102
Manipulations in Spin and Space: Tensors, Rotations, and Average Hamiltonian Theory Len Mueller University of California, Riverside

Manipulations in Spin and Space: Tensors, Rotations, and Average ... · Tensors, Rotations, and Average Hamiltonian Theory Len Mueller University of California, Riverside. Hamiltonians

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Manipulations in Spin and Space: Tensors, Rotations, and

Average Hamiltonian Theory

Len Mueller

University of California,Riverside

Hamiltonians in NMR

• I, B in lab frame• A is a second-rank Cartesian tensor and is a molecular-level property that depends

on local geometry, electronic structure, and orientation within the lab frame• Can manipulate the Hamiltonian through both the spin and space components• Need a working knowledge of both tensors and rotations and techniques for

solving time-dependent quantum mechanical problems

λλλλ SIcH ⋅⋅= A

...,,...,

JD,σ,A =

λ IBS

=

zzyzxz

zyyyxy

zxyxxx

aaaaaaaaa

A

Part I: Tensors and Rotations in NMR

Len Mueller

University of California,Riverside

Second-Rank Cartesian Tensors • The transformation of second-rank

Cartesian tensors under the physical rotation of the system plays a fundamental role in the theoretical description of NMR experiments, providing the framework for describing anisotropic phenomena such as

- Single crystal rotation patterns- Powder patterns- MAS side-band intensities- Input to relaxation theory

A A′R

Second-Rank Cartesian Tensors • The transformation of second-rank

Cartesian tensors under the physical rotation of the system plays a fundamental role in the theoretical description of NMR experiments, providing the framework for describing anisotropic phenomena such as

- Single crystal rotation patterns- Powder patterns- MAS side-band intensities- Input to relaxation theory

Hayes et al, JPCB 2011

Second-Rank Cartesian Tensors • The transformation of second-rank

Cartesian tensors under the physical rotation of the system plays a fundamental role in the theoretical description of NMR experiments, providing the framework for describing anisotropic phenomena such as

- Single crystal rotation patterns- Powder patterns- MAS side-band intensities- Input to relaxation theory 13C Chemical Shift (ppm)

Second-Rank Cartesian Tensors • The transformation of second-rank

Cartesian tensors under the physical rotation of the system plays a fundamental role in the theoretical description of NMR experiments, providing the framework for describing anisotropic phenomena such as

- Single crystal rotation patterns- Powder patterns- MAS side-band intensities- Input to relaxation theory 29Si Chemical Shift (ppm)

Second-Rank Cartesian Tensors • The transformation of second-rank

Cartesian tensors under the physical rotation of the system plays a fundamental role in the theoretical description of NMR experiments, providing the framework for describing anisotropic phenomena such as

- Single crystal rotation patterns- Powder patterns- MAS side-band intensities- Input to relaxation theory

Tensors and Rotations• Two ways to treat this are the direct rotation in Cartesian form

and the decomposition of the Cartesian tensor into irreducible spherical components that rotate in subgroups of rank 0, 1, and 2 – you need to know how to manipulate tensors in both forms

– these must give the same results!

( ) pkRkqp

k

kpqk D AA Ω=′ ∑

−=

)(

A A′R

1−=′ RARA

Tensors and Rotations:The Problem

• As written and applied in most standard NMR texts they do not!• There is a curious need to switch sense of rotation for Cartesian

and spherical tensors to effect the same transformation

( ) pkRkqp

k

kpqk D AA Ω=′ ∑

−=

)(

A A′R

1−=′ RARA

Tensors and Rotations:The Problem

A A′R

1−=′ RARA

• A problem that is rarely noted and has not been reconciled• Not convention, but fundamental

( ) pkRkqp

k

kpqk D AA 1

)(−Ω=′ ∑

−=

• As written and applied in most standard NMR texts they do not!• There is a curious need to switch sense of rotation for Cartesian

and spherical tensors to effect the same transformation

Goals of this Part 1• Review the transformation of second-rank tensors under rotation

in both Cartesian and spherical tensor form• Reconcile the inconsistency in the sense of rotation necessary to

produce equivalent transformations• A uniform approach to the rotation of a physical system and the

corresponding transformation of the spatial components of the NMR Hamiltonian – expressed as either Cartesian or spherical tensors

Mueller, Concepts in Magnetic Resonance A, 38A, 221-235 (2011)

Outline for Part 1• Construction of the NMR Hamiltonian in terms of second-rank tensors

• Cartesian rotation matrices• Irreducible spherical tensor basis• A consistent treatment of rotations in spherical tensor form

• Example: Rotation of an ab intio chemical shielding tensor

• What went wrong and a few words of caution

Hamiltonians in NMR

• I, B in lab frame• A is a second-rank Cartesian tensor and is a molecular-level

property that depends on local geometry, electronic structure, and orientation within the lab frame

λλλλ SIcH ⋅⋅= A

...,,...,

JD,σ,A =

λ IBS

=

zzyzxz

zyyyxy

zxyxxx

aaaaaaaaa

A

Chemical Shielding Tensor in NMR

BIH ⋅⋅= σγ

=

zzzyzx

yzyyyx

xzxyxx

σσσσσσσσσ

σ

Chemical Shielding Tensor in NMR

( )zzzzzyzyzxzx BIBIBIBIH

σσσγγ

++=⋅⋅= σ

=

zzzyzx

yzyyyx

xzxyxx

σσσσσσσσσ

labσ•I, B, and σ in lab frame

zzzz BIH σγ=secularCS,

Principal Axis System

=

ZZ

YY

XX

σσ

σ

000000

PASσ

Often represent tensors as ellipsoids with PAS components as axes. This is not a completely accurate mapping (but still useful).

