18
 Psychological Review 1992, Vol.  99, No. 4,  587-604 Copyright  by the  American Psychological Association, Inc. 0033-295X/92/S3.00 H ow  to  Build  a  Baby:  I I.  Conceptual Primitives Jean  M .  Mandler Department of  Cognitive Science University  of California,  S an Diego and  Medical Research Council Cognitive Development Unit London, England A  mechanism  of  perceptual  analysis  by  which infants derive meaning  from  perceptual  activity  is described.  Infants  u se  this  mechanism  to  redescribe  perceptual  information into image-sche matic format.  Image-schemas  create  conceptual structure from the spatial structure of  objects  and  their movements, resulting  in  notions  such  as  animacy, inanimacy,  agency,  and containment. These earliest  meanings  are  nonpropositional, analogic al  representations grounded in the perceptual world  of the  infant.  In  contrast  with  most  perceptual  processing,  which  is not  analyzed  in  this fashion,  redescription into  image-schematic  format simplifies  perceptual  information  and  makes it  potentially  accessible  for  purposes  of  concept  formation  and  thought. In  addition  to  enabling preverbal  thought,  image-schemas  provide  a  foundation  for  language  acquisition  by  creating  an interface between  the  continuous  processes  o f  perception  and the  discrete  nature of  language. When  you  keep putting  questions to  Nature  and  Nature keeps saying  no, it is not unreasonable to suppose  that  somewhere among  the  things  you believe  there  is something that  isn't  true. (Fodor, 1981,  p .  316) One of the  least understood developments  in  infancy  is how children  become able  to  think, that  is, to go  beyond perceptual categorization to  form  concepts.  A s  Quinn  and Eimas  (1986) expre ssed th is mystery: The  categories  of  infants  .. .  are  sensory  in nature,  whereas  t he categories  and  concepts  of  adults  ar e  often  far  removed fr om  the world  of  sensory  data..  . . Nor can it be  readily envisioned  how the  attributes  of  adult  concepts can be  constructed  from  the  attri- butes innately available  to  infants.  Nevertheless,  a  commonly,  if often  tacitly, held view  is  that  the  nontransducible  attributes  of adult  concepts  ar e  somehow derived from  the  sensory primitives available  to  infants. Adequate (that  is,  testable)  descriptions  of  the developmental  process  remain  to be  offered,  however, (p.  356) My  ulti mate goa l  is to develop such  a  theory  and  to  show  how the  attributes  o f  adult concepts  can be  derived  from  the  primi- tives of  infants.  I  believe this  ca n  only  b e  done, however,  by abandoning a  crucial assumption  in  Quinn  a nd  Eimas's  (1986) formulation:  that  infants  only  engage  in  sensory  (or  perceptual) categorization.  In a  previous article  (J. M.  Mandler, 1988),  I reviewed  some  of the  evidence  for  nonsensor y concep tual activ - ity  in  infancy  a nd  outlined  a  mechanism  of  perceptual analysis by  which  such conceptual processing might  be  achieved.  T he goal  of the  present article  is to  specify  this mechanism  in  more detail  and to  explore  th e  nature  of the  format  in  which  th e resulting  notions  ar e  represented.  I  propose that perceptual Preparation  of  this  article was  supported  i n  part  by  National Scienc e Foundation Research Grant  BNS8 9-190 35. Thanks t o  Nancy Johnson, Melissa Bowerman, Annette  Karmiloff-Smith,  and  John Morton  for helpful  and  ins ightful comments  on  earlier drafts. Some  of the  ideas  in this  article  appear  in  germinal  form  in J. M.  Mandler  (1991). Correspondence concerning th is article should  be  addressed  to Jean M.  Mandler, Department  of  Cognitive Science, University  of  Califor- nia,  San  Diego,  La Jolla,  California  92093-0515. analysis  results  in redescriptions  of  spatia l structure  in the  form of  image-schemas. These redescriptions constitute  the  mean- ings  that  infants  use to  create concepts  of  objects, such  as  ani- mate  and  inanimate things,  and  relational concepts, such  as containment  and  support.  I  further  propose that image-sche- mas  provide  a  level  of  representation intermediate between perception an d language that facilitates  th e  process  of  language acquisition. Concepts such  as  animacy  or  containment  ar e  complex  and unlike  sensory attributes,  yet  they appear early  in  infancy.  A t the  same time,  it is not  necessary that they  be  innately given  in order  to  account  fo r  their early appearance.  A s  will  be  seen, many  of the ideas  I  propose  in  this articl e  are not  couched  in the traditional  framework  of  conc ept f ormation  and are  somewhat speculative in  nature. However,  as  Fodor  (1981)  pointed out, theories  of  concept attainment  have  been limited  to a  small range  of  theoretical options. Perhaps  it is  time  to try a new approach. Th e  view  that  only  sensory attributes  are  innately  given  an d ar e  used  i n conjunction with experience  to  derive  the  nonsen- sory  concepts  o f  adults  h as been  th e  dominant view  of  concep- tual development since the time  of the  British empiricists.  In more  recent  formulations  of  this  view,  the  term  perceptual  i s  apt to be  substituted  fo r  sensory,  but the  general approach  is the same.  Fo r  example, during  the  second half  of the first  year  of ife,  infants  are  said  to  begin  to  form  so-called basic-level catego- ries,  such  a s  faces,  dogs,  or  cars, that enable them  to  recognize new  instances  (e.g., Cohen  &  Younger,  1983;  Strauss,  1979).  Th e ability to  create such equivalence classes  is thought  to  rest  on responsivit y to the  correlated  features  that make  up the  objects (e.g.,  Rosch  &  Mervis,  1975).  It is  assumed that  fo r  infants  these features  are  perceptual, however,  leaving  still unsolved  the  ques- tion of how  nonperc eptual understandi ng  of  objects develops. These early categories  are  called perceptual because they need  no t  have  conceptual content  (or in  anothe r terminology, these categories  are not yet  representational).  Voung  infants, like  lower organisms, industrial vision machines,  and  various connectionist programs,  can  form  perceptual prototypes  by 587

Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

Embed Size (px)

DESCRIPTION

Conceptual primitives

Citation preview

Page 1: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 1/18

Psychological Review

1992, Vol. 99, No. 4,

 587-604

Copyright

  1992

 by the  American Psychological Association, Inc.

0033-295X/92/S3.00

How  to

 Build

 a

 Baby:

 II.

 Conceptual Primitives

Jean

 M .

 Mandler

Department of Cognitive Science

University of California, San Diego

and

 Medical Research Council Cognitive Development Unit

London, England

A mechanism

  of perceptual

 analysis

 by

 which infants derive meaning

  from

 perceptual activity

 is

described. Infants

 use

 this mechanism

  to

 redescribe

 perceptual

 information into image-schematic

format.

 Image-schemas create conceptual structure from the spatial structure of

 objects

 and

  their

movements, resulting  in  notions such  as

 animacy, inanimacy,

 agency,  and containment. These

earliest

  meanings

  are

 nonpropositional, analogical

 representations grounded in the perceptual

world

 of the

  infant.

 In

 contrast  with most

  perceptual processing,

 which

 is not

  analyzed

  in

  this

fashion,

 redescription into

 image-schematic format simplifies

 perceptual

 information and  makes

it potentially  accessible for purposes of concept  formation  and  thought. In

 addition

 to  enabling

preverbal thought,  image-schemas provide

  a

 foundation

  for

 language  acquisition

 by

 creating

  an

interface between  the continuous  processes of perception and the discrete nature of  language.

When

  you

 keep putting

 questions to

  Nature

  and

  Nature keeps

saying  no,

it is not unreasonable to suppose

 that  somewhere

among the things you believe there  is something that isn't  true.

(Fodor, 1981,

 p.

 316)

One of the

 least understood developments

 in infancy is how

children

 become able

 to

 think, that

 is, to go

 beyond perceptual

categorization to  form

 concepts.

  As

 Quinn

  and Eimas

 (1986)

expressed this mystery:

The categories  of infants . . . are sensory in nature, whereas the

categories and concepts of adults are

 often

 far

 removed from

 the

world of sensory  data..  . . Nor can it be readily envisioned how

the

 attributes

  of

 adult

 concepts can be constructed from the

 attri-

butes innately available  to  infants.

  Nevertheless,

 a commonly, if

often  tacitly, held view is that the

 nontransducible

  attributes of

adult

 concepts

 are somehow derived from the sensory primitives

available to infants. Adequate (that is, testable) descriptions

 of

 the

developmental

  process

 remain

 to be offered, however, (p.

 356)

My ultimate goal is to develop such a theory and

 to

 show how

the  attributes of adult concepts can be derived from  the primi-

tives of  infants.  I

 believe this

  ca n

 only

 be

 done, however,

 by

abandoning a crucial assumption in Quinn and Eimas's

 (1986)

formulation:

 that

 infants

 only engage in sensory (or perceptual)

categorization.  In a

 previous article

  (J. M.

 Mandler, 1988),

 I

reviewed

 some

 of the

 evidence

 for

 nonsensory conceptual activ-

ity  in

 infancy

 and

 outlined

 a

 mechanism

 of

 perceptual analysis

by  which

 such conceptual processing might

 be

 achieved.

 T he

goal of the

 present article

 is to

 specify this mechanism

 in

 more

detail  and to explore  the  nature  of the

  format

  in which  the

resulting

 notions

  are

 represented.

  I

  propose that perceptual

Preparation  of this article was supported in part by National Science

Foundation Research Grant BNS89-19035. Thanks to Nancy Johnson,

Melissa Bowerman, Annette

  Karmiloff-Smith,  and

  John Morton

  for

helpful and

 insightful comments

 on

 earlier drafts. Some

 of the

 ideas

 in

this article

 appear

 in germinal  form in J. M. Mandler

  (1991).

Correspondence concerning this article should be addressed to Jean

M.  Mandler, Department

  of

 Cognitive Science, University

 of

 Califor-

nia,

 San

 Diego,

 La Jolla,

 California  92093-0515.

analysis results in redescriptions of spatial structure in the

 form

of

  image-schemas. These redescriptions constitute

 the

 mean-

ings that

  infants use to

 create concepts

 of

 objects, such

 as

 ani-

mate

 and

 inanimate things,

 and

  relational concepts, such

 as

containment and support.  I

  further

  propose that image-sche-

mas  provide a  level of  representation intermediate between

perception an d language that facilitates the process of language

acquisition.

Concepts such

 as

 animacy

 or

 containment

  are

 complex

 and

unlike

 sensory attributes,

  yet

 they appear early

 in  infancy. At

the

 same time,

 it is not

 necessary that they

 be

 innately given

 in

order

  to

 account

  for

 their early appearance.

  As will  be

 seen,

many

 of the ideas I propose in this article are not couched in the

traditional

 framework

 of concept formation and are somewhat

speculative in  nature. However, as Fodor

  (1981)

 pointed out,

theories  of  concept attainment  have been limited  to a small

range  of

  theoretical options. Perhaps

  it is

 time

  to try a new

approach.

The view

 that

 only

 sensory attributes

 are

 innately

 given and

are used in conjunction with experience to derive the nonsen-

sory concepts of adults has been the dominant view of concep-

tual development since the  time of the British empiricists.  In

more recent

 form ulations

 of this view, the term perceptual is apt

to be

 substituted

  for  sensory,  but the

 general approach

  is the

same.

  Fo r

 example, during

 the

 second half

 of the first

 year

 of

life,

 infants are

 said

 to

 begin

 to form

 so-called basic-level catego-

ries,

 such as faces,

 dogs,

 or

 cars, that enable them

 to

 recognize

new

 instances

 (e.g., Cohen &

 Younger, 1983;

 Strauss,

 1979).

 The

ability to create such equivalence classes  is thought to rest on

responsivity to the correlated

 features

 that make up the objects

(e.g.,

 Rosch

 &

 Mervis, 1975).

 It is

 assumed that

 for infants

 these

features are perceptual, however, leaving still unsolved the ques-

tion of how nonperceptual understanding of objects develops.

These early categories  are  called perceptual because they

need

 not have conceptual content (or in another terminology,

these categories

  are not yet

  representational).

  Voung  infants,

like lower organisms, industrial vision machines, and various

connectionist programs,  can  form  perceptual prototypes  by

587

Page 2: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 2/18

588

JEAN M. M A N D L E R

learning  to  abstract  the  central tendencies  of  perceptual pat-

terns. Forming  discriminable  categories, however, does  not

imply that  the  organism  or machine has  thereby formed any

theory of what the objects being categorized

 are

 or can use this

information  for purposes of thought. Thus, the  infant  (or ma-

chine or program) that  ca n differentiate  between male and fe-

male

  faces

  (Pagan &

 Singer, 1979)

 or can

  discriminate trucks

from   horses

 (Oakes,

 M adole, & Cohen, 1991) could be doing so

on  a purely perceptual basis and is not thereby displaying con-

ceptual  knowledge about people  or  animals  (J.  M.  Mandler,

1988;

  Nelson, 1985).

 To

 have

  a

  concept

  of

 animal

  or

 vehicle

means to

 have

 at least some rud imentary notion of what k ind of

thing an animal or vehicle  is.

1

  There is ample evidence that

even 3-year-old children have such concepts  (e.g., W ellman &

Gelman, 1988).

 How

 does

 the

  infant advance

 to

 this

 ne w

 kind

of unders tanding?

Piaget's Theory of Concep t Form ation

The

  most widely accepted  answer

  to the

  question

 of how

concepts are first acquired is based on Piaget's

 (1952)

 theory of

sensorimotor

 developm ent. In his theory, much of the first year

and a

 half

 of

 life

  is

 taken

 u p

 w ith developing perceptual (sen-

sorim otor) categories of objects, such

 as

 those d escribed earlier.

Piaget recognized that these categories need not be conceptual

in natu re; indeed, he posited that they are not conceptual, con-

sisting instead

 of

 sets

 of

 perceptual-motor schemas that enable

infants to recognize a variety of objects (and events) and to act

appropriately

  in

  their presence.

  He saw no

 evidence that

  in-

fants,  during

 this period,

 have any conceptual representations

that would enable thought  about  objects. In Piaget's analysis,

concepts develop when sensorimotor schemas become  inter-

iorized, speeded up, and  freed from  ongoing perception and

action. This transform ation, which depends heavily

 on

 learning

about objects through physical interactions w ith them , is said to

occur at the transition

  from

  the sensorimotor to the preopera-

tional period at about  1.5 years of age.

Piaget's (1952) theory of a sensorimo tor stage in infancy has

been  widely accepted and seems to have escaped m uch of the

critical response that h as been directed tow ard other aspects of

his  theory. Nevertheless,  his  view  of  infant  cognition  faces  a

number of

  theoretical

  and

  empirical  difficulties  (e.g.,

  J. M.

Mand ler, 1988; Sugarm an, 1 98 7). On the theoretical side, it

does not provide a satisfactory description of ho w  sensorimotor

schemas are  transformed into concepts. Piaget's theory states

only

  that over the course of the sensorimotor period,

 action-

schemas gradually become speeded up and

  freed

  from

 their

sensorimotor limitations.  The  main avenue for this develop-

ment

 is said to be imitation.  Infants gradually become able to

imitate more

 and

  more complex activities that eventually

 be-

come interiorized in the  form of images. How images are actu-

ally created

 by

 this process

 is not

 discussed,

 but in Piaget's

 view

images constitute  the first nonsensorimotor, conceptual  form

of representation. Imagery allows infants to re-present  objects

and

 events

 to

 them selves,

 and so it

 provides

 the

 foundation

 for

the beginning of thought. However, the claim of a p urely sen-

sorimotor form

 of

 representation

  for the first

 year

 and a

 half

 of

life

 depends on the assumption that there is no imagery du ring

this period.

  If

 im agery could occur

  in

  younger infants,  there

would

 be

 nothing

 in

 principle

 to

 p revent them  from engaging

in   conceptual thought. In  fact,  there is no evidence that imag-

ery  is such a  late-developing  process. In addition,  the  theory

leaves unsettled

  how

 images come

 to

  have m ore than percep-

tual

 content. H ow does forming a n image of an object concep-

tualize  it? Thus, this

 view

 of concept

  formation

  begs the  very

question that

 w as

 posed.

There

  are

  also empirical

  difficulties

  with

  Piaget's

  (1952)

theory.

 C urren t evidence suggests that

  infants  do not

 require

such

 an

 extended period

 of

 experience

  to

 learn

 the

 most basic

characteristics  of objects.  At  least  from  3  months of age they

live

 in a

 stable perceptual world , consisting

 of

 objects that

 a re

seen as coherent, bounded things, separate

  from

  the back-

ground and  behaving in  predictable  ways (Spelke, 1985 ). By 4

to 5 months they understand that objects are both solid and

permanent

  (Baillargeon, in press), and they have begun to

  dif-

ferentiate

  causal from  noncausal object m otion (Leslie, 198 2).

Some of this under standing may be sensorimotor in character

and not require conceptual activity of the typ e

 defined

 earlier.

