47
Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology L. A. P. T. L. A. P. T. L. A. P. T. L. A. P. T. Manifestation of General Relativity in Practical Experiments Selim M. Shahriar Laboratory for Atomic and Photonic Technology Northwestern University Evanston, IL [http://lapt.ece.northwestern.edu]

Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Manifestation of General Relativity in Practical Experiments

Selim M. Shahriar

Laboratory for Atomic and Photonic TechnologyNorthwestern University

Evanston, IL

[http://lapt.ece.northwestern.edu]

Page 2: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Page 3: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Page 4: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

GR-Relevant Terrestrial Experiments

SAGNAC EFFECT FOR SENSING OF LENSE-THIRRING ROTATION Using Fast-Light InterferometryUsing Atomic Interferometry

ARTIFICAL BLACKHOLE USING SLOW LIGHT

GPS AND QUANTUM CLOCK-SYNCHRONIZATION

EQUIVALENCE PRINCIPLE AND SLOW-LIGHT

LIGO PROJECT FOR DETECTING GRAV. WAVES

FAST-LIGHT AND ATOMIC INTER. FOR DET. GRAV. WAVES

...

Page 5: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

GR-Relevant Terrestrial Experiments

SAGNAC EFFECT FOR SENSING OF LENSE-THIRRING ROTATION Using Fast-Light InterferometryUsing Atomic Interferometry

ARTIFICAL BLACKHOLE USING SLOW LIGHT

GPS AND QUANTUM CLOCK-SYNCHRONIZATION

EQUIVALENCE PRINCIPLE AND SLOW-LIGHT

LIGO PROJECT FOR DETECTING GRAV. WAVES

FAST-LIGHT AND ATOMIC INTER. FOR DET. GRAV. WAVES

...

Page 6: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

GR-Relevant Terrestrial Experiments

SAGNAC EFFECT FOR SENSING OF LENSE-THIRRING ROTATION Using Fast-Light InterferometryUsing Atomic Interferometry

ARTIFICAL BLACKHOLE USING SLOW LIGHT

GPS AND QUANTUM CLOCK-SYNCHRONIZATION

EQUIVALENCE PRINCIPLE AND SLOW-LIGHT

LIGO PROJECT FOR DETECTING GRAV. WAVES

FAST-LIGHT AND ATOMIC INTER. FOR DET. GRAV. WAVES

...

Page 7: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Quick Review of Lense-Thirring Effect

Page 8: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• Rotation with respect to absolute space gives rise to centrifugal forces, as illustrated by the “bucket experiment“:

Page 9: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Inertia is a phenomenon that relates the motion of bodies to themotion of all matter in the universe (“Mach‘s Principle“).

Page 10: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

w will later be called Thirring-Lense frequency.

The rotation of the earth should “drag“ (local) inertial frames.

verysmalleffect

very smallfrequency

Page 11: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

More convenientthan water bucketsare torque-free gyroscopes...

Dragging = precessionof gyroscope axes

Page 12: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• The interior of a rotating spherical matter shell is (approximately) an inertial frame that is dragged, i.e. rotates with respect to the exterior region:

(valid in the weak field approximation =linearized theory)

2

4 23 3

SRG Mc R R

ω= ≡

Ω

M = mass of the sphereR = radius of the sphere

Page 13: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• Dragging effects outside the shell:3

2

23

G M Rc R r

ω = − Ω

In the equatorial plane:

Page 14: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• Dragging effects near a massive rotating sphere:

( )xω ω≡ur ur r

Page 15: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• Dragging of the orbital plane:

Newtonian gravity General relativity

Page 16: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• Magnitude of the effect:

dd = 0.13 cm ( = 0.886 cm)

Circular orbit of radius r :

2

2

45

SE

Sat

R Rdr

π Ω=

Ω

Earth satellite with close orbits:

0.26 arc-seconds/year

Angular frequency of the orbital plane:

SR

Page 17: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• Useful analogy that applies for stationary (weak) gravitational fields:

“Newtonian“ part of the gravitational field “electric“ behaviour:

“Machian“ part of the gravitational field “magnetic“ behaviour(sometimes called “gravimagnetism“):

1/r² attractive force

matter flow

Lense-Thirring frequency

Rotatingbody:Bothbehavioursapply!

Page 18: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Rotating charge distribution <-> rotating matter

Page 19: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• George Pugh (1959), Leonard Schiff (1960)Suggestion of a precision experiment using a gyroscope in a satellite

• I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira and J. Perez-Mercader: Test of general relativity and measurement of theLense-Thirring effect with two Earch satellitesScience, 279, 2100 (27 March 1998)Measurement of the orbital effect to 30% accuracy, using satellite data (preliminary confirmation)

• I. Ciufolini and E. C. Pavlis: A confirmation of the general relativistic prediction of the Lense-Thirring effectNature, 431, 958 (21 October 2004)Confirmation of the orbital effect to 6% accuracy, using satellite data

• Gravity Probe B, 2005Expected confirmation of gyroscope dragging to 1% accuracy

Sattelite-based Tests:

Page 20: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• 2 satellites LAGEOS (NASA, launched 1976) andLAGEOS 2 (NASA + ASI, launched 1992)

• Original goal: precise determinationof the Earth‘s gravitational field

• Major semi-axes:12270 km, 12210 km

• Excentricities:0.004 km, 0.014

• Diameter: 60 cm, Mass: 406 kg• Position measurement by reflection

of laser pulses(accurate up to some mm!)