Orientation Dependence

1

000000

=

RR

ZZ

YY

XX

zzzyzx

yzyyyx

xzxyxx

σσ

σ

σσσσσσσσσ

Aside: Rotations of Matrices

''1 vvvwwvw

ARRARRARA

====′

=−

y

x

v

wA

w’

A’

R

Rotations and Euler Angles

ZYZ Convention

Rotation Matrices and Euler Angles

( )

−+−+−−−

=βγβγβ

βαγαγβαγαγβαβαγαγβαγαγβα

γβαcossinsincossin

sinsincoscossincossinsincoscoscossinsincoscossinsincoscossinsincoscoscos

,,A

Active Rotation: Rotate body-fixed frame relative to the observer-fixed frame

Bouten, Physica 42 (1969) 572-580

Rotation Matrices and Euler Angles

( )

+−−−

−+−=

ββαβαγβγαγβαγαγβαγβγαγβαγαγβα

γβαcossinsinsincos

sinsincoscossincossincossinsincoscoscossinsincoscoscossinsinsincoscoscos

,,P

Passive Rotation: Rotate observer-fixed frame relative to the body-fixed frame

Bouten, Physica 42 (1969) 572-580

Constructing the Rotation Matrix

Active

x

y

x

y

x

y

Passive

( )

−=

1000cossin0sincos

αααα

αza ( )

−=

1000cossin0sincos

αααα

αzp

Constructing the Rotation MatrixActive Passive

( )

−=

1000cossin0sincos

αααα

αza ( )

−=

1000cossin0sincos

αααα

αzp

( )

−=

ββ

βββ

cos0sin010

sin0cos

ya ( )

−=

ββ

βββ

cos0sin010

sin0cos

yp

( ) ( ) ( ) ( )αβγγβα ZYZ pppP =,,( ) ( ) ( ) ( )αβγγβα ZYZ aaaA =,,

Easy! Rotatable frame is the observer frame so just multiply

Hard! Rotatable axes X,Y,Z are not unit axes in observer frame x,y,z. But they can easily be transformed into rotations in the observer (space-fixed) frame; note the reversal in the order of angles (problem set !)

( ) ( ) ( ) ( )γβαγβα zyz aaaA =,,

Active vs. Passive Rotation

x

y

x

y

x

y

( ) ( )γβαγβα ,,,, 1−= AP

Active Passive

Active vs. Passive:Is there a Difference?

x

y

x

y

=

z

y

x

z

y

x

bbb

aaa

R

Active vs. Passive: Is there a Difference?

x

y

x

y

=

z

y

x

z

y

x

bbb

aaa

R

Bases and Coordinates:A Critical Distinction

• Bases

iRyxxx xiyxi

Rz ˆˆsinˆcossincos

01

cossinsincos

ˆˆ,

∑=

=+=

=

−== αα

αα

αααα

R

ixiyxi

iixyxi

x

yx

yx

y

x

y

x

y

x

cRcRc

cccc

cc

cc

cc

1

,,

cossinsincos

cossinsincos

==∑∑ ==′

+−

=

−=

=

′′

αααα

αααα

R

• Asymmetry between bases and coefficients (coordinates) transform in the opposite sense

• Well-known correspondence in linear algebra

• Coordinates:

Tensors and Rotations

Cartesian

( ) pkRkqp

k

kpqk D AA Ω=′ ∑

−=

)(1−=′ RARA

Irreducible Spherical Tensors

Wigner Rotation Elements

( ) qkOpkD RRkqp =Ω)(

qk• OR is the quantum mechanical rotation operator• is a generalized angular momentum basis ket

Active vs. Passive Rotation Operators

Active

Ix

Iy

Ix

Iy

Passive

( ) zyz IiIiIiA eeeO γβαγβα −−−=,, ( ) zyz IiIiIi

P eeeO αβγγβα =,,

Ix

Iy

Bouten, Physica 42 (1969) 572-580

Wigner Rotation Elements

( ) qkOpkD RRkqp =Ω)(

( )∑

∑∑

−=

′−=′

Ω=

′′==

k

kpR

kqp

k

kpR

kR

R

pkD

qkOpkpkqkOqk

)(

Basis Component Equation

Arbitrary Ket

( )∑∑−=

Ω==k

kpqR

kqpkq

kR

R pkDcO,

)(ψψ

∑∑−=

=k

kqkq

kqkcψ

Irreducible Spherical Tensor Basis[ ][ ]