Therefore,

  Piaget's theory could probably be adapted to fit this

evidence,

 although

 it

 does create

 a

 puzzle

 as to why

 conceptual

activity

 should

 be

 delayed

 so

 long.

More serious,

  however,

  is recent evidence that conceptual

representation  is no t long delayed, that concepts are developing

concurrently

 with the development of sensorimotor schemas.

For examp le, one of the c riteria that Piaget (1952) used to dem-

onstrate  conceptual activity  was  recall  of  absent objects  or

events. Recall requires

 the

  infant

  to

 re-present

  information no t

given

 b y current sensorimotor activity. Piaget thought such re-

call

 did not

  occur until about

  the

  middle

 of the

 second  year.

However,  recall has been demonstrated in the laboratory as

early as 8 months of age (Baillargeon, De V os, & Graber, 198 9).

Recall

  of

  past events over 24-hr delays

  has

  been shown

 at 9

months

  (Meltzoff,

  1988) , and two studies

  have

  provided evi-

dence that events taking place before 10 to 11 months of age can

be recalled up to

 1.5

 years later (McDonough & Mandler,

 1990;

Myers, Clifton , & Clarkson, 1987 ). Such findings

 indicate

 that

a long-lasting declarative mem ory system is in place by about 8

months

  of

 age;

 i ts

 onset

 may be

  even earlier

  but the

  relevant

research has not yet

 been conducted.

In  addition,  work  on the  acquisition  of  sign  language has

provided evidence for the beginning of symbolic

 functioning

 as

early as 6 to 7 months of age

 (e.g.,

 Bonvillian, Orlansky, & No-

vack, 1983; Meier & Newport, 1990; see J. M. Mandler, 1988,

for

 a disc ussion of the sym bolic character of these early signs).

There has been som e controversy over the linguistic status of

these early signs (e.g., Bates, O'Connell, & Shore, 1987; Petitto,

1987),

 but the

 relevant point here

 is

 that children

 of

 this

 age are

capable of using a gesture (probably associatively learned) to

refer

  to or express a m eaning. Along with recall, this hallmark

of

  conceptual thought appears  before infants  have become

skilled in manipulating objects or have begun to locomote

through the environment. Thus, several lines of evidence ind i-

cate the presence of conceptual  thought during the time when

1

 This

 view

 of concepts as ideas about kinds emphasizes

 their

 theoret-

ical nature

 (Carey, 1985; Keil,

 1989;

 Medin

 

Wattemaaker, 1987), as

opposed to a view of concepts as distributions of

 features or properties.

Page 3: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 3/18

CONCEPTUAL

  PRIMITIVES

589

Piaget posited it to be absent.

 Evidently,

 a great deal

 of

 conceptu-

alization about objects and events in the world comes from

observation rather than from physical interaction with objects.

2

Nevertheless,

 it

 must

 be

 determined

 how

 observation of objects

forms

  the basis from which more abstract conceptual knowl-

edge about those objects is derived.

Concept

 Formation by Perceptual Analysis

I have proposed that

  perceptual analysis

 is the mechanism by

which concepts are first formed (J. M. Mandler, 1988). Percep-

tual analysis is a process in which a

 given

  perceptual array is

attentively  analyzed, and a new kind of information is

 ab-

stracted. The information is new in the sense that a piece of

perceptual information is

 receded

 into a nonperceptual  form

that represents a meaning. Sometimes perceptual analysis in-

volves comparing one object with another, leading to concep-

tualizing

  them as the same (or  different)  kind of thing, but

often it

 merely

 involves noticing some aspect of a stimulus that

has not been noticed before. The process is different  from  the

usual

 perceptual processing, which occurs automatically and is

typically

 not under the attentive control of the perceiver. Most

of

  the

  perceptual information normally encoded

  is

  neither

consciously noticed

 nor

 accessible

 at a

 later time for purposes

 of

thought. Perceptual analysis, on the other hand, involves the

active receding of a subset of incoming perceptual information

into meanings that

  form

 the basis of accessible concepts.

Perceptual analysis is a simple version of what  Karmiloff-

Smith (1986,1991) calls

 redescription

 of procedural informa-

tion. She has concentrated on how elaborate systems of proce-

dural information, such as the pronominal system in language,

become redescribed, eventually achieving

 a form

 that is accessi-

ble  to consciousness. Perceptual analysis is a simpler kind of

redescription, one that is

 often

 concurrent with perception it-

self;

 that is, redescription does not

 have

 to take place

 off-line

 on

long

 established representations, as suggested by the data with

which  Karmiloff-Smith  has worked, but can also take place

on-line

 with the registration of perceptual information. In both

cases, however, information is being receded  into a  different

format,

 and in the

 process some

 of the

 original information

 is

lost. What people consciously attend to and store in a

 form

 that

they can potentially think about involves a reduction and rede-

scription of the huge amount of information provided by their

sensory receptors.

 A

 great deal

 of the

 perceptual information

that people process is stored in procedural (implicit) form, as

illustrated by the  fact that they readily learn complex percep-

tual categories such

 as

 faces,

 but

 cannot state what

 the informa-

tion is that they use; that is, the information is not explicit (J. M.

Mandler, 1988). Forming an explicit knowledge system re-

quires a different  format—what one might call a vocabulary of

meanings. The process of redescribing perceptual information

forms such a vocabulary. This vocabulary is both simpler than

the original information and, at least to some extent, is optional

as to  whether or  when  it is  formed.  It is  simpler because  it

contains less information than is processed by the perceptual

system

 and is

 more coarsely grained.

 For

 example, representing

a zebra as striped (either by language or by a sketch) is a coarse

summary description  of a

  specific

 complex grating. It is op-

tional in the sense that it need not occur

 when

 perceptual pro-

cessing goes on. It is the

 optionality

 of what one attends to that

accounts for much of the variability in  conceptual

  develop-

ment,

 as

 opposed

 to the

 nonoptional, automatic processing

 of

perceptual information that takes place most

 of the

 time.

Although perceptual analysis is not necessary for much of

one's  traffic  with the environment, adults seem to do a good

deal of it, or more precisely, engage in a process that is similar.

For example, someone may consciously

 notice

 that an acquain-

tance has started wearing glasses, a  fact that may have been

missed for several weeks in spite of looking at this person every

day. A few years ago, during a boring seminar, I discovered that

most people's ears are at the same level as their eyes, which is

something

  I

  must have processed perceptually since  infancy

but that I had not analyzed and made part of my concept of a

face

 in the

 past.

 The results of such analysis can be expressed in

verbal

 or in

 imaginal

  form and are

 then available

 for

 purposes

of

 recall, planning, making choices, and so on. It is important

to

 note, however, that

  these

 examples

 from

  adult experience

take place in a processing system that already has a large con-

ceptual vocabulary that can be used to add new

 facts

  to its

accessible knowledge

 store.

 In that sense, they are somewhat

misleading vis-a-vis

 the

 more basic process

 of

 perceptual analy-

sis that

 infants

 must carry out.

 Infants

 have to create the mean-

ings  from  which

 the

  conceptual base

  is

  formed

  in the first

place. These meanings are unlikely themselves to be

consciously

 accessible, but must be redescribed once again into

imagery

 or words. This issue is discussed further in the section

on image-schemas.

In  principle, perceptual analysis could begin quite early in

life even though it might initially be  rather primitive in

  form.

That is, I assume that the capacity to engage in perceptual analy-

sis is innate. However, it also seems

  likely

 that such analysis

requires the development of at least some stable  perceptual

(sensorimotor) schemas. As mentioned earlier, research (e.g.,

Baillargeon, in press; Kellman, Gleitman, & Spelke, 1987;

Spelke,  1985) suggests that stable schemas of three-dimen-

sional objects, seen as coherent, solid, and separate  from  the

background, are formed by 3 to 4 months of age. It is about the

same time that the first indications of perceptual analysis

 ap-

pear (J. M. Mandler, 1988). The measures are necessarily indi-

rect,

 but are

 implicated

 in

 many accounts

 of

 behavior after

  the

first  few  months  of  life.  For  example, Werner and  Kaplan

(1963) described the development of a contemplative attitude

between

 3 and 5 months; Fox, Kagan, and Weiskopf

 (1979)

 and

Janowsky  (1985)

  reported an increase in vicarious trial and

error

 (VTE)

 behavior, or active comparison of stimuli, between

4

 and 8 months; Ruff (1986) described the examining schema

as

 already  well  developed

  by 7

 months,

  the

  earliest

  age she

studied. Perceptual analysis

 can

 also

 be inferred  from

  Piaget's

(195 1)  account  of early imitation  in  which he  described  his

2

 It is

 sometimes claimed that Piaget means

 action in a

 more

 abstract

sense,

 for example, as

 eye-movements

 or

 even

 as anything

 that trans-

forms

  reality (Sinclair, 1971, p .

 134).

 Even if the

  latter

 abstract

 defini-

tion

 can be meaningfully  included under the

 rubric

 of

 action,

 Piaget is

quite

 clear that

  the roots of

  conceptualization

 lie in

  infants'

  physical

interaction

  with  objects (Piaget,  1951,  1952).  In any

 case,  this

 more

typical  usage

  of the term  action  has

 been

  the  predominant under-

standing of

 Piaget's

 theory among developmental psychologists.

Page 4: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 4/18

590

JEAN   M.

  MANDL E R

children

 as

 young

 as 3 to 4

 months

 as

 displaying intense con-

centration on the models he provided.

3

A

 Vocabulary

 for

 Preverbal

 Concepts

In  an

 earlier article

 (J. M.

 Mandler, 1988)

 I

 em phasized

  the

process

  of

 perceptual analysis,

  but had

  little

  to say

 about

  the

format

 of the resulting representations. If perceptual analysis

results in concept forma tion, there mu st be some vocabulary, or

set of elementary meanings, from which the concepts are com-

posed. Whatever m eanings infants derive from perceptual anal-

ysis, they seem likely to be rather global in character.

  Even

 for

adults, conscious conceptualizations about objects and events

tend to be crude and contain vastly less information than the

perceptual knowledge used for recognition. Infants' concepts

are apt to be

 cruder

 still and may not

 even

 be

 couched

 in

 prepo-

sitional  form  as many adult concepts appear to be.

The problem of

  specifying

  a conceptual vocabulary is not

one that can be avoided, regardless of the natu re of one's theory

of

  conceptual development. However, with

  the

  exception

  of

Leslie (1988), who discussed the primitives involved in the first

causal concepts, about the only researchers work ing on the

problem are those in the area of language acquisition who talk

about preverbal conceptualizations or semantic primitives. It

has long been assumed that the notions of objecthood, agency,

actionality,

  and

 location

 expressed in the earliest

 speech

 are

drawn

  from  nonlinguistic representations (e.g., Bloom, 1970;

Bowerman,

 1973; Brown, 1973;

 see

 also Sinclair,

 1971).

 How-

ever,

  the precise nature of these preverbal representations has

not yet been addressed. One of the rare discussions of what

these representations might  be like is found in Slobin (1985),

who

 suggested that youn g language learners

 not

 only have con-

cepts of objects and actions but also make use of sets of more

abstract relational notions. H e discussed these notions in term s

of prototypical scenes that highlight various com ponents and

the paths

 that

 they take.

4

If

  language acquisition depends in part on preverbal con-

cepts, they must already

 be

 present

 by 10

 months w hen children

begin

  to  acquire their  first  spoken words  and use  them  for

communication.

 The

  work

 on

 sign language

 in 6 - to

 7-month-

old deaf infants suggests that the relevant conceptualizing pro-

cess begins even earlier. Wh at

 is

 needed

 is to find ways of

 char-

acterizing the representation of these p reverbal concepts. It is

not  sufficient  to

  say,

 as has

  traditionally been done within

  the

Piagetian

  framework,

  that

 a

 concept

  is

 formed

 by

 transforming

a

 sensorimotor schema; the form at in which the concept is rep-

resented m ust be specified as well. The initial conceptual repre-

sentation seems likely

  to be

 perceptually based

  but not in the

format

 that is used by the procedural workings of the

 percep-

tual systems.

For example, consider possible sources for a primitive con-

cept of anima te thin g or animal. There is an excellent source in

perception to deliver some of the information needed for this

basic notion, namely,

 the

 perceptual categorization

 of

 motion.

Adults

  easily  differentiate  animate  from  inanimate  (or me-

chanical) m otion (Stewart, 1984). The data have not yet been

collected to determine whether infants do so as well, but it is

known  that infants differentiate caused  from  noncaused  mo-

tion

 (Leslie,

 1982,1988). In

 addition, infants

 are

 high ly respon-

sive

 to motion; not

 only

 do they look longer at moving stimuli

than

  at

  motionless stimuli,

  bu t

  various perceptual achieve-

ments

  are first

  attained when moving stimuli

  are

  used

  (e.g.,

object p arsing: Spelke,

 1985;

 face recognition: M. H. Johnson &

Morton,

  1991). Of

  particular relevance,

  infants

 perceptually

differentiate  the motion of people

 from

 similar but biologically

incorrect motion

  as  early  as 3

  months

  of age

 (Bertenthal,

 in

press). This work suggested that  it is

  likely

  that

  infants

  can

make

 the m ore general categorization of anim ate versus inan i-

mate (mechanical) motion. I make the assumption that they

can

  and

  that

  the

  perceptual categorization

  of

 motion

  is one

source for dividing the w orld into classes of things that mov e in

different

  ways.

 More

 is

 needed, however.

 To form  a

 concept

  of

animal,

 as

 opposed

  to a

 perceptual category of

 a

 p articular type

of

 motion, the

  infant

 needs to notice and conceptualize some-

thing like  the  following: Those things  that move in one way

start

 up on

 their

 ow n

 (see Gelm an, 1990; Premack, 1990)

 and

sometimes respond to the infant from a distanc e, whereas those

things that move in another w ay do not start up on the ir own

and nev er respond to the infant  from a distance. (There m ay be

other important bases. I have tried to use a minimum set that

would be

  sufficient

  to

 u nderstand som ething about what kind

of thing an  animal is above and beyond what it looks like.)

Such simple meanings  are  sufficient  to  constitute  an  early

concept  of animal, a concept that  is present  in some  form  be-

fore  the end of the first year of

 life.

  Several experiments have

shown

 that  infants respond  to animals in a way that canno t be

accounted

 for on the

 basis

 of

 perceptual categorization alone.

For

  example,  Golinkoff

  and

  Halperin (1983)  found  that

  an

8-month-old produced a un ique emotional response to both

real and toy animals that varied widely in  shape, features, and

texture. In my laboratory we have found  that

 9-month-olds

 dis-

habituate  to a vehicle after  seeing various models of animals

(and

 vice versa) even when

 the

 individual animals vary greatly

in

  their perceptual appearance (Mc Donough & Mandler,

1991). (Ongo ing work indicates this is true of 7-month-olds as

well). F urthermore, 9-m onth-olds also dishabituate to m odels

of birds after seeing airplanes (and vice versa), even though, in

this case, the shapes of the airplanes and birds are similar

(McDonough

 & Mandler, 1991). It is usually assumed that simi-

lar

 shapes and

 features

 form the basis of

 early

 perceptu al catego-

rization (e.g., Cohen

 & Younger,

 1983).

 If

 true, then perceptual

categorization

  is

 insufficient

  to

  account

  for

  these kinds

 of re-

sponses; some conceptual basis is required. (This issue is dis-

cussed

 further  in the

 last section

 of this

 article.)

To

 further this account,

 it is

 necessary

 not

 only

 to

 specify

  the

meanings involved  in an  early concept  of  animal (such  as

 m oves on its own and  responds to other objects ) but also to

specify

  the

  format

  in  which they  are  represented. Whatever

their exact nature, these meanings are unlikely to consist of

sensory descriptions, as the British empiricists would have had

it.  Brown and   square are not the sorts

 of

 attributes that lead

to

  understanding what

 an

 animal

 is. Nor are the

 features talked

3

 These

  measures

  are

  discussed

  in

  more  detail

  in J. M. Mandler

(1988).

4

 Slobin based some of his notions on the work of Talmy (e.g., 1983),

who was

 also

 one of the

 root sources

 for

 some

 of the

 ideas

 in

 this article.

Page 5: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 5/18

CONCEPTUAL

  PRIMITIVES

591

about

  in the

  classical theory

  of concepts

 (see

 E. E.

 Smith

 &

Medin, 1981), such as has wings or  four legs, likely to lead

to conceptual understanding either, for the same reason that

feature  theories

  have

 failed

 as an approach to understanding

semantic development (Armstrong,

  Gleitman,  &

 Gleitman,

1983; Medin & Ortony, 1989; Palermo, 1986). It seems likely

that early conceptual understanding will be of a global (i.e.,

shallowly  analyzed) character, with analysis  of  features

( brown, has wings, etc.) a later intellectual achievement

(J.

 M.  Mandler,

  Bauer,

 & McDonough,

 1991; Nelson, 1974;

L. B. Smith, 1989a). Thus, an approach is needed that does not

require detailed

  featural

 analysis but at the same time allows

the  formation of some global conceptions about what is being

perceived.