• Main difficulty: deviations from spherical symmetry of the Earth‘s gravity field

1a = 2a =

LAGEOS

LAGEOS 2

1ε = 2ε =

LAGEOS

LAGEOS 2

LAGEOS Project:

Page 21: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• Improved model of the Earth‘sgravitational field:EIGEN-GRACE02S

• Evaluation of 11 years position data• Improved choice of observables

(combination of the nodes of bothsatellites)

Observed value = 99% 5% of the predicted value± LAGEOS

LAGEOS 2

Page 22: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

• Satellite based experiment, NASA und Stanford University• Goal: direct measurement of the dragging

(precession) of gyroscopes‘ axesby the Lense-Thirring effect(Thirring-Schiff-effect)

• 4 gyroscopes with quartz rotors: theroundest objects ever made!

• Launch: 20 April 2004• Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star)

Launch window: 1 Second! • Expectation for 2005: Measurement of the Thirring-Lense frequency

with an accuracy of 1%

Gravity Probe B:

Page 23: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Terrestrial Tests Using Precision Gyroscopes

VCO1

AOM1 AOM

2 VCO2

diff.

Laser

?V1

beatdet

? f

diff.

? V2

?VCO1VCO1

AOM1 AOM

2 VCO2VCO2

diff.diff.

LaserLaser

?V1 ?V1V1

beatdet

? f

diff.

diff.

? V2? V2V2

?

Ring Laser Gyroscope Atom-Interferometric Gyroscope

Page 24: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Quick Look at Atom-Interferometry

Page 25: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

ATOM INTERFEROMETRY: BASIC IDEA

ATOM AS A dE Broglie WAVE

vv

λ = (h / m v)

Rb at 300o C:

λ = 0.0153 nm

2θλ Λ = λ / 2Sinθ

ATOMIC INTERFERENCE FRINGES

Page 26: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

LASER-CONTROLLED SPIN EXCITATION

NB

Time

OFF-RESONANT

|B>

|E>

|A>

METHOD FOR ACHIEVING LARGE ANGLE:

Page 27: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

RF EXCITATION OF ATOMS

NB

Time

|B, p+hk >

|E>

|A, p>

TRAVELLING WAVES

Page 28: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

LASER-CONTROLLED SPIN EXCITATION

NB

Time

|E>

EASY TO LOCALIZEMUCH STRONGER

OFF-RESONANT

DECOHERENCE FREESTRONG RECOIL

|A, p>

|B, p+2hk >

Page 29: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

LASER-CONTROLLED SPIN EXCITATION RECOIL

|E>

|A>

|B>

|E>

|A>

|B>

hk

|E>

|A>

|B>

hk

|E>

|A>

|B>2hk

Page 30: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

PUSHING TO THE RIGHT |E>

|A>

|B, 2hk>

PUSHING TO THE LEFT

|E>

|A, p>

|B, -2hk>

Page 31: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

SPLITTING ATOMIC WAVES USING LCSE

|A>

|B>

|A>

|B, 2hk>

|B,- 2hk >

|A, 4hk>

Page 32: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

INTERFEROMETER IN ONE DIMENSION

±100 hk SPLITTING POSSIBLE

SYSTEM: 87RB

FRINGE SPACING: ~ 4 NM

Page 33: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Atomic Sagnac Interferometer

|a>

|b>

L L

d

vx

π/2 π

Ω

π/2

ω1 ω1 ω1

ω2 ω2ω2

ω1

ω2

φ

φ

BCI

CI

Ω

|a>

|b>

x

z

|a>

|b>

L L

d

vx

π/2 π

Ω

π/2

ω1ω1 ω1ω1 ω1ω1

ω2ω2 ω2ω2ω2ω2

ω1ω1

ω2ω2

φ

φ

BCI

CI

Ω

|a>

|b>

x

z

3035 MHz

121 MHz

F=3

F=2

DOP

R1

R2

F’=4F’=3

1517.5 MHz

OP GALVOSCANNER

D

PMT

R1

R2A

B

3035 MHz

121 MHz

F=3

F=2

DOP

R1

R2

F’=4F’=3

1517.5 MHz

3035 MHz

121 MHz

F=3

F=2

DOP

R1

R2

F’=4F’=3

1517.5 MHz

OP GALVOSCANNER

D

PMT

R1

R2

OP GALVOSCANNER

D

PMT

R1

R2AA

BB

Page 34: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Quick Look at Sagnac Effect

Page 35: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

General View of the Sagnac Effect

DetW

CW

CCW

Det

Wave-Source

W

CW

CCW

WAVE SOURCES:

Optical Waves

Matter Waves

Acoustic Waves

???