( )[ ]( )[ ]

( )[ ]( )[ ]xyyxyyxx

yzzyxzzx

zzyyxxzz

zyyzzxxz

xyyxi

zzyyxx

i

i

i

TTTTT

TTTTT

TTTTT

TTTTT

TTT

TTTT

+±−=

+±+=

++−=

−±−−=

−−=

++−=

±

±

±

21

22

21

12

61

02

21

11

201

31

00

3

=

=

=

=

=

=

=

=

=

100000000

,010000000

,001000000

,000100000

,000010000

,000001000

,000000100

,000000010

,000000001

zzyzxz

zyyyxy

zxyxxx

TTT

TTT

TTT

−±±

=

±±=

−=

±

−−=

−−=

−=

±±

±

0000101

,01

00100

,200010001

,01

00100

,000001010

,100010001

21

2221

1261

02

21

1120131

00

ii

ii

iii

TTT

TTT

Rotational Properties of Spherical Tensors Basis Components

•Tensor basis components rotate like angular momentum kets

Note: •Easy to verify (plug into Mathematica)

( ) pkRkqp

k

kpqk

Rqk D TRTRT Ω== ∑

−=

− )(1

The basis equation

• Expansion of an arbitrary matrix

jkjk

k

kjkjkjk

k

kjkba TTA *

2

0

2

0∑∑∑∑

−==−==

==

AT†jkjkjk Trba == *

=

zzyzxz

zyyyxy

zxyxxx

aaaaaaaaa

A

• Bases not Hermitian, so

nlmknmlkTr δδ=TT†

STB: Complete and Orthonormal

Mehring“symmetric”

Mueller, CMR“direct”

STB: Complete and Orthonormal

• Not Hermitian, so use

nlmknmlkTr δδ=TT†

• Expansion of an arbitrary matrix

jkjk

k

kjka TA ∑∑

−==

=2

0

AT†jkjk Tra =

[ ][ ]

( )[ ]( )[ ]

( )[ ]( )[ ]xyyxyyxx

yzzyxzzx

zzyyxxzz

zyyzzxxz

xyyxi

zzyyxx

aaiaaa

aaiaaa

aaaaa

aaiaaa

aaa

aaaa

+−=

++=

++−=

−−−=

−=

++−=

±

±

±

21

22

21

12

61

02

21

11

201

31

00

3• Coefficients defined this way are

the complex conjugates of those frequently encountered in the literature (no fundamental problem).

=

zzyzxz

zyyyxy

zxyxxx

aaaaaaaaa

A

Rotation of Spherical Tensors

( )

( ) qkjkRkjq

k

kj

k

kqk

qkRkjq

k

kqjk

k

kjk

jkjk

k

kjk

aD

Da

a

T

T

RTR

RARA

Ω=

Ω=

=

=′

∑∑∑

∑∑∑

∑∑

−=−==

−=−==

−==

)(2

0

)(2

0

2

0

1-

-1

Rotation of Spherical Tensors( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ

=

′′′′′

ΩΩΩΩΩΩΩΩΩ

=

′′′

Ω=′

−−

−−

−−

−−−−−−−

−−−−−−−

−−−−−

22

12

02

12

22

)2(22

)2(12

)2(02

)2(12

)2(22

)2(21

)2(11

)2(01

)2(11

)2(21

)2(20

)2(10

)2(00

)2(10

)2(20

)2(21

)2(11

)2(01

)2(11

)2(21

)2(22

)2(12

)2(02

)2(12

)2(22

22

12

02

12

22

11

01

11

)1(11

)1(01

)1(11

)1(10

)1(00

)1(10

)1(11

)1(01

)1(11

11

01

11

00)0(

0000

aaaaa

DDDDDDDDDDDDDDDDDDDDDDDDD

aaaaa

aaa

DDDDDDDDD

aaa

aDa

RRRRR

RRRRR

RRRRR

RRRRR

RRRRR

RRR

RRR

RRR

R rank 0

rank 1

rank 2

The Secular Component

Typically just need to keep track of the secular component of the rotated tensor or the coefficient of the 2,0th

component of the rotated spherical tensor

zozz IH ωσ=secularCS,

( ) ( )γβασ

σσ

γβασσσσσσσσσ

,,00

0000

,, 1−

=

RR

ZZ

YY

XX

zzzyzx

yzyyyx

xzxyxx

0031

0232 σσσ −=zz

The “Coefficient” Equation

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

ΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ

=

′′′′′

−−

−−

−−

−−−−−−−

−−−−−−−

22

12

02

12

22

)2(22

)2(12

)2(02

)2(12

)2(22

)2(21

)2(11

)2(01

)2(11

)2(21

)2(20

)2(10

)2(00

)2(10

)2(20

)2(21

)2(11

)2(01

)2(11

)2(21

)2(22

)2(12

)2(02

)2(12

)2(22

22

12

02

12

22

aaaaa

DDDDDDDDDDDDDDDDDDDDDDDDD

aaaaa

RRRRR

RRRRR

RRRRR

RRRRR

RRRRR

( ) pRpqp

q aDa 2)2(

2

22 Ω=′ ∑

−=

Tensor before the rotation of the physical system.