Image-Schemas

 as

 Conceptual Primitives

The

 approach

 to preverbal

 conceptual representation that

 I

take here

 is

 derived  from

  the

  work

 by

 cognitive linguists

 on

image-schemas (M.  Johnson, 1987;

 Lakoff,

  1987;

 Langacker,

1987;

 Talmy,

 1983,1985).

 Although

 not

 developmental psychol-

ogists, these researchers have been led by their linguistic con-

cerns to seek the underlying basis of the concepts expressed in

language. It is claimed that one of the foundations of the con-

ceptualizing capacity is the image-schema, in which spatial

structure is mapped into conceptual structure. Image-schemas

are  notions such as  PATH,  UP-DOWN,  CONTAINMENT, FORCE,

PART-WHOLE,

 and

  LINK, notions that

 are

 thought

 to be

 derived

from  perceptual structure. For example, the image-schema

PATH is the  simplest conceptualization of any object

 following

any trajectory through space, without regard to the characteris-

tics

 of the

 object

 or the

 details

 of the

 trajectory itself. According

to  Lakoff  and to

  Johnson, image-schemas

  lie at the

  core

 of

people's understanding, even

  as

 adults,

  of a

 wide variety

 of

objects

 and events and of the metaphorical extensions of these

concepts

 to

 more abstract realms. They form,

 in

 effect,

 a set of

primitive meanings. (Primitive in this sense means  founda-

tional; it does not mean that image-schemas are atomic, uni-

tary,

 or without structure.)

A

  good deal has been written about image-schemas, al-

though,

 with the

 exception

 of

 formal

 linguistic treatments (e.g.,

Langacker, 1987),

 most discussions have been relatively infor-

mal and

 have

 been directed primarily to showing how image-

schemas

  function

  within semantic theory. My  focus  here  is

somewhat

  different

  because  I am  interested  in the origins of

such meanings

 and the

 larger role they

 play in

 psychological

functioning.

  Therefore,

  after  providing a  definition  of image-

schemas,  I

  will

  discuss various aspects that

  have

  not  been

stressed by

 cognitive linguists, including

  the

 role

 that

 image-

schemas play

 in

 preverbal concept formation.

Even

  though image-schemas are  derived  from  perceptual

and (perhaps to a lesser extent) motor processes, they are not

themselves sensorimotor processes.

 I

 characterize them

 as

 con-

densed

  redescriptions

 of

 such processes. Perceptual analysis

involves a

 redescription

 of

 spatial structure

 and of the

 structure

of motion that is abstracted primarily from vision, touch, and

one's

 own movements. In this view, perceptual analysis

 involves

receding

 perceptual inputs into schematic conceptualizations

of space. Hence, image-schemas can be denned as dynamic

analog representations of spatial relations and movements in

space. They

 are

 analog

 in

 that they

 are

 spatially structured repre-

sentations. They are dynamic in that they can represent continu-

ous change in location, such as an object moving along a path.

Their

 continuous,

 as opposed to discrete,

 nature

 means

 that

they

  are not

 prepositional

  in character, although due to the

simplicity of the information they represent, it should be a rela-

tively simple task to redescribe them into

 prepositional

 form.

They are abstracted

  from

 the same type of information used to

perceive,

 but they eliminate most

 details

 of the spatial array

that are processed during ordinary perception. At the same

time they are redescriptions because they use a different

 vocab-

ulary

 (described

 in the next

 section).

 These new representa-

tions are the primitive meaning elements used to form

 accessi-

ble concepts.

5

To  illustrate, the perception of movement trajectories

through space is receded into the image-schema PATH. The in-

fant sees many objects moving in many different

 ways,

 but each

can be

  redescribed

  in

  less detailed

  form  as

 following

  a

  path

through

 space.

 In

 many cases,

 the

 infant sees

 the

 object begin-

ning

 to

 move

 and

 also coming

 to

 rest,

 and

 these

 aspects

 of the

event can be represented in image-schematic

  form

 as well. Be-

cause image-schemas are analog in nature, they have

 parts.

 One

can focus on the path

 itself,

 its beginning, or its ending. In this

sense, image-schemas embed. BEGINNING-OF-PATH can be em-

bedded in PATH; each can be considered an image-schema in its

own

  right. Similarly, perception  of contingent motion is re-

coded into the notion of coupled paths or  LINK  (discussed

later).

  I

 propose that image-schemas such

 as

  PATH (with

 the

focus

 on  BEGINNING-OF-PATH) and  LINK

 constitute

 the

  mean-

ings involved

 when a

 concept such

 as

 animacy

 is

 formed. Thus,

a first concept of animals might be that they are objects that

follow

 certain kinds of paths, that begin motion in a particular

kind of way, and whose movement is often coupled in a specific

fashion

  to the movement of other objects. Notice that several

image-schemas have  been combined to  form  the

 concept

 of

animal. That is, the concept of animal is complex, involving

more than one meaning.

This article describes

 a

 format

 to

 represent

 the

 meanings that

make up

 several such concepts.

 To

 carry

 out

 thought with

 these

concepts requires relating

 one to

 another. Whether thinking

 in

this sense requires

 a prepositional form of

 representation

 or can

be

 carried out by constructing a mental model of an image-

schematic nature

 (e.g.,

 along

 the

  lines

 of

 Fauconnier's, 1985,

mental

 spaces) is an open question and one that is beyond the

5

 It

 will

 be noted

 that

 I am emphasizing

 spatial

 rather than tem poral

analysis.

 I a m assuming

 that

 temp oral concepts are at

 least

 partly de-

rived from spatial ones. Many linguists

 have

 noted that in

 all languages

studied,  most

 if not all

 temporal

 terms

 have

 a

 spatial

 sense as their

primary meaning (e.g., Clark, 1973;

 Fillmore,

 1982; Traugott, 1978).

Even

  though  movement

  trajectories  have

 both spatial and  temporal

extent, it seems easier to analyze movement through space than

 move-

ment through

 time;

  for

 example,

 a nonverbal analysis of a

  change

 in

location

 can be

 expressed

 by

 pointing

 or

 moving

 the hand, an

 option

not available for a change in tim e. Of

 course,

 even very young infants

us e  temporal parameters in their processing but that

 does

 not  mean

they

 conceptualize them. I suggest

 that temporal concepts

 are in the

first instance

 represented

 as

 analogical extensions

 of

 spatial schemas.

Page 6: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 6/18

59 2

JEAN   M .  H A N D LER

scope

 o f

 this article. Ho wever,

 it is

 worth noting that both  La-

koff (1987) and M. Johnson  (1987) have argued that the struc-

ture of

  image-schemas gives rise

  to

  various entailments, sug-

gesting that at

 least

 some inferences do not require a preposi-

tional form of representation. That is, the dynamic and

relational nature

 of

 image-schem as provides

 a

 kind

 of

 syntax,

although   no t  couched  in  predicate-argument structures that

specify  truth

 conditions.

 If

 this view

 is

 correct

 it

 suggests

 that

an

  infant  equipped  with  image-schemas could begin

  to

 think

about the world without a propositionally  based language of

thought.

An

  alternative architecture  to a  built-in  prepositional  lan-

guage, such as described by Fodor (1975), is one in which  the

infant

  has the

  ability

 to

  simplify  perceptual input, including

objects participating in events, thu s creating analog sketches of

what

 it perceives. The  resulting image-schemas provide the ear-

liest m eaning s available

 to the

  infant

  for

 purposes

 of

 preverbal

thought (leaving open the issue of how they are conc atenated)

and

  form

  the

  basis

 on

 which natural language rests.

6

 T his for-

mulation does not  imply that image-schemas  are  themselves

accessible to consc iousness; no langu age of thoug ht is directly

accessible. Image-schem as represent

 th e

  meanings

 from

 which

accessible concepts

  are

  formed. (See

 G.

  Mandler,

 1985,  for a

discussion

  of the  processes

  involved

  in

 conscious construc-

tions.)  Hence, this architecture agrees with

  Karmiloff-Smith's

(1986)

  proposal that more than one level of redescription  is

required before conscious access can be achieved. In the pres-

ent

  case,  the  levels consist of

 inaccessible

 perceptual process-

ing,

 redescription into image-schematic m eanings, followed by

further  redescription into conscious imagery or language.

An ap pealing aspect

 of an

 image-schema architecture

 is

 that

it  provides  a  natural grounding  for symbolic representation.

One problem that rarely appears in discussions of the language

of thought

 is how

 contentless symbols

 are

 chosen

 to

  represent

its meanings (see Harnad, 1990). Unless a symbol has been

innately assigned  to a  meaning, such as animacy, it is  difficult

to

  understand

  how it

  becomes assigned.

  An

  image-schema

avoids

  this problem because its meaning resides in its own

structure;

 it

 does

 not

 requ ire other symbols

 or

 another system

 to

interpret

  it.

 Furthermore,  this  architecture avoids positing

  an

enormou s list of innate m eanings. Form ing an image-schema

requires

  only  an  innate mechanism  of  analysis,  no t innately

known content. New content can be added to the system

 when-

ever perceptual analysis takes place on aspects of the input not

previously

 analyzed.

The issue of why particular image-schemas are derived from

perceptual

  structure rather than others

  has

  rarely been dis-

cussed

 by

 c ognitive

  linguists, and it

 certainly

  has not

 been

 re-

solved. Why,

 from

  observing an  object  in  motion, should  its

path b e abstracted rather than some other aspect of the  input?

One  possibility is  that our  perceptual input systems are  pre-

wired

  or

  weighted

  to  form

  schematic summaries

 of

 certain

types  of  perceptual information rather than others.  On  this

account one could say that the

  infant

 has an innate predisposi-

tion to

  form  image-schemas

  of a

  certain type. However,

  it is

equally plausible that certain  types of redescription  are simply

the

  outcome

  of the way an

  infant's immature input systems

process  the  spatial structure that exists  in the  world. O n this

accoun t , one  would

  no t

  need

 to

  bias

 or

 preset

 the

 system that

processes spatial information. As a hypothetical example, a

newborn

 m ight not perceive m uch m ore in a rapid perceptual

encounter than a blurry object moving along a path. If so, a

mapping  of  Euclidean structure into  topological  structure

might be a

 predictable type

 of

 schem atization

 for a

 processor

that is not yet skilled at analyzin g the fine details of shape or

angular

 distance. This result would happen even thoug h

 it was

not

 preset

 to

 abstract topological,

 rather

 than

 Euclidean, infor-

mation. Altho ugh the resolution of this issue will ultim ately be

of great imp ortance, it seems prem ature to try to do more than

speculate about it at this time. First, i t needs to be determined

whether a theory of early concept formation in terms of image-

schemas is

 feasible

 and

 p roductive.

M.  Johnson  (1987) and

  Lakoff(1987)

  stressed that image-

schemas

  are not the

  same

 as

  real images

 (what

  they called

 rich images). Image-schemas are more abstract

 than

  images;

they

 consist of dynam ic spatial p atterns that u nderlie the spa-

tial relations

 and

  movements found

  in

 actual concrete images.

It should be noted, however, that real images are typically not as

rich as Johnson and Lakoff  implied. Furthermore, they are not

mental pictures

 if a

 mental picture means

 a

 copy

 of

 what

 has

been perceived. V isual ima gery is constructed

  from

 what a per-

son knows; images are not uninterpreted copies of reality but

rather

 are constructed from the

 underlying

 concepts the

  person

has already formed (Cham bers & Reisberg, 1992; Intons-Peter-

son &

  Roskos-Ewoldsen, 1989; Intraub

  &

  Richardson, 1989;

Piaget & Inhelder,

 1971).

 If concepts were represented largely in

propositional  form,  then  one  would need  a  complex theory

such

  as

  that proposed

  by

 K osslyn (1980)

 to

  show

 how

 analog

images could be constructed from  discrete information. How-

ever,  if

  concepts, perhaps especially preverbal concepts,

  are

couched  in  image-schematic  form, then the

 process

 of

 forming

images should be considerably sim plified. The im age-schema

itself

  structures

 an

  image space

  in

  which specific  objects

  and

m ore detailed p aths and spatial relationships c an be filled in. It

is these concrete,  or rich, images that appear in awareness, not

the im age-schemas themselves. That is,

 when

 one consciously

thinks about what an animal is, the meanings from  which this

concept

  is

 composed com e

 to

  mind

 as

 specific  images, words,

or

 both.  Image-schemas, therefore,

 are a

 crucial

  part of our

m ental architecture. T hey are not

 only

 used to c reate m eanings

but also to help

 form

  the

 specific

  images that instantiate them

and to understand the words that   refer  to them. In sum m ary,

then, perceptual analysis operates on perceptual  information,

leading to  image-schemas,

 which

  in  turn  form  th e foundation

of the

 conceptual system,

 a

 system that

  is

 accessible

  first via

imagery and

  later

 via

 language

 as well.

In the  following sections, I will characterize  several image-

schemas used

 to

 create concepts that appear

 to be

 early develop-

mental achievements:  animacy,  inanimacy , causality, agency,

containment,  and  support.  To the  extent that  the  relevant

image-schemas involve simp lifying and redescribing  percep-

6

 This theory

 of the

 basis

 o f

 thought

 is

 more

 or

 less

 the

 opposite

 o f

that

 proposed by Piaget  (1951). Piaget claimed that imitation of the

actions of others produc es imagery, which then enables thought. My

position

  is

  that image-schemas provide

 the

 meanings that enable

  in-

fants

  to im itate actions in the first place.

Page 7: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 7/18

CONCEPTUAL

  PRIMITIVES

593

tual input, they seem compatible  with what is known about

infant capabilities. As discussed earlier, perceptual

 schemas

 are

formed  during  the first few months of

  life

  and are therefore

available

 to be

 operated

 upon.

 There

 is no a

 priori reason

 why

redescribing

  these

  perceptual schemas into image-schematic

form   should require another year of sensorimotor learning.

However, the time of

 onset

 of these

 concepts

 is not crucial for

the arguments I make. The issue is not the exact age at which

conceptualizations of the world begin  to be  constructed  but

whether, in principle, an image-schema formulation can ac-

count for the preverbal conceptualization

  that

 occurs.

The

  Concept  ofAnimacy

It seems that people judge motion to be animate on the basis

of perceptual characteristics of

 which they

 are not

 aware. Some

of

 the

  bases that adults use, primarily involving violations

 of

Newton's  laws

  of

  motion,

  have

  been described

  by

  Stewart

(1984).

 Judging motion

 to be

 animate

 is

 similar

 to

 judging that

a

  face

 is male or female—people easily make

 this

 categoriza-

tion but

 have

 little idea about the kinds of information they use

(J.

 M.

 Mandler, 1988).

 So, if

 someone

 is

 asked

 how

 they know

that a briefly  viewed moving object is an animal, they might

say,

  It moved like an animal, or It

 started

 up on its own.

What

 is meant by such statements?

There are two broad types of onset of motion, self-instigated

motion (called  self-motion  here) and caused motion (see Pre-

mack, 1990). From an early age infants are sensitive to the  dif-

ference between something starting to move on its own and

something being pushed or otherwise made to move (Leslie,

1988;

 see the discussion later on causality). In its simplest  form,

self-motion means that

 an

 object

 is not

 moving,

 and

 then, with-

out any forces acting on it, it

 starts

 to move. If one were asked to

express

 this notion without using words,

 the

 best

 one

 might

 be

able to do is to put one's hand at rest and then move it. Thus, an

image-schema SELF-MOTION

 might be graphically expressed as

in Graphic

 1:

 a vector extending

 from

 a point A where A repre-

sents an entity at the beginning of its

 path.

 (This and the follow-

ing diagrams are obviously not meant to be literal interpreta-

tions of image-schemas; they are merely attempts to illustrate

nonverbal notions.)

SELF-MOTION

  AO > (1)

This is basically the notion of a trajector (M. Johnson, 1987;

Langacker, 1987; Lindner, 1981). Self-motion is the start of an

independent trajectory; that

 is, no

 other object

 or

 trajectory

 is

involved.

 By

 itself

 an

 object starting

 to

 move without another

visible

 trajector acting

 on it is not a

 guarantee

 of

 animacy.

 A

windup

 toy

 with

 a delay

 mechanism might appear

 to start itself,

or an unfelt

 tremor might cause

 a

 precariously balanced object

to  fall

  from

  a surface. Although any  such occurrence could

cause a

 mistaken judgment

 of

 animacy, perhaps especially

 by

an  infant,

  the

  concept

  of

  animacy involves more than

  one

meaning, not self-motion alone. As just

 discussed,

 moving

 ob-

jects can be perceptually categorized into two kinds, and the

motion of a mechanical toy or a falling object does not fit into

the appropriate class on grounds other than the onset of its

motion, namely,

 the

 type

 of

 trajectory

 it

 follows.

 I

 address this

issue further in the following paragraphs.