Page 36: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

General View of the Sagnac Effect

DetΩ

CW

CCW

Det

Wave-Source

Ω

CW

CCW

DetΩ

CW

CCW

Det

Wave-SourceWave-Source

Ω

CW

CCW

BS1 BS2

R

DEFINE:

CW(+)

CCW(-)

VP : Phase Velocity in Absence of Rotation

±RV : Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 ±T

Page 37: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

General View of the Sagnac Effect

BS1 BS2

R

CW(+)

CCW(-)

VP : Phase Velocity in Absence of Rotation

±RV : Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 ±T

2/1 oP

PR CvV

vVV±

±=± ±± ±= vTRL π ±±± = RVLT /

Page 38: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

BS1 BS2

R

CW(+)

CCW(-)

2/1 oP

PR CvV

vVV±

±=± ±± ±= vTRL π ±±± = RVLT /

General View of the Sagnac Effect

)1/(/2)1(

2 222 <<≡∆≡Ω≈

−Ω

=−≡∆ −+ooo

o

CvfortCAC

ATTt ββ

VP : Phase Velocity in Absence of Rotation

±RV : Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 ±TA : Area normal to

Page 39: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

BS1 BS2

R

CW(+)

CCW(-)

General View of the Sagnac Effect

)1/(/2)1(

2 222 <<≡∆≡Ω≈

−Ω

=−≡∆ −+ooo

o

CvfortCAC

ATTt ββ

VP : Phase Velocity in Absence of Rotation

±RV : Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 ±TA : Area normal to

NOTE:This expression does not depend at all on the velocity of the wave It involves the free space velocity of light only, even if acousticwaves or matter waves are used For optical waves, this results is independent of the refractive index

Page 40: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

BS1 BS2

R

CW(+)

CCW(-)

General View of the Sagnac Effect

)1/(/2)1(

2 222 <<≡∆≡Ω≈

−Ω

=−≡∆ −+ooo

o

CvfortCAC

ATTt ββ

VP : Phase Velocity in Absence of Rotation

±RV : Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 ±TA : Area normal to

)(/4 2 shiftphaseSagnacgenericCfAt oΩ=∆=∆ πωφ

Page 41: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

General View of the Sagnac Effect

A

B

A

B

A

B

A

B

A

B

Ω

A

B

A

B

A

BA

B

Ω

1

1

4

3

2

1

2

3

4

A

B

A

B

A

B

A

B

A

B

Ω

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

ΩΩ

A

B

A

B

A

BA

B

ΩA

B

A

B

A

B

A

B

A

B

A

BA

B

A

B

ΩΩ

1

1

4

3

2

1

2

3

4

Result is independent of Axis of Rotation

Page 42: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

General View of the Sagnac Effect

)(/4 2 shiftphaseSagnacgenericCfAt oΩ=∆=∆ πωφ

)/(4 CA ooo φλπφ ∆≡Ω=∆

OPTICAL SAGNAC PHASE SHIFT:

MATTER-WAVE SAGNAC PHASE SHIFT:

f=Co/o

( ) )1/1/1(;/ 22oGoGo CVforCVhmCf <<≈−== γγ

Relevant Frequency is the Compton Frequency:

/4 hmAΩ=∆ πφ

Page 43: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Wrong View of the Sagnac Effect

Page 44: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

Wrong View of the Sagnac Effect

Now a team led by Wolfgang Schleich at the University of Ulm in Germany have suggested a way to adapt the ring-laser gyros currently used to track rotation in aircraft and satellites…..

These devices fire laser beams in opposite directions around a fibre-optic ring. If a plane is turning, the laser beam travelling with the rotation has to travel further to catch up with its starting point, so it arrives later than the beam travelling against the rotation. When the beams meet, they create an interference pattern from which it is possible to work out the difference in the arrival times of the two beams, and hence the rate of rotation…..

Shleich points out that the same principle also works with cold atom beams, and because atoms move more slowly than light, the shift is more obvious. This should allow far slower rates of rotation to be measured.

Page 45: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

“Wrong” View of the Optical Sagnac Effect

This happens to be correct only when the index is unityThis line of reasoning gives the wrong result when n1

BS1 BS2

R

CW(+)

CCW(-)

±± ±= vTRL π ±±± = RVLT /

VP : Phase Velocity in Absence of Rotation

±RV : Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 ±TA : Area normal to

oPR CVV ==±

2/2 oCATTt Ω=−≡∆ −+ )/(4 ooCA λπφ Ω=∆

Page 46: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

“Wrong” View of the Atomic Sagnac Effect

Page 47: Manifestation of General Relativity in Practical Experiments · • Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) ˜ Launch window: 1 Second! • Expectation

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P. T.

L. A. P. T.

L. A. P. T.

L. A. P. T.

“Wrong” View of the Atomic Sagnac Effect

Off by a factor of 2, but pretty close!

BS1 BS2

R

CW(+)

CCW(-)

±± ±= vTRL π ±±± = RVLT /

VP : Phase Velocity in Absence of Rotation

±RV : Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 ±TA : Area normal to

COMPR VVV ==±

2/2 COMVATTt Ω=−≡∆ −+

However, fundamentally wrong! VCOM does not influence the result

h2/2COMmV=ω hmA /2 Ω=∆ πφ