Tensor after the rotation of the physical system.

Rotated ComponentsThe basis “component” equation

The “coefficient” equation

Do not want to confuse these two equations!

( ) pRqpp

qRq D 2

)2(2

2

122 TRTRT Ω== ∑

−=

( ) pRpqp

q aDa 2)2(

2

22 Ω=′ ∑

−=

The Problem!!!

for q=0

• We’ve been using the wrong equation in NMR.• This example is from Mehring’s text, but is not unique!

( ) pRqpp

q D 2)2(

2

22 TT Ω= ∑

−=

Basis component equation Coefficient equation

( ) pRpqp

q aDa 2)2(

2

22 Ω=′ ∑

−=

• Expansion of an arbitrary matrix

jkjk

k

kjkb TA *

2

0∑∑

−==

=

AT†jkjk Trb =*

[ ][ ]

( )[ ]( )[ ]

( )[ ]( )[ ]xyyxyyxx

yzzyxzzx

zzyyxxzz

zyyzzxxz

xyyxi

zzyyxx

aaiaab

aaiaab

aaaab

aaiaab

aab

aaab

+±−=

+±+=

++−=

−±−−=

−−=

++−=

±

±

±

21

22

21

12

61

02

21

11

201

31

00

3

=

zzyzxz

zyyyxy

zxyxxx

aaaaaaaaa

A

• Bases not Hermitian, so

nlmknmlkTr δδ=TT†

STB: Complete and Orthonormal

( ) jkkj

jk bb −+−= 1*

• Verify by direct substitution

Mehringconvention

The Coefficient Equation

( ) *)(*pkR

kpq

k

kpqk bDb Ω=′ ∑

−=

( ) pkRkqp

k

kpqk bDb 1

)(−Ω=′ ∑

−=

( ) ( ) ( )1)(1)(*)(

−Ω=Ω=Ω −

RkqpR

kqpR

kpq DDD

( ) ( ) 1),(),( −Ω=Ω Rpassivek

qpRactivek

qp DD

Form I

Form II

Bases and CoefficientsThe basis equation

The coefficient equation

( ) pkRkqp

k

kpqk

Rqk D TRTRT Ω== ∑

−=

− )(1

( ) pkRkqp

k

kpkq bDb 1

)(−Ω=′ ∑

−=

( ) *)(*pkR

kpq

k

kpqk bDb Ω=′ ∑

−=

( ) pkRkqp

k

kpqk aDb 1

)(−Ω=′ ∑

−=( ) pkR

kqp

k

kpqk D TT Ω= ∑

−=

)(

The Problem!!!•We’ve been using the wrong equation in NMR.•This example is from Mehring’s text, but is not unique!

Basis equation Coefficient equation

An Example: Rotation of an AbInitio Chemical Shielding Tensor

−−−

−=

4.1198.21.50.50.1319.6

5.17.85.151aσ

−−−=

9.1207.71.39.100.1526.0

1.02.10.129I,bσ

Active rotation of molecule Cα CSA calculated in Gaussian (B3LYP, 6311++G**)

An Example: CS in Glycine

( ) ( )364A364AII ,,,, ππππππ -1RσRσ ab, =

−−−=

9.1208.71.39.100.1526.0

2.02.10.129II b,σ

Cartesian

An Example: CS in Glycine

−−−=

9.1208.71.39.100.1526.0

2.02.10.129II b,σ

−−−=

9.1207.71.39.100.1526.0

1.02.10.129I b,σ

Direct Cartesian

An Example: CS in Glycine

1.

2.

3.

ajk

ajk Tr σT†=σ

( )( ) ajkR

kjq

k

kj

bqk D σσ πππ

364A ,,)( Ω= ∑

−=

−−−=

9.1208.71.39.100.1526.0

2.02.10.129III b,σ

jkb

jk

k

kjk

b, Tσ σ∑∑−==

=2

0

III

ST: Coefficient Eqn.

An Example: CS in Glycine

−−−=

9.1208.71.39.100.1526.0

2.02.10.129III b,σ

−−−=

9.1208.71.39.100.1526.0

2.02.10.129II b,σ

−−−=

9.1207.71.39.100.1526.0

1.02.10.129I b,σ

Direct

Cartesian

ST: Coefficient Eqn.

An Example: CS in Glycine

−−−−

=6.1221.121.57.75.1408.116.57.109.138

IV b,σ

−−−=

9.1207.71.39.100.1526.0

1.02.10.129I b,σ

Direct ST: Basis Eqn.

What Went Wrong?

• How come we did not notice this earlier?

• Compensating errors that appeared to make the approach consistent

- Used the basis equation - Switched the sense of rotation between the Cartesian and spherical tensor transformations

What Went Wrong?