My claim

 is

 that Graphic

 1 is the

 most primitive characteriza-

tion of what  moves by itself means. It is a schematic represen-

tation

  abstracted  from

  a class of varied and complex move-

ments. The schematization could be achieved merely by analyz-

ing observed movement in the environment. It might also be

abstracted  from

  felt

 movement

 of the

 self

 and

  thei|efore have

 a

kinesthetic base. Nevertheless,

 the

 same representation should

result: a kind of spatial representation of movement in space.

This representation

  can be

  redescribed once again into lan-

guage, of course, but the basic meaning is not prepositional in

form.

I assume that

  in

  addition

  to

 self-motion,  infants represent

something about

 the

  form

 of the

 trajectories that self-moving

things

 follow. I also assume that whatever analysis infants carry

out  is rather simple. Perceptual discrimination of biological

motion (Bertenthal, in press), like perceptual categorization of

faces as

 male

 or female, is

 something one's perceptual recogni-

tion system easily does, but this information is represented at

best  crudely and

  often

  inaccurately. Biological motion is ex-

tremely

 complex; even theoretical psychologists

 are not yet

 cer-

tain which parameters are crucial to judgments of animacy

(Stewart, 1984; Wilson, 1986). Similarly

 for

 faces:

 Our

 percep-

tual mechanisms use complex information about the texture

and

  proportions

  of the  face

  to distinguish male  from

  female

(Bruce

  et al,  1991), but that information is not

  part

 of our

concept

 of what a male or

 female

 looks like. We do not seem to

have a  sufficiently  large image-schema vocabulary to accom-

plish detailed analyses of such complex phenomena and must

rely

 instead

 on

 simpler conceptualizations

 to

 think about them.

I assume that perceptual analysis

 of

 biological motion results

in little more than the notion that it does not

  follow

 a straight

line. Adults think of biological motion as having certain rhyth-

mic but unpredictable characteristics, whereas mechanical mo-

tion is thought of as undeviating unless it is deflected in some

way.

  Therefore, an image-schema of

  ANIMATE MOTION

 may be

represented simply

  by an

  irregular path,

  as

  illustrated

  in

Graphic

 2.

ANIMATE-MOTION ̂_̂ ->-

  2)

Although crude, this image-schema of an animate trajectory is

sufficient

 for its

 purpose.

  In

 order

 to

 understand

 what

 animals

are,

  it is not

 necessary

 to

 analyze

 in

 detail

 the

 movements that

set up the perceptual category in the first place. Nevertheless,

because

 of the

 concentrated attention that infants give

 to

 mov-

ing objects, I assume that some analysis of animate trajectories

takes place along with the analysis of the beginning of their

paths. An example would be noticing that dogs bob up and

down as

 well

 as follow irregular paths when they move. In this

regard,

  we

 have observed

  an

  illuminating

 bit of

 behavior

 by

some of the 1- to 2-year-old children who have taken

 part

 in our

studies of early concepts (e.g., J. M. Mandler, Bauer, & McDon-

ough,  1991).

  In a

  typical experiment,

 the

 children play

 with

little models

 of a

 variety

 of

 animals

 and

 vehicles,

 and we

 record

the

 sequences

 in

 which

 the

 children interact

 with

 them. Occa-

sionally a

 child will respond

 to the

 animals

 by

 making them

hop along the table and to respond to the vehicles by making

them scoot along

 in a

 straight line. Making

 a fish or a

 turtle

 hop

is

 a

 graphic example

 of a

 representation

 of

 animate movement

Page 8: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 8/18

5 9 4

J E A N M . M A N D L E R

t h a t

  i s   f a i t h f u l   t o t h e a n a l y s i s i n

  G r a p h i c

  2 , n o m a t t e r h o w

i n a c c u r a t e

  i t i s i n

  d e t a i l .

T h e   i m a g e s c h e m a s   f o r   S E L F - M O T I O N   a n d   A N I M A T E

  M O T I O N

c a n b e   c o m b i n e d ; t h a t   i s , a n   i m a g e - s c h e m a e m b e d d i n g

G r a p h i c

  1 a n d   G r a p h i c  2

  r e p r e s e n t s

 a n   o b j e c t   s t a r t i n g   u p o n i t s

o w n   a n d t h e n m o v i n g o n a n a n i m a t e

  p a t h .

  I n G r a p h i c 1 t h e

f o c u s

  i s o n t h e

  o n s e t

  o f t h e

  m o t i o n ( t h e s t r a i g h t l i n e

  i n t h e

d i a g r a m i s m e r e l y a d e f a u l t r e p r e s e n t a t i o n f o r a p a t h ) , w h e r e a s

i n

  G r a p h i c 2 t h e   f o c u s   i s o n t h e p a t h i t s e l f . C o m b i n i n g t h e t w o

g i v e s a n   i m a g e - s c h e m a

  t h a t

  m i g h t  b e   c a l l e d   S E L F - M O V I N G   A N I -

M A T E ,   a s

  i l l u s t r a t e d

  i n

  G r a p h i c

  3 .

S E L F - M O V I N G   A N I M A T E

  3

G r a p h i c

  3

  i l l u s t r a t e s

 t h e

  n o n u n i t a r y

  a n d

  r e l a t i o n a l c h a r a c t e r

  o f

m o s t i m a g e - s c h e m a s .

  I t h a s t w o   p a r t s

  ( B E G I N N I N G - O F - P A T H

a n d   P A T H )   a n d a s i m p l e k i n d o f s y n t a x i n t h e s e n s e t h a t o n e c a n

m o v e   f r o m   o n e

  p a r t

  t o t h e   o t h e r .

I n   a d d i t i o n   t o   s e l f - m o t i o n   a n d   a n i m a t e m o t i o n ,   a   t h i r d   n o -

t i o n t h a t   I

 p r o p o s e

 t h a t c o n t r i b u t e s   t o t h e   c o n c e p t o f a n i m a c y   i s

c o n t i n g e n c y   o f   m o t i o n b e t w e e n o b j e c t s , e s p e c i a l l y c o n t i n g e n c y

t h a t

  a c t s   a t a

  d i s t a n c e r a t h e r t h a n t h r o u g h d i r e c t p h y s i c a l c o n -

t a c t .

  T h e m o t o r l i m i t a t i o n s o f y o u n g i n f a n t s s e v e r e l y r e s t r i c t

t h e i r m a n i p u l a t i o n o f o b j e c t s ( a l t h o u g h t h e y h a v e a m p l e o p p o r -

t u n i t y t o w a t c h o t h e r s d o   s o ) .   H o w e v e r , t h e y a r e s u r r o u n d e d b y

p e o p l e w h o i n t e r a c t c o n t i n g e n t l y a m o n g t h e m s e l v e s a n d w h o

r e s p o n d   f r o m

  a

  d i s t a n c e

  t o t h e

  i n f a n t ' s   a c t i o n s

  a n d

  v o c a l i z a -

t i o n s

 i n a  w a y

 t h a t i n a n i m a t e

 o b j e c t s   d o  n o t .  T h e s e m i n a l   e x p e r i -

m e n t a l w o r k o n t h i s t o p i c w a s t h a t o f W a t s o n ( 1 9 7 2 ) . H e

s h o w e d t h a t

  a t 2

  m o n t h s

  o f a g e

  i n f a n t s l e a r n e d

  t o

  m a k e

  a m o -

b i l e h a n g i n g a b o v e t h e i r c r i b t u r n w h e n

  t h e

  m o v e m e n t

  w a s

c o n t i n g e n t

  o n

  t h e i r p r e s s i n g t h e i r h e a d s

  o n a

  p i l l o w . W h e n

  t h e

m o b i l e   d i d n o t   t u r n   o r   t u r n e d n o n c o n t i n g e n t l y v i s - a - v i s   t h e

p i l l o w a c t i o n , h e a d p r e s s e s   d i d n o t   i n c r e a s e .   T h e   m o s t i n t e r e s t -

i n g

  r e s p o n s e

  o f t h e

  c o n t i n g e n t g r o u p

  w a s

  t h a t

  b y t h e 3 r d t o 4 t h

d a y

  o f   e x p o s u r e   t o t h e   c o n t i n g e n t m o b i l e ,   t h e   i n f a n t s b e g a n   t o

s m i l e

  a n d c o o a t i t .

  W a t s o n h y p o t h e s i z e d t h a t

  t h e

  m o b i l e b e g a n

f u n c t i o n i n g

  a s a

  s o c i a l s t i m u l u s

  a n d

  t h a t

  t h e

  i n i t i a l b a s i s

  o f a

s o c i a l s t i m u l u s i s l i m i t e d t o s o m e s e t o f c o n t i n g e n c y e x p e r i -

e n c e s .

  I t i s n o t

  c l e a r

  h o w o n e

  w o u l d   d i f f e r e n t i a t e   b e t w e e n

  a

c o n c e p t   o f   a s o c i a l s t i m u l u s a n d a n a n i m a t e s t i m u l u s i n

  i n f a n c y ;

p e r h a p s   a   s o c i a l s t i m u l u s  i s o n e   t h a t r e a c t s c o n t i n g e n t l y   t o   o n e ' s

o w n

  m o v e m e n t s ,  a s

  o p p o s e d

  t o   r e a c t i n g c o n t i n g e n t l y   t o t h e

m o v e m e n t   o f   o t h e r o b j e c t s .   I n   e i t h e r c a s e ,   o n e   s h o u l d e x p e c t   t o

s e e

 i n f a n t s r e a c t i n g

  t o

  c o n t i n g e n t t o y s

 o r

  m o b i le s

  a s i f

  t h e y w e r e

a n i m a t e .

T h e h y p o t h e s i s i s s u p p o r t e d i n r e s e a r c h b y F r y e , R a w l i n g ,

M o o r e ,   a n d   M y e r s ( 1 9 8 3 ) .

  T h e s e

  i n v e s t i g a t o r s u s e d s i g n a l   d e -

t e c t i o n a n a l y s e s   o f   v i d e o t a p e s   o f   i n f a n t s r e s p o n d i n g e i t h e r   t o

t h e i r

  m o t h e r s o r t o a

  t o y ;

  i n a d d i t i o n , t h e m o t h e r s a n d t o y

i n t e r a c t e d w i t h   t h e   i n f a n t s   i n   e i t h e r   a   c o n t i n g e n t   o r   n o n c o n t i n -

g e n t f a s h i o n . O b s e r v e r s

  h a d t o   d i s c r i m i n a t e

  a m o n g

  t h e   t a p e s ,

o n w h i c h o n l y   t h e   i n f a n t s c o u l d   b e   s e e n .

  T h r e e - m o n t h - o l d s

w e r e   j u d g e d   t o   b e h a v e s i m i l a r l y w h e n e i t h e r t h e i r

  m o t h e r s

 o r a

t o y   r e a c te d c o n t i n g e n t l y   t o   t h e m

  ( i . e . ,

  t h e   o b s e r v e r s

  c o u l d

  n o t

t e l l t h e s e   t a p e s a p a r t )   a n d t o   b e h a v e

  d i f f e r e n t l y

  i n   t h o s e s i t u a -

t i o n s

  i n

  w h i c h th e r e

  w a s n o

 c o n t i n g e n t

  i n t e r a c t i o n .

 T e n - m o n t h -

o l d i n f a n t s ,   o n t h e   o t h e r h a n d , w e r e j u d g e d

  a l s o

 t o   d i f f e r e n t i a t e

c o n t i n g e n t m o t h e r s   f r o m   c o n t i n g e n t t o y s , s u g g e s t i n g   t h a t   b y

t h i s a g e i n f a n t s h a v e d e v e l o p e d a m o r e d e t a i l e d c o n c e p t i o n o f

p e r s o n s o r a n i m a t e t h i n g s .

P o u l i n - D u b o i s

  a n d

  S h u l t z

  ( 1 9 8 8 )

  s u g g e s t e d t h a t   i n f a n t s

  o n l y

l e a r n a b o u t

  t h e

  n o t i o n

  o f

  i n d e p e n d e n t a g e n c y

  i n t h e

  l a s t

q u a r t e r

  o f t h e f i r s t

  y e a r ; t h e y f o u n d   t h a t 8 - m o n t h - o l d s   h a b i t -

u a t e d m o r e t o t h e s i g h t o f a c h a i r a c t i n g a s a n i n d e p e n d e n t a g e n t

t h a n t o a p e r s o n a c t i n g a s a n i n d e p e n d e n t a g e n t . A l t h o u g h i t i s

n o t c l e a r e x a c t l y h o w t o i n t e r p r e t t h i s r e s u l t , i t s e e m s r e a s o n a b l e

t o s u p p o s e t h a t i f c o n t i n g e n t m o t i o n a n d s e l f - m o t i o n   d e f i n e

a n i m a c y

  f o r

  i n f a n t s

  i n t h e f i r s t

  m o n t h s

  o f

  l i f e ,   t h e n

  t h e

  m i s -

t a k e s t h a t y o u n g

  i n f a n t s

  m a k e m a y n o t b e b e c a u s e t h e y d o n o t

h a v e   a

  c o n c e p t

  o f

  a n i m a c y

  b u t

  b e c a u s e

  i t i s t o o

  b r o a d .   I n f a n t s

w h o   s m i l e a n d c o o a t a m o b i l e t h a t i s c o n t i n g e n t o n t h e i r b e h a v -

i o r o r   i n f a n t s

  w h o s e i n t e r a c t i o n s w i t h

  a n

  a n i m a t e d

  t o y

  c a n n o t

b e

  d i s t i n g u i s h e d   f r o m   i n t e r a c t i o n s w i t h t h e i r m o t h e r ,

  m a y b e

r e v e a l i n g t h a t t h e y t h i n k t h o s e t h i n g s a r e a n i m a t e , a n d s o t h e y

r e a c t a c c o r d i n g l y .

H o w   m i g h t t h e n o t i o n o f c o n t i n g e n c y b e c o n c e p t u a l i z e d b y a

y o u n g   i n f a n t ? T h i s i s a   d i f f i c u l t   q u e s t i o n b e c a u s e t h e e x t e n t t o

w h i c h i n f a n t s i n t e r p r e t c o n t i n g e n c y a s i n v o l v i n g a c a u s a l r e l a -

t i o n i s n o t k n o w n . I t s e e m s p l a u s i b l e t h a t i n t h e f i r s t i n s t a n c et h e y   d o n o t a n d   t h a t   t h e   i n i t i a l r e p r e s e n t a t i o n   o f  c o n t i n g e n c y  i s

a

  s i m p l e r n o t i o n .

  A

 s i m p l e d e r i v a t i o n

  o f a

 n o t i o n

  o f

  c o n t i n g e n c y

i s   p o s s i b l e   f r o m   a r e d e s c r i p t i o n o f s p a t i a l s t r u c t u r e i n t e r m s o f

t h e   L I N K   i m a g e - s c h e m a .   L a k o f f ( 1 9 8 7 )   d i s c u s s e d t h i s s c h e m a

o n l y

  b r i e f l y ,

  n o t i n g t h a t i t s s t r u c t u r e c o n s i s t s o f t w o e n t i t i e s a n d

a   l i n k c o n n e c t i n g t h e m .   T o m y   k n o w l e d g e , t h e r e   h a s n o t   b e e n

m u c h a n a l y s i s o f t h i s k i n d o f i m a g e - s c h e m a , b u t t h e r e a p p e a r s

t o b e a   f a m i l y   o f   L I N K   s c h e m a s w i t h r e l a t e d m e a n i n g s , m u c h   a s

B r u g m a n

  ( 1 9 8 8 )

 a n d

  L a k o f f   ( 1 9 8 7 )   u s e d

  a   f a m i l y   o f

 s c h e m a s

  t o

r e p r e s e n t

  t h e

  v a r i o u s m e a n i n g s

 o f t h e

  t e r m   o v e r .

T h e

  s i m p l e s t

v e r s i o n o f t h e

  L I N K   i m a g e - s c h e m a

  i s

  i l l u s t r a t e d

  i n

  G r a p h i c

  4 .

O t h e r v e r s i o n s   o f   L I N K   s c h e m a s   a r e   l i s t e d b e l o w   i t .

L I N K

B

O N E - W A Y

  L I N K

  A O   O B

T W O - W A Y   L I N K   A O   O B

L I N K E D

  P A T H S

  A

  5   C ) B

( 4 )

( 4 a )

( 4 b )

( 4 c )

I n

  G r a p h i c   4 t h e   l i n k   ( w h i c h   i s n o t t h e   s a m e   a s a   p a t h ) m e a n s

t h a t t w o e n t i t i e s o r e v e n t s , A a n d B , a r e c o n s t r a i n e d b y , o r d e -

p e n d e n t   o n , o n e   a n o t h e r e v e n t h o u g h t h e y   a r e n o t i n   d i r e c t

c o n t a c t .

