifier, or SCR. In the latch up condition, transistors Q1 and Q2 are turned ON, each providing the base current necessary for the other to remain in saturation, thereby latching the devices in the ON state. Unlike a conventional SCR, where the device is turned ON by applying a voltage to the base of the NPN transistor, the parasitic SCR i