• Mispairing of Cartesian and Wigner rotation matrices makes basis equation appear to work for coordinate transformations

• Not unique to Mehring’s text – predates use in NMR• Bouten, Physica 42 (1969) 572-580

• Errors in: Edmonds (1957), Rose (1957)• Correct in: Wigner (1959), Fano and Racah (1959), Edmonds (1996)

Passive!

Active!

Implications for NMR

Bad News:• You will read a lot of papers in which the rotations

implemented in spherical tensor form are the inverse of what was intended or stated

Implications for NMR

Good News:• You will read a lot of papers in which the rotations

implemented in spherical tensor form are JUST the inverse of what was intended or stated

Bad News:• You will read a lot of papers in which the rotations

implemented in spherical tensor form are the inverse of what was intended or stated

Implications for NMR

Simulation Programs:• Both Simpson and Spinach are in practice using the passive

convention

Good News:• You will read a lot of papers in which the rotations

implemented in spherical tensor form are JUST the inverse of what was intended or stated

Bad News:• You will read a lot of papers in which the rotations

implemented in spherical tensor form are the inverse of what was intended or stated

When Does it Matter?

• The consistent treatment of rotations of the physical system and spatial tensors in the NMR Hamiltonian is necessary to make connections back to the molecular frame

• The coordinate equation:

Mueller, Concepts in Magnetic Resonance A, 38A, 221-235 (2011)

( ) pkRkpq

k

kpqk aDa Ω=′ ∑

−=

)(

Hamiltonians in Spherical Tensor Form

=⊗=

zzyzxz

zyyyxy

zxyxxx

ISISISISISISISISIS

ISλλλ

λλλ

λλλ

λλS

[ ][ ]

( )[ ]( )[ ]

( )[ ]( )[ ]xyyxyyxx

yzzyxzzx

zzyyxxzz

zyyzzxxz

xyyxi

zzyyxx

ISISiISISs

ISISiISISs

ISISISISs

ISISiISISs

ISISs

ISISISs

+−=

++=

++−=

−−−=

−=

++−=

±

±

±

21

22

21

12

61

02

21

11

201

31

00

3

( ) jkjkj

k

kjk

jkjk

k

kjkjkjk

k

kjk

sac

sac

cSIcH

−−==

′′′′

′−=′=′−==

−=

=

=

⋅⋅=

∑∑

∑∑∑∑

1

Tr

Tr

2

0

2

0

2

0

λ

λ

λλλ

λλλλ

TT

SAA

An advantage of spherical tensors is that they isolate elements of 2nd

rank Cartesian tensors that transform together under rotation.

To take full advantage of them, must write the Hamiltonian in ST form

Secular Approximation[ ]

[ ]( )[ ]

( )[ ]( )[ ]

( )[ ]xyyxyyxx

yzzyxzzx

zzyyxxzz

zyyzzxxz

xyyxi

zzyyxx

ISISiISISs

ISISiISISs

ISISISISs

ISISiISISs

ISISs

ISISISs

+−=

++=

++−=

−−−=

−=

++−=

±

±

±

21

22

21

12

61

02

21

11

201

31

00

3

0

0

0

0

22

12

62

02

11

01

31

00

=

=

=

=

=

−=

±

±

±

s

s

ISs

s

s

ISs

zz

zz[ ]

( )[ ]

0

0

3

0

0

22

12

61

02

11

01

31

00

=

=

++−=

=

=

++−=

±

±

±

s

s

ISISISISs

s

s

ISISISs

zzyyxxzz

zzyyxx

• Discard terms that do not commute with IZ

tot

HeteronuclearHomonuclear

Hamiltonians in Spherical Tensor Form: Secular Approximation

( )

20200000

2

0

2

0

2

0

1

Tr

Tr

sacsac

sac

sac

cSIcH

jkjkj

k

kjk

jkjk

k

kjkjkjk

k

kjk

λλ

λ

λ

λλλ

λλλλ

+=

−=

=

=

⋅⋅=

−−==

′′′′

′−=′=′−==

∑∑

∑∑∑∑ TT

SAA

Hamiltonian and Reference Frames

( ) ( ) ( ) ( ) PASPAS

lab1labPAS

labPASPAS

lablabPAS

1PASlabPAS

lablab

SRARSA

SRARSA

ΩΩ==

ΩΩ==−

TrcTrc

TrcTrcHλλ

λλλ

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) labPAS

labPASPAS

lab1

PASlab

1labPASlab

PAS

labPAS

lablabPAS

1PAS

lablabPAS

1PASlabPAS

SRAR

RSRA

RSRA

SRAR

ΩΩ=

ΩΩ=

ΩΩ=

ΩΩ=

Trc

Trc

Trc

TrcH

λ

λ

λ

λλ

( )labPASΩR

Starting frame

Final frame

Trace is invariant with respect to basis, so can write the Hamiltonian in any reference frame

Example: Orientation Dependence of the Chemical Shift Hamiltonian

( ) ( )

( ) ( ) ( )