  L i n k s   c a n   o c c u r a c r o s s b o t h s p a t i a l   a n d

  t e m p o r a l

  g a p s

a n d c a n b e   o n e - w a y   o r   m u t u a l .   F o r   e x a m p l e ,   t o   e x p r e s s   t h e

c o n t i n g e n c y   i n t h e   W a t s o n

  ( 1 9 7 2 )

  e x p e r i m e n t

  d e s c r i b e d

  e a r l i e r

i n   w h i c h t h e i n f a n t A a c t s a n d t h e m o b i l e B t u r n s , o n e m i g h t

u s e a

  L I N K

  s c h e m a   i n

  w h i c h

  t h e

  c o n t i n g e n c y

  i s

  o n e - w a y ,

  a s i n

G r a p h i c   4 a .   ( T h e a r r o w   i s   m e a n t  t o   r e p r e s e n t   t h e   d i r e c t i o n   o f

t h e   c o n t i n g e n c y )

  T h i s

  k i n d   o f   c o n t i n g e n c y s e e m s l i k e l y   t o r e -

q u i r e   a  n u m b e r   o f   r e p e t i t i o n s  b e f o r e  a n   e x p e c t a t i o n   i s s e t u p , a s

o c c u r r e d

  i n t h e   W a t s o n e x p e r i m e n t . P r e s u m a b l y , t h e r e f o r e ,

a n a l y s i s

 o f t h e

  c o n t i n g e n c y w o u l d

  n o t h a p p e n o n t h e f i r s t

 o c c a -

s i o n . R e p e t i t i o n

  m a y   a l s o   b e

  r e q u i r e d

  f o r   G r a p h i c   4 b ,   w h i c h

r e p r e s e n t s

  t h e   b a c k - a n d - f o r t h   i n t e r a c t i o n   b e t w e e n   a n   i n f a n t

a n d   i t s

 m o t h e r   d e s c r i b e d   i n t h e

  F r y e

  e t   a l .

  ( 1 9 8 3 )

 e x p e r i m e n t .

I n   a d d i t i o n ,

  t h e r e   a r e   l i n k e d

  p a t h s ,

  i n   w h i c h   t w o   o b j e c t s m o v e

Page 9: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 9/18

CONCEPTUAL PRIMITIV ES

595

in  tandem  as  linked trajectories, shown  in  Graphic 4c;  if A

moves, then B moves too. It may be

 possible

  to analyze this

kind of contingency on the first exposure to it. Notice that in all

these cases m otion is involved, not in the link but by the entities

themselves; that is, the entities are

 parts

 of events.

Responsivity  to co ntingency is one of the m ost basic predis-

positions  of

  infants

  (or,  for  that matter, o f organisms  in gen-

eral). For example, conditioning would not be

 possible

 without

it. Whether active analysis, or awareness, of contingency is re-

quired for conditioning to occ ur is a disputed issue and would

take us too fa r

 afield

 to discu ss here, but

  responsivity

 to contin-

gency, even

 in

 neonates,

 is not in

 dou bt (Rovee-Collier, 198 7).

One of the first kinds of contingency to be learned is that in-

volved  in S-S conditioning, that is, a contingency occurring

between two entities (or events) in the environment, rather

than

 a

 contingency occ urring between

 an

 entity (or event)

 and

the

  neonate's

  own

  responses (see  SamerofT

  & Cavanaugh,

1979). Therefore, it should be possible to analyze contingent

motion

  on the

 basis

 of the

 structure

  of

 environmental events

alone. The evidence to date is m ostly about c ontingencies be-

tween

  self

  and the  environment; for example, Greco, Hayne,

and Rovee-Collier (1990) suggested that 3-month-olds use mo-

tion

 th at is contingent on their responses to categorize d issimi-

lar app earing objects. However, analysis

 of

 objects' m ovements

vis-a-vis one's

  own

  responses, though  useful,

  may not be re-

quired

 for analysis

 of

 contingent motion

 to

 take place. Whether

very  young infants  actually engage

  in

  perceptual analysis

 o f

such environmental contingencies

  is

  another issue.

  My

 point

here

  is only  that it is possible to associate contingent motion

with

 a

 particular category

 of

 mov ing objects without having

 to

observe

 their responsivity

 to self.

 Such

 a

 situation would allow

infants

  to

 conceptualize birds

 or

 animals

 in a zoo as

 animate

things without

 having

 to interact with them in a personal way.

The  contingency of  animate movement  not  only involves

such  factors as one

 animate

 following

 another,

 as

 described

 by

LINKED  P A T H S but  also involves avoiding barrie rs and making

sudden

 shifts

 in acceleration. Stewart (1984) showed that adults

are sensitive to all of these aspects of animate movement, but

even thou gh they appear to be p erceptually salient, it is not yet

known whether infants are responsive to them or not. N or has

anyone c onsidered

 how

 factors such

 as

 barrier avoidance might

be

 represented

  in

  image-schema form.

  M.

 Johnson

 (1987) de-

scribed several FORCE schemas, such

 as

 blockage

 and

 diversion,

that

  may be

  useful

  in

  describing barrier avoidance,

  bu t

 they

need to be differentiated  into animate and inanimate trajecto-

ries. One

 m ight represent animate

 and

 inanimate

 differences  in

response to blockage as a trajectory that shifts direction

  before

contacting

 a barrier versus one that ru ns into a barrier and then

either

 stops

 or

 bounces

 off from

  it.

I

 have

 outlined here some simple kinds of percep tual analysis

that

 give

 conceptual m eaning

 to a

 category

 of

 moving things.

The  claim

  is

 that  infants  generalize across

  the

  particulars

  of

perception to a representation that encom passes some abstract

characteristics the experiences have in common. Things that

move

 in one w ay can be concep tualized  as starting up on their

ow n

  and  interacting with other entities  in a  contingent way

without

 having to m ake contact with them. Such things can be

contrasted w ith another c ategory of

 moving

 things that not only

move  differently,  but do not start up on their own and do not

interact contingently with other entities

 from

 a

 distance.

 These

analyses can be characterized as redescriptions of varied and

exceedingly complex perceptions into a few different  kinds of

trajectories. Some

 of the

  trajectories imp ly self-motion; others

imply

  contingent response  to objects taking part  in events in

the environment. Such  redescription  could in  principle  be

carried

  out

 from

  a

 very young

 age by

 analysis

 of

 spatial struc -

ture into image-schematic   form.  It would provide the begin-

nings of a  concept  (or  theory)  of  what an  animate thing is ,

above

 and

 beyond what

 it

 looks like.

So far I have concentrated  on the  conceptualization  of ani-

mate things, saying little about the c ontrasting class of inani-

mates.

 Even

 thou gh anim ates are the class of things that seem

to attract infants' interest and attention the most,

  infants

  do

attend with interest to all moving things, many of which are

inanimate. Therefore, I assume that c onceptualization of inani-

macy

  takes place concurrently with the formation of notions

about anim acy; that is, there is no reason to assume that inani-

mates

 a re

  merely

 a

 default  class.

 A

 likely  starting point

  is the

fact that inanim ates involve caused m otion rather than self-mo-

tion. How might caused motion be represented?

T h e C o n c e p ts

  of

  Causa l i t y and

  Inanimacy

The

  difference  between self-motion

 and

  caused motion

  is

that

  in the

  latter case

  the

  beginning-o f-path involves another

trajector. A

  hand picks

  up an

  object, whose trajectory then

begins,

 or a

 ball rolls into another, starting

 the

 second

 o ne on its

course. A n  image-schema of  C A U S E D  MOTION could be graphi-

cally represented as in Graphic 5: a vector toward an object A,

with

 another vector leaving the p oint. The two trajectories are

not independent; the first one ends (or shifts direction) at the

point and time at which A begins its motion. The illustration

here, as in Graphic   1, is meant to emphasize the onset of mo-

tion. The trajectories are drawn as straight lines, again as a

default

 case (although they are app ropriate  for m any kinds of

caused motion). In the case of the hand, the trajectories are

more complex; this issue is discussed in the  following  para-

graphs.

CAUSED MOTION

 5)

Just as

 for

 animate motion, p erceptu al analysis of the paths of

objects

 caused to move, such as a launched b all or a car, results

in a representation of inanimate (or mechanical) motion. The

simplest

  way to

 express this notion

  is by a

  straight line

 as in

Graphic 6.

INANIMATE MOTION

 

(6)

Again,

  combining

  the

  beginning-of-path with

 the

  path itself

forms an image-schema that might be called CAUSED-TO-MOVE

I N A N I M A T E

as in  Graphic  7.  (The only  difference  between

Graphics 7 and 5 is that the beginning-of-path and the path

itself have been g iven equal emp hasis in Graphic 7.)

A

CAUSED-TO-MOVE INANIMATE

  K)

  (7)

Leslie

 (1982,

  1988)

 has

 provided data

  on the

  perception

 of

Page 10: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 10/18

596

J EA N M .

  M A N D L E R

causality  in  infancy,  with  findings  similar  to  those

  found

  by

Michotte

 (1963)

 fo r

 adults.

 Leslie speculated that a concept of

causality is derived

  from

 this kind of perception. He found that

infants as you ng as 4 months distinguish between the c ausal

movement involved in one ball launching another and  very

similar events

 in

 whic h there

  is a

 small spatial

 or

 temporal

 g ap

between

 the two movements. In launching, the end-of-path of

the first  trajectory  is the  beginning-of-path of  trajector  A, as

illustrated in Graphic 7. In the n oncausal case there is no con-

nection between

 the end o f one

 trajectory

 and the

 beginning

 of

the next, as illustrated in Graphic 8.

7

A

It

 is probably no accident that L eslie used films of balls being

launched that look similar

  to the

  sketch shown

  in

 Graphic

  7

and contrasted them with films that looked m uch like Graphic

8.

  Launching is a paradigm case of causal motion, and the

image-schema underlying it may be used as the foundation of

causal understanding of all sorts. It also represents the para-

digm case of the motion of inanimate objects. Inanimate ob-

jects are objects that typic ally do not m ove at all, but when they

do   they are caused to move. The cause of motion can itself be

either animate or inanimate. In Graphic 7, A represents an

inanimate object; not only is it caused to move, but it follows an

inanimate trajectory. In Graphic 8, A also moves in an inani-

mate fashion, but creates an anomalous impression because it

starts up on its own.

If

 spatial analysis results

 in an

 early representation

  of

 causal-

ity,  it would suggest that physical causality might be repre-

sented  before  psychological c ausality. This progression w ould

be the opposite of that usually assumed in development. Ac-

cording to Piaget

 (1954),

 psychological causation, or the aware-

ness

 of one's  own intention or

 efforts

  to make something hap-

pen, is the basis on which the later understanding of physical

causality rests.

  The

  spatialization

  of

  causal understanding

  is

said

  to

 begin only after  infants experience many occasions

  of

drawing

 objects to themselves or pus hing them  away. However,

both Leslie's (1982, 1984) data

  and an

  approach

  to

  concept

formation

 in term s of redescription of spatial structure suggest

that the ontogenetic ordering may be the other way aroun d. The

experience

 of

 intention

 or

 volition

 may not be

 required

 to

  form

an  initial conception

  of

  causality. Indeed, internal  states

  are

notoriously   difficult  to conceptualize, and children may re-

quire a good deal of experience before they begin to do so. W e

have

 no evidence for any analysis of internal states by 4-month-

old infants. In contrast, som e analysis of the spatial struc ture of

moving objects has  apparently begun by this

 age.

8

T he

  C o n c e pt  of

 Agency

Leslie (19 82) provided other data on causal perception  that

are

  relevant  to the  issue  of how a concept  of  agency  can be

represented.

  He

  showed that both

  4- and

  7-month-olds were

surprised when

 a

  hand appeared

  to

  move

  an

  object without

touching

 it.

 That

 is, the

  image-schema

  of  C A U S E D  MOTION was

violated because

  the first

  trajector

  did not

  reach

  the

  point

where  the

  second trajector began

  its

  path. Thus,

  an

  object

started

  up on its own but d id not

 move

 in the way

 that animate

objects usually

 do;

 rather,

 it

 moved

  in an

  inanimate fashion

 as

in Grap hic 6. Such a display creates an anomaly, similar to that

illustrated in  Graphic  8. Related data (Leslie, 1984) indicated

that  infants  have  also learned something about animates  as

agents

 at an

  earlier

 age

 than Poulin-Dubois

 and

 Shultz

 (1988)

suggested. In  this experiment, 7-month-olds dishabituated

when

 a hand appeared to pick u p an object without contacting

it, but  they did

  no t

 react

  differentially

  to  blocks o f wood that

  picked  up objects with  or w ithout contact.  The  infants may

have

  found

  the

 sight

 of a

 block

 of

 wood picking

 up an

 object

difficult

  to

 interpret whether

 it

 contacted

  the

 object

 or not and

so did not

  differentiate  between

  the

  two. (Even  3-month-olds

have  already learned some  of the  characteristic behavior o f

hands. Needham

 and

  Baillargeon,

 1991,  found

  that 3-month-

olds were surp rised

 when a

 hand pushed

 a n

 object off

 a surface

and the object did not fall; a similar display  in which the object

wa s grasped  by a hand, did not surprise them.)

Leslie's (1984) data suggest that perceptual analysis of causal

and

 noncausal motion

  is

 involved

 not

 only

 in the

  formation

 of

concepts of animacy and  inanimacy  but also in the develop-

men t of the concept of an agent. Anim ate objects not only move

themselves but cause o ther thi ngs to move; it is the latter char-

acteristic, of course, that turns animates into agents. I offer  a

representation

  of an

  image-schema

 of

  A G E N C Y

  in

 Graphic

  9.

AGENCY  is represented as an  animate  object, A,

 that

  moves

itself and also causes another object, B, to move. This image-

schema is hardly more complex than the image-schema of

C A U S E D - T O - M O V E

  IN A N IM A T E

 (Graphic

 7) . T he

 only

 difference

is

 that

 tw o

 objects

 are

 represented,

 and the

 object

 A

 that c auses

B to

 move follows

 an

  animate path.

A B

AGENCY  <y  -̂_̂ XD  >

  (9)

One of the

  most frequent

 sights  in

  early infancy

  is

 that

 of

people manipulating objects. These are typically objects that

rarely move at all under other circumstances. The trajectories

taken by manipulated objects in these cases are those of the

agent that

  is

 holding them. This complicates

  the

  analysis that

must

 b e

 carried

 out but

 perhaps

 not so

 greatly

 as to be

 necessar-

ily  a late development. Inanimate objects are those that often

do not move at all, but when they do the beginning-of-path is

caused m otion, not self-motion. The pa ths they follow are inan-

imate paths, unless  the  cause  of motion  is an  agent  picking

them

 up. In

 that case, their paths

 are

 contingent

 on the

 path

 of

the agent. If the paths part company (i.e., the agent lets the

object go), the path of the manip ulated object reverts to that of

inanimate motion.

7

 Note that the

 separation between

  the two trajectories in

 Graphic

 8

can represent either a spatial or a temporal gap;  that is, a spatial or a

temporal

 separation results in the assessment that A begins on its own.

Using a temporal gap to judge

 that

 an independent

 trajectory

 has be-

gun

 is an example of using temporal information without necessarily

conceptualizing

 it as such.

8

 If

 this argument

 is

 correct,

 it provides an ontological

 basis

 for our

pervasive tendency to conceptualize the mental world by analogy to

the physical world, rather than the other way

 around.

 Extensive

 analy-

ses of

 this

 tendency have been provided by cognitive linguists

 such

 as

M . Johnson  (1987), Sweetser (1990), andTalmy (1988).

Page 11: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 11/18

CONCEPTUAL  PRIMITIV ES

597

I

  have discussed several kinds of spatial movement that

might be important in early concepts about objects, but there

are certainly a num ber of others. For example, W agner, Winner,

Cicchetti, and Gardner  (1981) found that 9- to 13-month olds

were able

  to

  make

 a  metaphorical

match between

  certain

auditory

 and

 visual patterns.

 Specifically, the

 infants were more

ap t

 to

 look

 at a

 broken line

 or a

 jagged circle when listening

 to a

pulsing

 tone

 and to

 look

 at a

 continuous line

 or a

 smooth circle

when

  listening to a continuous tone. Similarly they looked

more at an upw ard pointing arrow (which m ay tend to make

the eyes move upwards) when listening to an ascending tone

and  to a downw ard arrow whe n listening to a descending tone.

This finding is of particular interest because it

 appears

 to be

the same phenomenon described by M. Johnson (1 987 ) and

Lakoff  (1987)

 as the way in

 which adults project image-sche-

m as from

 one

 domain

 to

 another, fo r example, conceptualizing

quantity

 in terms of

 verticality

 (m ore is up, less is down) .

The

 Wagner

 et

 al. (1981) data

 are

 also interesting because

 of

their potential application

 to the

 debate over

 the

 basis

 of

 cross-

modal matching

 in

  infancy.

  For

 instance, when listening

  to a

single

  sound track while being presented with

  two

  different

films, 4-month-old infants are more ap t to look at the film that

matches

  the

 sound track (e.g., Spelke, 1976). Kellman (1988)

suggested  that the auditory and visual transducers output the

same pattern of information in an am odal  form, which could

account for the m atching behavior. Spelke (1988), on the other

hand, suggested  that a  more thoughtful central

 process

 is

required. Although Spelke did not describe  this  process in

terms of image-schemas, her suggestion could be so inter-

preted. In

 such

 an account, the m atching behavior would not be

due

  to the transducers resulting in the same amodal output;

rather,

  the  infant

  would

  be

  described

  as

  creating

  the

  same

image-schema to represent the two outputs.

The Concep t s   of Containment  and Support

The last concept I will discuss is containment, along with a

cluster of related notions: going in or out, opening and closing,

and support. Containment in particular is an important notion

to consider because of its potential relevance to p reverbal think -

ing.  The data that are available suggest it is an early c onceptual

development. Some concept of containment seems to

 be

 respon-

sible for the

 better performance 9-month-old  infants  show

 on

object-hiding

  tasks when the occluder consists of an upright

container, rather than an inverted container or a screen (Free-

man,

  Lloyd, & Sinha, 1980; Lloyd, Sinha, & Freeman,  1981).

These authors suggested that

  infants

 already have

 a

 concept

 of

containers as places where things disappear and reappear.

More direct work on

 containment

 has been

 conducted

 by

 Kol-

stad

  (1991),  wh o

  showed that 5.5-month-old infants

 are

  sur-

prised

 when

 containers without bottoms app ear to hold things.

This finding suggests that the notions of containm ent and sup-

port may be closely related

  from

  an early age.

According

 to  Lakoff (1987), the  CONTAINMENT schema  has

three struc tural elements: interior, bou ndary, and exterior. Such

a notion seems likely to arise from  two sources: first, percep-

tual analysis of the

  differentiation

 of figure from  ground, that

is, seeing objects as bounded and having an inside th at is sepa-

rate

 from

  the

 ou tside (Spelke, 1988 ), and second, from percep-

tual analysis of objects going into and out

 of

 containers. The list

of containm ent relations that babies experience is long. Babies

eat

 and

 drin k, spit things out, w atch their bodies being clothed

and

  unclothed,

  are

 taken

 in and out of rooms, and so on. Al-

though

  M.

  Johnson (1987)  emphasized  bodily  experience

 as

the basis of the understand ing of containment, it is not obvious

that bod ily experience

 per se is

 required

 for

 perceptual analysis

to take place.

 Infants have

 many opp ortunities to analyze sim-

ple, easily visible containers, such as bottles, cups, and dishes,

and the acts of containment that m ake things disappear  into

and reapp ear out of them . Indeed, I would expect it to be easier

to analyze the sight of milk going into and out of a cup than

milk going into or out of one's mouth. Nevertheless, however

the analysis of co ntainme nt gets

 started,

 one wou ld expect the

notion of food as something that is taken into the m outh to be

an early conceptualization.

In

 the same way as discussed  for LINK, there appears to be a

cluster of related image-schemas used to form the concept of a

container.

 One expresses the meaning of

 CONTAINMENT

 itself.

Thus, Graphic 10 represents the meaning of one thing being

inside another, by showing an object, A, in an at least partially

enclosed space.

CONTAINMENT

  (A)

  (10)

Related

  image-schemas

 express the meaning of going in or go-

ing  out in which a trajector goes from outside a container to the

inside, as in

 Graphic lOa,

 or

 vice versa,

 as in

 Graphic lOb.

GOING

 IN

GOING OUT

6

6

(10a)

(10b)

As  Kolstad's

  (1991)

  data suggest still another aspect that

seems to be involved in an early concept

 of

 a container is that of

support: true containers not only envelop things but support

them  as well. I

 have

 already mentioned work by Needham and

Baillargeon (1991) showing that  infants as young as 3 months

are surprised

  when

 sup port relations between objects are vio-

lated.  A  primitive image-schema  of

  SUPPORT

  might require

only  a representation of contact between two objects in the

vertical dimension.  An  image-schema  of  SUPPORT  is  repre-

sented in Graphic  1 1  in the  form of an object, A , above and in

contact with

 a

 surface.

SUPPORT  A  (11)

Baillargeon,

 Needham,

 and DeVos

 (1991) docum ented

 some of

the

 changes that occ ur

 in

 understanding support over

 a

 period

of

 a few

 months.

 A t 3

 m onths infants expect objects

 to be

 sup-

ported if they are in full contact with a surface, and otherwise

they expect objects

 to

 fall.

 B y 5

 m onths they expect

 an

 object

 to

be

 supp orted

  if any

 part

 of the

 object rests

 on the

 surface.

 By 6

months they have begun to  differentiate  between partial but

inadequate support  (15% overlap between

 the

  object

  and the

supporting  surface)  and adequate support  (70%  overlap).

These data suggest that

 the

 earliest notion

 of

 support does

 no t

include

 considerations

 of

 gravity

 or

 weight distribution,

 but at

least som e aspects of these characteristics are learned within a

few

  months.

Still another exam ple of early understanding related to c on-

Page 12: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 12/18

5 9 8

J E A N

  M

M A N D L E R

t a i n m e n t i s t h a t o f o p e n i n g a n d c l o s i n g . P i a g e t   ( 1 9 5 1 )   d o c u -

m e n t e d   i n   d e t a i l  t h e   a c t i o n s   h i s 9 - t o   1 2 - m o n t h - o l d   i n f a n t s   p e r -

f o r m e d   w h i l e t h e y w e r e l e a r n i n g   t o   i m i t a t e a c t s t h a t t h e y c o u l d

n o t s e e t h e m s e l v e s p e r f o r m , s u c h a s b l i n k i n g . H e n o t i c e d t h a t

b e f o r e   t h e y   a c c o m p l i s h e d

  t h e   c o r r e c t a c t i o n

  t h e y s o m e t i m e s

o p e n e d   a n d   c l o s e d t h e i r m o u t h s , o p e n e d   a n d   c l o s e d t h e i r

h a n d s ,

  o r

  c o v e r e d

  a n d

  u n c o v e r e d t h e i r e y e s w i t h

  a   p i l l o w .   H i s

a c c o u n t t e s t i f i e s b o t h t o t h e p e r c e p t u a l a n a l y s i s i n w h i c h t h e

i n f a n t s   w e r e e n g a g i n g

  a n d

  t h e i r a n a l o g i c a l u n d e r s t a n d i n g

  o f

t h e

  s t r u c t u r e

  o f t h e

  b e h a v i o r t h e y w e r e t r y i n g

  t o

  r e p r o d u c e .

S u c h

  u n d e r s t a n d i n g s e e m s a c l e a r c a s e o f a n i m a g e - s c h e m a o f

t h e s p a t i a l m o v e m e n t i n v o l v e d w h e n a n y t h i n g o p e n s o r c l o s e s ,

r e g a r d l e s s

  o f t h e

  p a r t i c u l a r s

  o f t h e

  t h i n g i t s e l f .

  T h e

  i m a g e -

s c h e m a i s n o t e a s i l y r e p r e s e n t a b l e i n a s t a t i c s k e t c h , b u t i t i n -

v o l v e s

  a n   o p e r a t i o n   o n t h e   b o u n d a r y   o f a   c o n t a i n e r , s u c h t h a t

s o m e t h i n g   c a n   m o v e   i n o r o u t o f i t , a s i n   G r a p h i c s   l O a   a n d

  1

 O b .

L a k o f f ( 1 9 8 7 )   p o i n t e d   o u t   t h a t   t h e   C O N T A I N M E N T   i m a g e -

s c h e m a

  f o r m s

  a

 g e s t a l t - l i k e

 w h o l e t h a t h a s m e a n i n g b y v i r t u e o f

t h e r e l a t i o n s h i p s a m o n g t h e p a r t s .   I n   d o e s n o t h a v e m e a n i n g

w i t h o u t c o n s i d e r i n g   o u t   a n d a   b o u n d a r y b e t w e e n t h e m .

  L a k o f f

w e n t   o n t o

  s u g g e s t t h a t

  t h e

  C O N T A I N M E N T

  s c h e m a

  f o r m s

  t h e

b a s i s

  f o r t h e   l a t e r m e a n i n g f u l n e s s   o f   c e r t a i n l o g i c a l r e l a t i o n s ,

s u c h

  a s P o r n o t P ( i n o r n o t i n ) , a n d f o r t h e

  B o o l e a n l o g i c

 o f

c l a s s e s ( i f a l l A s a r e B s a n d   x   i s a n A , t h e n   x   i s a B d e r i v i n g

f r o m   i f A i s i n

  c o n t a i n e r

  B a n d

  j c

  i s i n A ,

  t h e n

  j c   i s i n

  B ) .

  H e

c l a i m e d t h a t o u r i n t u i t i v e u n d e r s t a n d i n g o f t h e m e a n i n g o f a s e t

( e v e n

  t h o u g h i t i s d e f i n e d   f o r m a l l y   i n   s e t - t h e o r e t i c a l   m o d e l s o f

l o g i c )   i s d u e t o t h e   C O N T A I N M E N T   s c h e m a .  I n   t h i s   v i e w ,   m e a n -

i n g   p o s t u l a t e s a r e   m e a n i n g f u l   b e c a u s e t h e y a r e   p r e p o s i t i o n a l

t r a n s l a t i o n s o f t h e s c h e m a s t h a t s t r u c t u r e o u r n o n v e r b a l

t h o u g h t .

L a k o f f s

  ( 1 9 8 7 )   c l a i m a b o u t

  t h e

  b a s i s

  o f o u r

  i n t u i t i v e u n d e r -

s t a n d i n g o f l o g i c i s a t t r a c t i v e i n s o f a r a s i t s u g g e s t s h o w r e p r e -

s e n t i n g e a r l y c o n c e p t s

  i n

  i m a g e - s c h e m a t i c t e r m s

  c a n

  p r o v i d e

  a

g r o u n d i n g   i n   p r e v e r b a l t h o u g h t   f o r

  a s p e c t s

  o f   l a t e r l a n g u a g el e a r n i n g a n d r e a s o n i n g . A s B r a i n e a n d R u m a i n

 ( 1 9 8 3 )

  p o i n t e d

o u t ,   i t i s   d i f f i c u l t   t o   i m a g i n e   h o w   c h i l d r e n c o u l d u n d e r s t a n d

s e n t e n c e s c o n t a i n i n g l o g i c a l c o n n e c t i v e s s u c h a s   o r   i f t h e y d i d

n o t   a l r e a d y h a v e w h a t B r a i n e   a n d   R u m a i n c a l l e d   i n f e r e n c e   s c h e -

m a s .

  A l t h o u g h B r a i n e

  a n d

  R u m a i n

  d i d n o t

  s u g g e s t t h a t s u c h

s c h e m a s a r e w i t h i n t h e c o m p e t e n c e o f i n f a n t s , i t b e c o m e s e a s -

i e r t o s e e w h e r e t h e y m i g h t c o m e

  f r o m

  i f t h e y c o n s i s t o f u n d e r -

s t a n d i n g   t h e   m e a n i n g   o f   s i m p l e n o t i o n s l i k e   C O N T A I N M E N T .

T h e

  i m p l i c a t i o n t h a t s o m e t h i n g   i s  e i t h e r   i n o r o u t  o f  a   c o n t a i n e r

a n d i s n o t b o t h i n a n d o u t a t t h e s a m e t i m e i s s p a t i a l l y e v i d e n t

f r o m   e x a m i n i n g a c o n t a i n e r a n d c a n b e p r o j e c t e d b y m e a n s o f

t h e

  C O N T A I N M E N T   i m a g e - s c h e m a

  t o

  o t h e r   o r

 a n d

  n o t  r e l a t io n s .

A

  s i m i l a r k i n d   o f   a n a l y s i s   o f   i f - t h e n   m a y b e   d e r i v e d

  f r o m

  t h e

L I N K

  s c h e m a s   i n

  G r a p h i c s

  4 a a n d 4 b .   S u c h i m a g e - s c h e m a   i m -

p l i c a t i o n s

  a r e

  n o n p r o p o s i t i o n a l ;  t h e y

  d o n o t

  c o n s i s t

  o f

  s t r i n g s

o f   d i s c r e te s y m b o l s , y e t t h e y a l l o w t h e m e a n i n g o f  c e r t a i n   i n f e r -

e n c e s  t o b e  u n d e r s t o o d .   B e c a u s e t h e s e k i n d s

 o f

 a n a l o g

  r e p r e s e n -

t a t i o n s h a v e

 a

  r e l a t i o n a l s t r u c t u r e ,

  o n e

  m i g h t

  s a y

 t h a t   t h e y c o n -

t a i n w i t h i n t h e m s e l v e s   t h e   b a s i s   o f   w h a t w i l l

  b e c o m e

  i n   l a n -

g u a g e

  ( o r   l o g i c )

  a

  p r e d i c a t e - a r g u m e n t   s t r u c t u r e .

I m a g e - S c h e m a s a n d L a n g u a g e A c q u i s i t i o n

B o w e r m a n

  ( 1 9 8 7 )   n o t e d t h a t t h e r e  a r e t w o  i m p o r t a n t

  a s p e c t s

o f t h e

  r o l e

  o f

  m e a n i n g

  i n

  l e a r n i n g

  t o

  t a l k t h a t m u s t

  b e

  s o l v e d

b e f o r e   o n e c a n c l a i m t o   h a v e   a n a d e q u a t e m o d e l o f l a n g u a g e

a c q u i s i t i o n . T h e f i r s t i s a p l a u s i b l e t h e o r y o f w h e r e c h i l d r e n ' s

m e a n i n g r e p r e s e n t a t i o n s c o m e   f r o m ,   a n d t h e   s e c o n d   i s h o w

t h e y

  a r e u s e d t o

  f a c i l i t a t e

  l a n g u a g e l e a r n i n g . ( B o w e r m a n a l s o

n o t e d t h a t   w e  h a v e  n o t   m a d e m u c h p r o g r e s s   o n   e i t h e r p r o b l e m . )

T h e p r e v i o u s s e c t i o n s o f t h i s a r t i c l e a d d r e s s e d t h e f i r s t o f t h e s e

i s s u e s ,   b y   s h o w i n g  h o w   p r e v e r b a l m e a n i n g s m i g h t   b e   f o r m e d

a n d

  d o i n g

  s o i n a

  l a n g u a g e - i n d e p e n d e n t

 w a y .

  T h a t

  i s , t h e

  m o t i -

v a t i o n   f o r t h e

  c h a r a c t e r i z a t i o n

  o f t h e

  i m a g e - s c h e m a s

  I

  h a v e

d e s c r i b e d

  w a s n o t t o

  e x p l a i n l a n g u a g e l e a r n i n g

  b u t t o

  a c c o u n t

f o r   t h e   k i n d  o f  c o n c e p t u a l a c t i v i t y t h a t o c c u r s  i n  p r e v e r b a l c h i l -

d r e n .   I n   t h i s s e c t i o n , h o w e v e r ,  I

  w i l l

  d i s c u s s s o m e  o f t h e

  w a y s

 i n

w h i c h   i m a g e - s c h e m a s s h o u l d  b e   u s e f u l   i n   l a n g u a g e a c q u i s i t i o n .

I m a g e - s c h e m a s ,

  w h i c h

  a r e b a s e d o n a r e d e s c r i p t i o n o f t h e

s p a t i a l s t r u c t u r e i n f a n t s e x p e r i e n c e e v e r y d a y , w o u l d s e e m t o b e

p a r t i c u l a r l y

  u s e f u l

  i n t h e   a c q u i s i t i o n   o f   v a r i o u s r e l a t i o n a l c a t e -

g o r i e s i n l a n g u a g e . O n t h e b a s i s o f l i n g u i s t i c a n a l y s e s , c o g n i t i v e

l i n g u i s t s h a v e p r o p o s e d i m a g e - s c h e m a s a n d m e n t a l s p a c e s a s

t h e r o o t s o f o u r u n d e r s t a n d i n g a n d u s e o f m o d a l s ( S w e e t s e r ,

1 9 9 0 ;

  T a l m y ,

  1 9 8 8 ) , p r e p o s i t i o n s ( B r u g m a n , 1 9 8 8 ;

  T a l m y ,

1 9 8 3 ) ,

  v e r b p a r t i c l e s ( L i n d n e r ,

  1 9 8 1 ) ,

  t e n s e   a n d   a s p e c t ( L a n -g a c k e r ,

  1 9 8 7 ) ,

  a n d p r e s u p p o s i t i o n s   ( F a u c o n n i e r ,

  1 9 8 5 ) .

  S o m e

o f   t h e s e c a t e g o r i e s   h a v e   s e e m e d m o r e p r o b l e m a t i c a l   f o r   y o u n g

l a n g u a g e

  l e a r n e r s t h a n l e a r n i n g   t h e   n a m e s   f o r   t h i n g s .

  E v e n

  t o

l e a r n n a m e s , i t h a s b e e n t h o u g h t n e c e s s a r y t o p r o p o s e t h a t

c h i l d r e n

  h a v e

  a b i a s t o a s s u m e t h a t l a b e l s   r e f e r   t o w h o l e o b j e c t s

r a t h e r t h a n   t o   o b j e c t   p a r t s   ( M a r k m a n , 1 9 8 9 ; Q u i n e , 1 9 6 0 ) .   A

s i m i l a r k i n d o f b i a s m a y o p e r a t e w i t h r e s p e c t t o v a r i o u s r e l a -

t i o n a l c o n s t r u c t i o n s .