−+=

Ω−Ω+Ω−+=

Ω+Ω=

+=

′′−=′

γβηβδσγ

ηδδηδγσγ

γγ

γγ

2cossin2

1cos 221

2

zz

61lab

PAS)2(

20labPAS

)2(006

1labPAS

)2(20

lab02

PAS2

labPAS

)2(0

2

2

lab00

PAS00

labPAS

)0(00

lab02

lab02

lab00

lab00

CS

IB

DDDIBIB

saDsaD

sasaH

zzzz

jjj

( )ZZYYXX σσσσ ++= 31

δσση XXYY −

=

σσδ −= ZZ

Using an active rotation:Independent of angle α

( ) ( ) ( ) ( )γβαγβα zyz aaaA =,,

Example: Hamiltonian under MAS

Part of problem set #1

( )[ ] ( )( )

( ) ( )( )γωβαηδ

γωβαηδ

γωβαηδ

γωβαηβδ

σγ

++

++−

++

++−+

−=

t

tt

t

IBH

r

r

r

r

zz

sincos2sin

cos2sin2cos122sincos2sin

22cos2cos12cossin

32

31

21

31

31

412

21

cs

0,,labrotor mrt θω=Ω

= −

31cos 1

Passive rotation• Angles describe how

to get from rotor back to lab frame

MAS Sidebands

( )[ ] ( )( )

( ) ( )( )γωβαηδ

γωβαηδγωβαηδ

γωβαηβδ

σγ

++

++−

++

++−+

−=

t

tt

tIBH

r

r

r

r

zz

sincos2sin

cos2sin2cos122sincos2sin

22cos2cos12cossin

32

31

21

31

31

412

21

cs

Increasing MAS rate

Herzfeld & Berger, Journal of Chemical Physics,73, 6021-6030 (1980)

σγ zz

MASfastIBH −=cs

Fast MAS• ok to take time average

Part II: Rotations in Spin Space Average Hamiltonian Theory (AHT)

and Homonuclear Decoupling

Thanks to Jeremy Titman (Nottingham) for sharing his notes on homonuclear decoupling

Time Evolution and Average Hamiltonian Theory

( ) ∏ −=j

iH jjetU τ

( ) tHietU −=

∑≠j

jHH

[ ] 0, =kj HHunlessEffective Hamiltonian

• MAS and multiple pulses lead to time-dependent Hamiltonians

• Complicates dynamics when H does not always commute with itself at all times

Time-Dependent Problems in NMR

Several approaches exist:•Large term in Hamiltonian dominates

- Interaction representation •Periodic Hamiltonian with “small” terms

- Average Hamiltonian Theory•General Problem

- Brute force

( ) ∏ −=j

iH jjetU τ

The Rotating Frame:Preliminaries

( ) ( ) ( )ttiHtt ψψ −=∂∂

( ) ( ) ( )oo tttUt ψψ ,=

( ) ( ) ( )00 ,, ttUtiHttUt −=∂∂

( ) ( ) ( )[ ]ttHitt ρρ ,−=∂∂

( ) ( ) ( ) ( )oo ttUtttUt ,, 0+= ρρ

Equations of motion from Q.M. (always satisfied)

The Rotating FrameIn NMR the Zeeman interaction dominates when viewed from the lab frame

So pick a reference frame that rotates about the z-axis near the Larmor frequency from which to view the system.

( ) ( )tHHItH rfizio

i++= ∑ intω

Picture courtesy of Mei Hong

The Rotating FrameIn NMR the Zeeman interaction dominates when viewed from the lab frame

So pick a reference frame that rotates about the z-axis near the Larmor frequency from which to view the system.

Note this is a PASSIVE rotation! Coriolis force!

( ) ( )tHHItH rfizio

i++= ∑ intω

( ) totzIti

o etU ω=

The Rotating Frame: The Math( ) ( ) ( )ttUt o ψψ =~

( ) ( ) ( )oo tttUt ψψ ~,~~ =

( ) ( ) ( ) ( ) ( )ooooo ttUttUtUt ψψ ,~+=

( ) ( ) ( ) ( )( ) ( ) ( ) ( )ooooo

ooooo

tUttUtUttU

tUttUtUttU+

+

=

=

,,~,~,

( ) ( ) ( ) ( ) ( )o

eff

ooootot

ttUHi

tUttUtUttU

,~~,,~

−=

= +∂∂

∂∂

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )tUtUitHtUtUitHUtU

tUtiUtHtUtiUtHUtUH

oooooo

ooooooeff

+++

+++

+=+=

−=−=

~

~~

( ) ( )tUtU oto ∂∂= Time-evolution in the

rotating frame isn’t just due to Coriolis term!