B r o w n

  ( 1 9 7 3 )   a n d o t h e r s s h o w e d t h a t a n u m b e r o f r e l a t i o n a l

m o r p h e m e s , s u c h  a s t h e   p r e p o s i t i o n s

  i n

 a n d

  o n ,

 a r e   e a r l y a c q u i -

s i t i o n s .

  T h e

  m e a n i n g

  o f

  t h e s e r e l a t i o n a l t e r m s

  i s

  g i v e n

  b y t h e

r e l e v a n t   i m a g e - s c h e m a s , j u s t a s t h e o b j e c t s t h a t e n t e r i n t o t h e

r e l a t i o n s a r e g i v e n b y t h e p e r c e p t u a l p a r s e r . I t i s t r u e t h a t o b -

j e c t s   c a n b e   i d e n t i f i e d o s t e n s i v e l y   i n a w a y  t h a t r e l a t i o n s c a n -n o t . H o w e v e r , b e c a u s e o f i m a g e - s c h e m a t i c a n a l y s e s t h a t

  h a v e

a l r e a d y b e e n c a r r i e d o u t , i t s h o u l d n o t b e

  d i f f i c u l t

  f o r t h e c h i l d

t o l e a r n t h a t   i n  e x p r e s s e s a c o n t a i n m e n t r e l a t i o n o r  o n   a s u p p o r t

r e l a t i o n . T a k e

  f o r

  e x a m p l e

  a

  2 0 - m o n t h - o l d   c h i l d h e a r i n g

  t h e

p h r a s e t h e s p o o n   i n t h e   c u p O n t h e   b a s i s   o f t h e   d a t a   a n d

i m a g e - s c h e m a a n a l y s i s o f c o n t a i n m e n t d i s c u s s e d i n t h e l a s t

s e c t i o n ,   i t c a n b e   a s s u m e d   t h a t   t h e   c h i l d w i l l a l r e a d y h a v e  h a d

m o r e t h a n   a  y e a r ' s e x p e r i e n c e  i n  a n a l y z i n g  o n e   t h i n g  a s  b e i n g  i n

a n o t h e r .

  A

  s i n g l e i m a g e - s c h e m a

  c a n b e

  u s e d

  t o

  j o i n

  t h e t w o

o b j e c t s i n a

  f a m i l i a r

  r e l a t i o n . H e n c e , e v e n t h o u g h   i n  c a n n o t b e

p o i n t e d   t o , i t c a n   n e v e r t h e l e s s  b e  a d d e d   t o t h e   s e m a n t i c s y s t e m .

S u p p o r t   f o r   t h i s v i e w  c a n b e

  f o u n d

  i n t h e   f a c t   t h a t

  i n

 a n d

  o n

 a r e

t h e e a r l i e s t l o c a t i v e t e r m s t o b e a c q u i r e d i n a l l t h e r e l e v a n t

l a n g u a g e s t h a t h a v e b e e n s t u d i e d

  ( J o h n s t o n ,

  1 9 8 8 )   a n d a r e a c -

q u i r e d ( a t l e a s t i n

  E n g l i s h )

  i n v i r t u a l l y e r r o r l e s s f a s h i o n ( C l a r k ,

1 9 7 7 ) .

T h e   d i s t i n c t i o n b e t w e e n   i n   a n d   o n   i s n o t a   p e r c e p t u a l o n e .

T h e

  p e r c e p t u a l s y s t e m m a k e s m a n y

  f i n e

  g r a d a t i o n s w h e r e l a n -

g u a g e s   t e n d

  t o

  m a k e

  c a t e g o r i c a l

  d i s t i n c t i o n s .   L i n g u i s t i c   d i s -

t i n c t i o n s a r e   o f t e n   b i n a r y   o p p o s i t i o n s ,  a n d   w h e n f u r t h e r s u b d i -

v i s i o n s

  a r e

  m a d e t h e y t e n d

  t o b e f e w i n

  n u m b e r . L a n g u a g e s

v a r y

 a s t o   w h e r e t h e y m a k e t h e s e c u t s ,   a n d

  t h e s e

 t h e  c h i l d   m u s t

l e a r n

  f r o m

  l i s t e n i n g

  t o t h e

  l a n g u a g e .

  B u t t h e

  h y p o t h e s i s

  I a m

o p e r a t i n g u n d e r

  i s

 t h a t   h o w e v e r

 t h e

  c u t s

  a r e

  m a d e , t h e y

  w i l l  b e

Page 13: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 13/18

C O N C E P T U A L P R I M I T I V E S

5 9 9

i n t e r p r e t e d w i t h i n

  t h e

  f r a m e w o r k

  o f t h e

  u n d e r l y i n g m e a n i n g s

r e p r e s e n t e d

  b y

  n o n v e r b a l i m a g e - s c h e m a s . T h a t

  i s ,

  s o m e

  o f t h e

w o r k   r e q u i r e d t o m a p   s p a t i a l   k n o w l e d g e o n t o l a n g u a g e h a s a l -

r e a d y   b e e n a c c o m p l i s h e d b y t h e t i m e l a n g u a g e a c q u i s i t i o n b e -

g i n s . C h i l d r e n

  d o n o t

  h a v e

  t o   c o n s i d e r c o u n t l e s s

  v a r i a t i o n s

  i n

m e a n i n g   s u g g e s t e d   b y t h e

  i n f i n i t e

  v a r i e t y   o f   p e r c e p t u a l d i s -

p l a y s

  w i t h w h i c h t h e y   a r e   c o n f r o n t e d ; m e a n i n g f u l   p a r t i t i o n s

h a v e

  a l r e a d y t a k e n p l a c e . S o m e

  o f t h e

  i m a g e - s c h e m a s

  I

  h a v e

b e e n d e s c r i b i n g p r o v i d e r o u g h l y b i n a r y

  d i s t i n c t i o n s ,

  a s i n t h e

c a s e   o f   s e l f -   v e r s u s c a u s e d m o t io n ,   a n d   t h e r e f o r e t a i l o r - m a d e   t o

b e   p r o p o s i t i o n a l i z e d .   O t h e r s a r e n o t b i n a r y o p p o s i t i o n s b u t

r e p r e s e n t f u n d a m e n t a l   c o n c e p t s   i n h u m a n t h i n k i n g , s u c h a s

c o n t a i n m e n t a n d

 s u p p o r t .

 W h a t r e m a i n s  f o r  c h i l d r e n t o d o i s t o

d i s c o v e r h o w t h e i r l a n g u a g e e x p r e s s e s   t h e s e

  p a r t i t i o n s .

T o   t a k e   a n   e x a m p l e   f r o m   B o w e r m a n ( 1 9 8 9 ) , l a n g u a g e s v a r y

a s

  t o h o w t h e y t r e a t c o n t a i n m e n t a n d  s u p p o r t   r e l a t i o n s . E n g l i s h

s p e a k e r s m a k e

  a n

  a l l - p u r p o s e d i s t i n c t i o n b e t w e e n   i n

  a n d

  o n .

T h e s e   m a p   e a s i l y o n t o   t h e   C O N T A I N M E N T  a n d

  S U P P O R T

 i m a g e -

s c h e m a s d e s c r i b e d

  i n t h e

  p r e v i o u s  s e c t i o n .   A c c o r d i n g

 t o

 B o w -

e r m a n , S p a n i s h s p e a k e r s t y p i c a l l y

  u s e

  e n

  f o r

  b o t h

  t h e

  E n g l i s h

m e a n i n g s . T h i s c u t m a y e m p h a s i z e t h e n o t i o n o f s u p p o r t o v e rt h e   n o t i o n   o f  c o n t a i n m e n t ,   b u t i n a n y  c a s e   t h e   l a c k

 o f

 a  d i s t i n c -

t i o n h e r e s h o u l d   n o t  c a u s e y o u n g l a n g u a g e l e a r n e r s  a n y  p a r t i c u -

l a r

  d i f f i c u l t y .

  D u t c h ,   o n t h e   o t h e r h a n d , d i v i d e s   o n   i n t o   t w o

k i n d s   o f   s u p p o r t r e l a t i o n s .   O p   i s   u s e d   t o   e x p r e s s h o r i z o n t a l

s u p p o r t , a s c h a r a c t e r i z e d b y t h e i m a g e - s c h e m a d e s c r i b e d i n

t h e   p r e v i o u s   s e c t io n ,   a s  w e l l  a s t o   e x p r e s s   c e r t a i n   k i n d s   o f   n o n -

h o r i z o n t a l s u p p o r t ,

  a s i n a

  p o s t e r g l u e d

 t o a

  w a l l .  A a n ,   a n o t h e r

t e r m

  f o r   o n ,   i s

  u s e d

  t o

  e x p r e s s

  a

  v a r i e t y

  o f

  o t h e r s u p p o r t r e l a -

t i o n s i n   w h i c h  o n l y p a r t o f a n o b j e c t i s  a t t a c h e d   t o a s u p p o r t i n g

s u r f a c e ,

  a s i n a

  p i c t u r e h a n g i n g

 o n a

  w a l l .

  I

  w o u l d p r e d i c t t h a t

t h i s

  f i n e r d i s t i n c t i o n , d e p e n d i n g a s i t d o e s o n s o m e u n d e r -

s t a n d i n g

 o f   g r a v i t y ,

 m i g h t c a u s e p r o d u c t i o n

  e r r o r s .

 ( S u c h e r r o r s

n e e d n o t o c c u r i n t h e e a r l i e s t u s a g e

 o f

 a t e r m . T o t h e e x t e n t t h a t

c h i l d r e n

  l e a r n c o m m o n l y u s e d ,

  f i x e d

  p h r a s e s

  f o r

  m a n y s i t u a -

t i o n s ,   c o n f u s i o n   a m o n g   t h e   v a r i o u s u s e s   o f

  o n

  m i g h t  n o t b e

e v i d e n t   u n t i l t h e c h i l d a t te m p t s t o d e s c r i b e a n e w s i t u a t i o n . )

I n

  t h e s e t h r e e l a n g u a g e s

  ( a s

  w e l l

  a s

  m a n y o t h e r s ) c o n t a i n -

m e n t   a n d s u p p o r t r e l a t i o n s a r e e x p r e s s e d b y p r e p o s i t i o n s t h a t

a r e   u s e d q u i t e g e n e r a l l y w i t h m a n y  d i f f e r e n t   v e r b s  s o   t h a t c h i l -

d r e n h e a r t h e m

  i n a

  g r e a t m a n y s i t u a t i o n s .

  I n

  a d d i t i o n , u s i n g

t h e p r e p o s i t i o n s a l o n e ( a s c h i l d r e n d o i n t h e o n e - w o r d s t a g e o f

l a n g u a g e

  p r o d u c t i o n )

  i s   o f t e n

  s u f f i c i e n t

  t o

  c o n v e y

  t h e

  a p p r o -

p r i a t e m e a n i n g . T h e r e a r e l a n g u a g e s , h o w e v e r , t h a t   h a v e   n o

a l l - p u r p o s e m o r p h e m e s e q u i v a l e n t

  t o

  E n g l i s h   i n

  o r

  o n

  b u t e x -

p r e s s s p a t i a l m e a n i n g s p r i m a r i l y

  b y

  m e a n s

  o f a

  v a r i e t y

  o f   d i f -

f e r e n t   v e r b s   o f   m o t i o n ( a n d s o m e t i m e s   b y   n o u n s s u c h   a s

  t o p

s u r f a c e

  o r

  i n t e r i o r .

  K o r e a n

  i s o n e o f

  t h e s e l a n g u a g e s ,

  a n d a s

C h o i

  a n d

  B o w e r m a n

  ( 1 9 9 2 )

  d o c u m e n t e d ,  i t   p r e s e n t s   a

  s o m e -

w h a t   d i f f e r e n t   t a s k   f o r t h e   y o u n g l a n g u a g e l e a r n e r .   I n   K o r e a n

t h e r e

  a r e

  v e r b s t h a t m e a n r o u g h l y   t o p u t   i n t o   a

  c o n t a i n e r   o r

  t o

p u t o n a   s u r f a c e ,

  b u t

  a l s o

  a

  v e r b t h a t m e a n s r o u g h l y   o f i t   t i g h t l y

t o g e t h e r   t h a t c u t s a c r o s s   t h e   E n g l i s h u s a g e s   o f   i n   a n d   o n .  M y

i n t e r p r e t a t i o n o f t h i s th r e e - w a y s p l i t i s t h a t t h e l a n g u a g e p r o -

v i d e s a

  d i s t i n c t i o n b e t w e e n t h i n g s g o i n g

  i n o r

  t h i n g s g o i n g

 o n ,

b u t s u p e r s e d e s t h i s   d i s t i n c t i o n   i n t h e c a s e i n w h i c h t h e t h i n g

g o i n g   i n o r o n r e s u l t s i n a t i g h t f i t ( a s i n a   c a s s e t t e   t a p e g o i n g

i n t o i t s c a s e , o r a l i d b e i n g s n a p p e d o n t o a c o n t a i n e r ) . C h o i a n d

B o w e r m a n   n o t e d t h a t t h e s e

  d i s t i n c t i o n s

  d o n o t   g i v e   K o r e a n

c h i l d r e n

  a n y   d i f f i c u l t y ,   i n t h e

  s e n s e t h a t

  t h e

  w o r d

  f o r

  f i t   t i g h t l y

t o g e t h e r

  i s o n e o f t h e f i r s t  w o r d s t h e y l e a r n .

B o w e r m a n

  ( 1 9 8 9 )

  a n d

  C h o i

  a n d

  B o w e r m a n ( 1 9 9 2 ) s u g -

g e s t e d t h a t t h i s k i n d o f e x a m p l e   c a s t s   d o u b t o n

  i n

  a n d

  o n

  a s

p r i v i l e g e d   s p a t i a l   p r i m i t i v e s t h a t   c a n b e   m a p p e d   d i r e c t l y o n t o

l a n g u a g e .   T h e y s u g g e s t e d i n s t e a d t h a t c h i l d r e n m u s t b e s e n s i -

t i v e

  t o t h e s t r u c t u r e o f t h e i r i n p u t l a n g u a g e

  f r o m

  t h e b e g i n n i n g .

A t

  t h e s a m e t i m e , t h e y

  n o t e d

  t h a t h o w c h i l d r e n f i g u r e o u t l a n -

g u a g e - s p e c i f i c   s p a t i a l c a t e g o r i e s r e m a i n s

  a

  p u z z l e . A l t h o u g h

  I

a g r e e t h a t t h e i r

  d a t a

  p r o v i d e s t r o n g e v i d e n c e

  t h a t

  y o u n g c h i l -

d r e n a r e s e n s i t i v e t o t h e s t r u c t u r e o f t h e i r l a n g u a g e f r o m a n

e a r l y   a g e ,

  t h e

  m a p p i n g

  i s

  o n l y

  a

  p u z z l e

  i f o n e

  a s s u m e s t h a t   i n

a n d

  o n

 a r e t h e

 o n l y k i n d s

 o f

 s p a t i a l a n a l y s e s  o f  c o n t a i n m e n t

  a n d

s u p p o r t t h a t   h a v e   b e e n c a r r i e d o u t .

I t   m a y   w e l l   b e   t h a t

  i n

  a n d

  o n

  a p p e a r   a s   e a r l y   a s   t h e y   d o i n

E n g l i s h   b e c a u s e o f t h e i r s t a t u s a s s e p a r a t e m o r p h e m e s , t h e i r

f r e q u e n t   u s a g e ,

  a n d

  t h e i r r e l a t i v e l y s t r a i g h t f o r w a r d m a p p i n g

o n t o t w o s im p l e i m a g e - s c h e m a s . K o r e a n c h i l d r e n i n t h e o n e -

w o r d

  s t a g e c a n n o t

  g e t b y

  w i t h  i n

 a n d

  o n   b e c a u s e t h e s e a l l - p u r -

p o s e m o r p h e m e s d o n o t e x i s t i n t h e i r l a n g u a g e . B e c a u s e c h i l -

d r e n

  a d d   o n l y   a f e w

  w o r d s

  a t a

  t i m e

  i n t h e

  e a r l y m o n t h s

  o f

l a n g u a g e  p r o d u c t i o n , K o r e a n c h i l d r e n e x p r e s s o n l y s o m e

 o f

  t h e

m a n y  u s a g e s t h a t E n g l i s h - s p e a k i n g c h i l d r e n m a n a g e w i t h t h e i r

m o r e g e n e r a l

 i n

 a n d

  o n .

  O n e o f th e   w o r d s t h e y   d o u s e   m e a n s

 t o

f i t   t o g e t h e r   t i g h t l y .   S u c h   a   c o n c e p t   d o e s   n o t   a p p e a r   i n   E n g l i s h

s a m p l e s  o f  e a r l y   s p e e c h , b e c a u s e t h e r e   i s   n o s in g l e m o r p h e m e i n

t h e l a n g u a g e

  t o

  e x p r e s s

  i t .