( )tH~

Define rotating frame by Uo(t)

Time evolution in rot. frame

Substituting

Define rotating frame effective Hamiltonian

The Rotating Frame( ) tot

zItio etU ω=

( )

( ) ( )

( ) ( )tHtHI

tHtHI

etHHeI

IHeeH

rfzi

io

rfzi

io

Itirf

Itiz

i

io

totz

ItiItieff

totz

totz

totz

totz

secsecint

int

int

~~

~~

~

++∆≈

++∆=

++∆=

−=

∑ −

ω

ω

ω

ωωω

ωω

( ) ( )tHHItH rfizio

i++= ∑ intω

The secular approximation: Ignore terms with fast time-dependence

tItIeIe yxIti

xIti zz ωωωω sincos −=− Rotating at Larmor

frequency – ignore(left behind in lab frame)

Much smaller offset freqand may change t.d. of Hrf

Secular Approximation[ ]

[ ]( )[ ]

( )[ ]( )[ ]

( )[ ]xyyxyyxx

yzzyxzzx

zzyyxxzz

zyyzzxxz

xyyxi

zzyyxx

ISISiISISs

ISISiISISs

ISISISISs

ISISiISISs

ISISs

ISISISs

+−=

++=

++−=

−−−=

−=

++−=

±

±

±

21

22

21

12

61

02

21

11

201

31

00

3

0

0

0

0

22

12

62

02

11

01

31

00

=

=

=

=

=

−=

±

±

±

s

s

ISs

s

s

ISs

zz

zz[ ]

( )[ ]

0

0

3

0

0

22

12

61

02

11

01

31

00

=

=

++−=

=

=

++−=

±

±

±

s

s

ISISISISs

s

s

ISISISs

zzyyxxzz

zzyyxx

• Discard terms that do not commute with IZ

tot

HeteronuclearHomonuclear

The Interaction Representation

• Generalization of the rotating frame.

• Uo(t) can be any large term in the Hamiltonian

• Example, spin-locking fields, CP, and Lee-Goldberg decoupling

Chemical Shift Under Spin-Lock

Let:( ) xz IItH 1ωω +∆=

In the interaction frame:

( ) [ ]xo tIitU 1exp ω=

( )

( ) ( ) 0

sincos

~

11

11

1

11

11

+∆=−+∆=

−=−

yz

xtIi

xztIi

xtIitIieff

ItItIeIIe

IetHeHxx

xx

ωωωωωω

ωωω

ωωChemical shifts do not evolve under spin lock

Dipolar Coupling Under Spin-Lock

( ) [ ] )(3 2112121 xxzzD IIIIIItH ++⋅−= ωωIn the interaction frame:

( ) [ ])(exp 211 xxo IItItU += ω

( )( ) ( )( ) ( ) ( )( )

( ) ( )

( ) 212121

21212123

21212123

2121211111

1

3

sincossincos3

~11

IIIIIIIIII

IIIIII

IIItItItItIetHeH

xxD

xxD

yyzzD

yzyzD

totx

tIitIieff totx

totx

⋅−−=

⋅−−⋅=

⋅−+=

⋅−++=−= −

ωω

ω

ωωωωωωωω

time average

scaled by -1/2 and rotated to be along x

The “Toggling” Frame•An interaction representation for multi-pulse sequences that pushes ahead with the applied pulses

•Often used to analyze multi-pulse homonucleardecoupling

Homonuclear Decoupling

•The use of rf pulses to average dipolar couplings

•Used to improve resolution in 1H and 19F NMR spectra by removing homonuclear couplings

Homogeneous 1H Network

• In solids, 1H lines are broad, even under moderate MAS

• Inhomogeneous part shifts energies of the Zeeman eigenstates

• Homogeneous part mixes degenerate states and causes line broadening. Flip-flop transitions lead to fluctuations of the state that interfere with MAS when νr < D

( )+−−+ +−=⋅−∝ 212121

212121 23 IIIIIIIIIIH zzzzD

Multi-pulse HomonuclearDecoupling

Under the homonuclear dipolar Hamiltonian the FID decays quickly

Homonuclear decoupling involves sampling the FID stroboscopically, between bursts of a multi-pulse sequence designed to remove the dipolar interaction

Homonuclear Decoupling

Homonuclear Decoupling•Heteronuclear

( )zzIS

SID SIr

H 22

1cos3 2

3

−−=

βγγ ( )2121

2

312

2

32

1cos3 IIIIr

H zzD ⋅−

−−=

βγ

•Homonuclear

can independently flip not individually addressable

Homonuclear Decoupling

•WAHUHA

John Waugh

Average Hamiltonian Theory

Assuming :• A periodic Hamiltonian H(t) which is piecewise-constant over intervals τj

• Stroboscopic observation synchronized with the period of the Hamiltonian

Then it is possible to express the multi-pulse sequence as a transformation under an effective Hamiltonian given by the repeated application of the Baker-Campbell-Hausdorff expansion:

This expansion converges provided |Η|τc << 1Can also be applied to continuous pulses such as spin-locking fields

( ) ∑== jcjHtH ττ

[ ] [ ] [ ] ...,,,

...

1133223311222)1(

3322111)0(

)2()1()0(

+++=

+++=

+++=

− ττττττ

τττ

τ

τ

HHHHHHH

HHHHHHHH

c

c

i

eff

Calculating the Average Hamiltonian in the Toggling Frame

At the end of the cycle the toggling frame and rotating frame are back in register.

( )( )( )2121

2121

2121

333

IIIIDHIIIIDHIIIIDH

yyYY

xxXX

zzZZ

⋅−=

⋅−=

⋅−=

τττττ ππππ ZZx

ZZy

ZZy

ZZx

ZZ iHIiiHIiiHIiiHIiiH eeeeeeeeeU −−−−−−−= 2222 2

Calculating the Average Hamiltonian using Propagators

ττ ππ 22 22XX

yZZ

y iHIiiHIi eeee −−− =

τττττ ππ ZZx

ZZXXZZx

ZZ iHIiiHiHiHIiiH eeeeeeeU −−−−−−= 22 2

problem set #1

( )( )( )2121

2121

2121

333

IIIIDHIIIIDHIIIIDH

yyYY

xxXX

zzZZ

⋅−=

⋅−=

⋅−=

Calculating the Average Hamiltonian using Propagators

τττττ ππ ZZx

ZZXXZZx

ZZ iHIiiHiHiHIiiH eeeeeeeU −−−−−−= 22 2

( )( )( )2121

2121

2121

333

IIIIDHIIIIDHIIIIDH

yyYY

xxXX

zzZZ

⋅−=

⋅−=

⋅−=

Calculating the Average Hamiltonian using Propagators

τττττ ZZYYXXYYZZ iHiHiHiHiH eeeeeU −−−−−= 2

Average Hamiltonian 06

222)0( =++

τττ ZZYYXX HHHH

AHT: Chemical Shift Scaling

yY

xX

zZ

IHIHIH

ω

ω

ω

∆=

∆=

∆=

Average Hamiltonian is

( )zyx

ZYX

III

HHHH

++∆

=

++=

3

6222)0(

ωτ

τττ

WAHUHA

yY

xX

zZ

IHIHIH

ω

ω

ω

∆=

∆=

∆=

Average Hamiltonian is

( )33

6222)0(

zyx

ZYX

III

HHHH

++∆=

++=

ωτ

τττ

scaling factor = 0.577

WAHUHA

U. Haeberlen, U. Kohlschütter, J. Kempf, H.W. Spiess and H. Zimmerman, Chem. Phys., 3, 248 (1974).

τc short, ~ 20 µs

Improved Homonuclear DecouplingMuch effort has been expended modifying the basic sequence so that:• Higher order terms are removed from the effective Hamiltonian• Terms arising from rf inhomogeneity, pulse imperfections, and resonance

offsets are compensated

Symmetric Cycles: all odd-order terms cancel

Supercycles: MREV-8 repeats WAHUHA cycle with phase supercycle. Removes effect of rf inhomogeneity.

( ) ( )tHtH c −= τ

Combination with MASCRAMPS

• Combines spin-space averaging of a multi-pulse sequence with the spatial averaging of MAS

• Assumes the sample is static on the time scale of the multi-pulse sequence cycle time

Experimental AspectsSecond averaging: Homonuclear decoupling is most efficient when applied

off-resonance

Phase transients: The main pulse imperfections that cannot be easily compensated for with a supercycle. These can be minimized by detuning the probe/amplifier slightly.

Chemical shift scaling: Chemical shift evolution is about an effective field, so observed shifts are scaled. The scaling factor can be calculated, but is usually found empirically.

DUMBOReplaces multi-pulse sequence with a continuously phase-modulated rf pulse.

Theoretically only works in the CRAMPS regime (τc < τr), but practically it operates well with τc = 30 µs and νr = 25 kHz.

A. Lesage, D. Sakellariou, S. Hediger, B. Elena, P. Charmont, S. Seuernagel and L. Emsley, J. Magn. Reson., 163, 105 (2003).

Additional Sequences

T-MREVMSHOT-NTIMESFSLGPMLGand more!

Frequency-Switched Lee-Goldberg Decoupling

This method consists of a period of evolution about an effective field (the resultant of the resonance offset and the rf field B1) oriented at the magic angle and can be considered as a spin space variant of magic angle spinning.

Supercycles can be constructed by alternating periods of positive and negative offset frequency coupled with alternating B1 phase.

A. Bielecki, A. C. Kolbert and M. H. Levitt, Chem. Phys. Lett., 155, 341 (1989).

Conclusion

( ) jkjkj

k

kjksac

SIcH

−−==

−=

⋅⋅=

∑∑ 12

0

λ

λλλλ A

Ellipsoid Representation

Often represent tensors as ellipsoids with PAS components as axes. This is not a completely accurate mapping (but still useful). Correct shielding surface is given by an ovaloid.

Aside: Rotating (Wave)Functions

( ) ( ) ( )rrr

rrrRrrr11

11

''

''''

'

−−

−−

==

=====

=

RR

RR

R

ψψψψψψ

ψψ

• Same functional form but x’’,y’’,z’’ now depend on R and x,y,z.

y

x

Rψ(x,y)

ψ’(x,y)y’’

x’’

R-1• Best treated by

considering the inverse rotation of the coordinate system