  H o w e v e r , t h i s d o e s

  n o t

  m e a n t h a t

E n g l i s h

  c h i l d r e n d o n o t   h a v e   s u c h a c o n c e p t u n t i l a l a t e r s t a g e

w h e n

  t h e y b e g i n

  t o

  c o m b i n e s e v e r a l m o r p h e m e s t o g e t h e r .

  I

s u g g e s t t h a t t h i s   i s a n   e a s y w o r d   f o r   K o r e a n c h i l d r e n   t o   l e a r n

b e c a u s e i t s m e a n i n g   r e f l e c t s   t h e k i n d s o f s p a t i a l a n a l y s e s t h a t

p r e v e r b a l   i n f a n t s   e v e r y w h e r e

 a r e

  c a r r y i n g o u t .  T o f i t   t i g h t l y

  ( o r

f o r   t h a t m a t t e r ,  t o f i t   l o o s e l y d o e s   n o t   s e e m   a n   u n d u l y   d i f f i c u l t

n o t i o n

  f o r

  i n f a n t s

  w h o a r e

  e n g a g e d

  i n

  a n a l y z i n g m a n y k i n d s

 o f

c o n t a i n m e n t   a n d

  s u p p o r t

  r e l a t i o n s .

U n f o r t u n a t e l y ,   t h e r e i s n o t y e t a r i c h e n o u g h d a t a b a s e t o p r o -

v i d e   a

  d e f i n i t i v e

  a n s w e r t o t h e c o n c e p t u a l   d i s t i n c t i o n s   c h i l d r e n

h a v e   m a s t e r e d

  b e f o r e

  l a n g u a g e b e g i n s .  T h e

  w o r k

 o f  B a i l l a r g e o n

a n d   h e r  c o l l e a g u e s , d i s c u s s e d e a r l i e r , i n d i c a t e s t h a t   a   g o o d d e a l

o f   a n a l y s i s

  o f

  s u p p o r t r e l a t i o n s

  h a s

  a l r e a d y t a k e n p l a c e

  b y 6

m o n t h s .   A   f u r t h e r   y e a r w i l l e l a p s e b e f o r e   p a r t i c l e s   e x p r e s s i n g

s u p p o r t e n t e r t h e c h i l d ' s v o c a b u l a r y , d u r i n g w h i c h t i m e a g r e a t

m a n y   m o r e d i s t i n c t i o n s

  a r e

  l i k e l y

 t o

 h a v e b e e n c o n c e p t u a l i z e d .

H o w e v e r , i t i s n o t y e t   k n o w n w h e t h e r v a r i o u s k i n d s  o f   h o r i z o n -

t a l s u p p o r t a r e   u n d e r s t o o d

  b e f o r e

  v e r t i c a l s u p p o r t o r t h e a g e a t

w h i c h   i n f a n t s   l e a r n a b o u t   t h e   k i n d s  o f   a t t a c h m e n t n e c e s s a r y   f o r

t h e

  v e r t i c a l s u p p o r t i n d i c a t e d

  b y t h e

  w o r d

  a a n .   B e f o r e

  i t i s

p o s s i b l e

  t o

  m a k e

  d e t a i l e d   p r e d i c t i o n s

 a b o u t

  t h e

  c o u r s e

 o f

  m a s -

t e r i n g D u t c h v e r s u s E n g l i s h i n t h i s r e g a r d , t h e n , m u c h m o r e

d a t a

  a r e

  n e e d e d

  o n

  i n f a n t s ' p r e v e r b a l   c o n c e p t s .   S i m i l a r c o m -

m e n t s   c a n b e   m a d e a b o u t  t h e   c o n c e p t   o f   t i g h t - f i t t i n g n e s s   i n

K o r e a n . B e c a u s e m o s t o f th e e x i s t i n g r e s e a r c h h a s b e e n c o n -

d u c t e d

  b y

  s p e a k e r s

  o f

 l a n g u a g e s t h a t

  d o n o t   h a v e   a

  s i n g l e m o r -

p h e m e e x p r e s s i n g  t i g h t - f i t t i n g n e s s ,   t h e   d e v e l o p m e n t   o f  t h i s c o n -

c e p t   i n

  i n f a n c y

  h a s n o t   e v e n b e g u n   t o b e   i n v e s t i g a t e d . U n t i l

s u c h   r e s e a r c h i s  c a r r i e d   o u t i t w i l l n o t b e

  p o s s i b l e

  t o d e t e r m i n e

w h e t h e r

  a

  g i v e n l a n g u a g e m e r e l y t e l l s

  t h e

  c h i l d

  h o w t o

  c a t e g o -

r i z e  a s e t o f m e a n i n g s t h e c h i l d h a s a l r e a d y a n a l y z e d o r w h e t h e r

Page 14: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 14/18

600

JEAN M. MA N D LER

the language tells the child it is time to carry out new

 percep-

tual analyses.

Containment and supp ort may be more complex than would

at first appear, but they are spatial relations and therefore

clearly re quire spatial analysis. How ever, there are other linguis-

tic categories that are less obviously spatial in character and

even

 more complex, yet in spite of this, they are early linguistic

achievements. One example is linguistic transitivity

 (how

 sub-

jects and objects are marked in transitive clauses, such as  Mary

throws

 the

 ball,

 versus intransitive clauses, such

 as  John

  runs) .

As

 Slobin (1985) discussed,

 linguistic

 transitivity

 is

 among

 the

first notions marked by grammatical morphem es in the acqui-

sition of language. Although it is an abstract lingu istic notion, it

nevertheless

  depends

  on

  concepts

  of

  animacy, inanimacy ,

agency, and cau sality, and I have argued that these concepts also

result  from spatial  analysis. Because  the  relevant  image-sche-

mas occur preverbally, linguistic transitivity should not p resent

the

 young language learner with undue

 difficulty.  One

 might

even argue that language

 ought

  to make some distinctions  be-

tween these notions i f their presence in the infan t's representa-

tional

 system

 is as

 prominent

 as I

 have

 suggested.

 At the

 same

time,

 to the extent that a particu lar language goes beyond pre-

verbal image-schemas one can predict particular kinds of

 diffi-

culties

 in

 early ac quisition.

Slobin  (1985)

 gave

 a

  detailed example

 o f

 this kind

 of

  diffi-

culty

  in the case of transitivity. He pointed out that whether

expressed in the  child's native language by  accusative

  inflec-

tions, direct object markers,

 or

 ergative inflections, m arkin g

 of

transitive  phrases  is  underextended  in  early child  language.

9

The  marking occurs at first only when the child is talking about

an  an ima te agent physically acting on an inanimate object; only

later

 is it extended to less prototyp ical cases of

 transitivity.

 Slo-

bin   referred to  this underextension as children first using the

relevant

 morphemes

 to

 talk about

 a manipulative

 activity

 scene.

This scene requires

 the

 child

 to

 represent

 a

 cluster

 of

 notions,

such as the concepts representing the objects involved, concepts

of phy sical agency involving the hands, and concepts of change

of state or location. Althou gh Slobin suggested that there is no

basis  for proposing  any  particular analysis of this complex o f

notions, they fit remarkably well with the  image-schemas that

were  described earlier.

Thus, one of the earliest grammaticized relational notions

can be characterized as a linguistic redescription of the image-

schemas  I  have  described  for representing  an  animate acting

causally

  on an  inanimate.  It is  particularly interesting that  at

first only

 inanim ate patients

 (such as

 ball)

 are

 given accusative

marking,

 even  when the native language uses distinct accusa-

tive  forms  for

  animate

  and

  inanimate objects. Slobin (1985)

reported that children

 are

 slow

 to

 learn this accusative subdis-

tinction.

 I

 would suggest that

 the difficulty  is due in

 part

 to the

initial

 conception of what an inanimate is: It is something acted

upon  and that does not act by itself. So the child may first

interpret

  the

  accusative marker

  as a

  marker

  for

  inanimacy,

rather than as a  marker for a  patient. This is a case in which

syntactic bootstrapping (Gleitman, 1990; Landau & Gleitman,

1985)

 seems to be required if the child is to realize that it is not

just inanimates that are marked in the abstract role of patient.

These underextension errors are  relatively minor, but indi-

cate tha t a gramm atical notion c om bining several image-sche-

mas in a

 complex

 w ay may

 require some

 trial an d

 error  before

the   particular  set the  language expresses  is

  fully

  mastered.

There are other cases in which a grammatical distinction

matches early image-schemas more exactly. An example is the

distinction

  in

 K orean betw een intransitive verbs involving self-

motion and transitive verbs involving caused

 motion

 (Choi &

Bowerman,

  1992).

  English

  does

  not

 mark these distinctions;

for

  example,

 English

  uses

 th e

  same verb

 to say

 either that

  the

door opened

 o r

 that M ary opened

  the

 door. Korean, however,

uses quite different  verb forms  for these  tw o  cases. Choi  and

Bowerman reported  that

 this

 distinction is respected by

 chil-

dren as soon as they begin to use such w ords; the c hildren they

studied

 never made

 a

 cross-category confusion between these

two types of verbs. Thus, learning this gramm atical distinction

in

 Korean appears

 to be

 comparable

 to the

 ac quisition

 of

 in

 and

on in English; a straightforward match between  the underlying

image-schemas and the  linguistic distinctions makes learning

rapid

 and

  easy.

Another example of a spatial analysis unde rlying a seemingly

nonspatial concept  is that  of possession.  A number o f writers

have

 noted this

 affinity

  (e.g., B rown, 1973; Lyons, 1968). Slobin

(1985) defined  possession  as a locative state  in  which an ani-

mate being enjoys a particu lar socially sanctioned relationship

to an  object. He pointed  ou t that young children m ay not yet

understand

  the

  social aspects

  of

 this concept

  and

  attend pri-

marily  to its locative aspects.  In support  of this  view,  he  cited

Mills

 (1985),

 wh o

 found

 that Germ an c hildren sometimes con-

flate locative and

  possessive functors.

  For

  example, locative

functors such as

 to

 are sometimes used to mark possession, as in

the

 case

 of

 using zu

  to) to

 express both

 going

 to

 and belongs

 to .

Slobin's analysis suggests that this conflation (or

 better,

 under-

extension

 of the adult use of the term) comes about because an

image-schema o f a trajector has not yet been projected into the

social realm. T he earliest m eanin g being expressed by a child

using the locative term to may

 well

 be spatial destination, repre-

sented

 a s END-OF-PATH.  In the

  same

 w ay

 that

  focus on

  BEGIN-

NINO-OF-PATH em phasizes

 the

 animate

 or

 inanimate character

of a

 moving object, focus

 on  END-OF-PATH

 em phasizes

 its

 desti-

nation: In the simplest sense, th e place where an object comes

to

 rest

 is

 where

 it

  belongs.

A too

 comp lex notion

 of

 possessive-

ness  is probably ascribed  to y oung children who pepper their

conversations

 with

  my book, my c hocolate, my watch, re-

gardless  of whose book, chocolate,  or  watch is under discus-

sion. In observing a 2-year-old child exhau stively us e this con-

struction,  it seemed  to me that nothing like possession  in the

adult sense was being claimed; rather, a request for a movement

of

  the item to the child as destination was being expressed.

Indeed, at the  time of these observations  the  child had yet to

learn  the  construction

  Ben's

  book , which might indicate a no-

tion  of possession  closer  to the  full  adult sense  (Deutsch  &

Budwig, 1983).

Slobin

  (1985)

 discussed the acquisition of a large num ber of

nonreferential  grammatical morphemes. A t first glance, man y

of them, such as distinguishing between transitive and intransi-

9

 In

 inflectional accusative languages,

 a

 marker

 is pu t on the

 direct

object in a transitive clause, whereas in ergative languages, transitivity

is marked on the subject noun (the agent).

Page 15: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 15/18

CONCEPTUAL PRIMITIV ES

601

tive activities

 or use of the

 progressive aspect

 of

 verbs,

 not

 only

seem

 impossibly abstract for the

  very

 young child to master,

but

  also

 slightly

 odd.

10

 Of what value  to  communication  or

understanding is it to make

 these

 distinctions? Indeed, some

languages do without them. They may occur in most languages

partly because of analyses that have been carried out by prever-

bal organisms. In any case, when the notions that underlie these

linguistic devices are analyzed in image-schematic terms, some

of

 the linguistic problems facing the child seem more tractable.

This is a serendipitous result of an analysis that was originally

motivated by quite

 a

 different problem, namely, how to account

for the appearance in infancy of concepts such as animacy and

causality.

Perception  an d Concept ion

  Revisited

My  analysis  of  redescription  of  spatial structure into  an

image-schematic  form

  of

 representation

  can

 also account

  for

why it is often difficult to tell whether perceptual or  conceptual

categorization

  is

 occurring

  in  infancy.  The

  relationship

  be-

tween perception

  and

 conception

 has

 long

 been

 an

 arena

 of

argument among psychologists. I have

 tried

  to make a firm

dividing line between the two in order to highlight

 differences

that are often  ignored or glossed over. However, if the earliest

conceptual

 functioning consists of a

 redescription

 of

 percep-

tual structure, there may be no hard and  fast line. The reason

why there

 have

 been so many arguments over whether it is possi-

ble  to separate percepts and concepts is that there are great

similarities between the two, even though they are considered

to

 involve

 different  kinds of processing. For example,

 when

 we

showed

 in my laboratory that

 infants

 respond to a global cate-

gory

 of

 animals

 (J. M.

 Mandler, Bauer,

 &

 McDonough, 1991;

McDonough

 &

 Mandler, 1991), some

 of our

 colleagues tried

 to

convince

 us that this was merely a perceptual

 category—that

 all

animals look more alike than

 they

 look like plants or artifacts.

So what

 we

 were calling

 the

 concept

 of

 animal

 was really

 just

 an

extended child-basic category whose acquisition could be ex-

plained by perceptual factors alone. However, the  perceptual

characteristics of animals are too varied to make such a charac-

terization useful. To be sure, at a high level of description there

are some perceptual commonalities across animals; for exam-

p l e

it can be observed that animals all move by themselves,

even though they move

 in

 physically different  ways.

 Self-mo-

tion, however, is not the same type of description as the parame-

ters that describe movement; on the contrary, it is the concept

of self-movement that relates

 different

  perceptual descriptions

of the motion.  The high-level

  parameters

 of

 motion that

 are

common

 to the hopping of a kangaroo and the gliding of a

shark

 are as yet

 only

 partially known. The perceptual system

may

 make use of such parameters to  form  a broad perceptual

category of

 biological motion,

 but the

 conceptual system con-

structs a simpler notion to express this commonality.

In

 our

 studies (J.

 M.

 Mandler

 &

 Bauer, 1988;

 J. M.

 Mandler,

Bauer, & McDonough, 1991; McDonough & Mandler, 1991) of

the

 development

 of the

 concept

 of

 animals

  we have

 typically

used small plastic models of animals and other objects. In one

of

 our tasks, we put a number of varied animals and vehicles in

front

 of the

 children

 and

 observe

 the way the children

 interact

with

  them. If a child touches the animals in sequence more

often

  than would occur by chance, we say that the child has a

category

 or concept of animals, in the sense that the animals are

seen to be related to each other. However, because the models

do not move one might ask, if movement is the

 basis

 for the

concept of animals why does the child respond systematically

in

 the absence of the cue to the conceptual meaning? Having a

concept

 of

 what

 an

 animal is

 is not the

 same thing

 as identifying

one. There are undoubtedly a number of perceptual

 bases

 used

to

 recognize something

 as an

 animal.

 For

 example, things that

move themselves have appendages of various sorts that are in-

volved

  in the

 movement (legs, wings,

  or fins).

  These shape

characteristics can serve to identify something as an animal in

the absence of movement. Thus, shape is a good identifier of a

categorical

 exemplar, even though shape only specifies what

 the

exemplar looks like, not what it is. Most important, the shapes

of various appendages do not themselves look alike. They are

alike only because they all signify self-motion. If the basis for

sequential touching of animals were merely the physical appear-

ance  of appendages,  it would be  difficult  to understand why

winged creatures are associated with legged and finny ones, but

not with winged airplanes (McDonough & Mandler, 1991).

There is a limit to the usefulness of characterizing knowledge

as perception. It is true that to the extent that concepts are

derived

 from percepts, there must often

 be

 perceptual bases

 for

conceptual

 decisions.

 The

 same image-schema

  can be used to

give a

 brief structural description

  of a

 percept

 or to give a

 brief

description of the meaning of a simple concept. Thus, the

image-schema

 of

  SELF-MOVING

  ANIMATE shown in Graphic 3

can be used to describe in part what a fish looks like as it begins

to swim away or what a cat standing on a mat looks like as it

walks off

 the

 mat.

 The

 details

 of the

 paths vary,

 but

 Graphic

 3

describes their commonality. At the same time, Graphic 3 de-

scribes the conceptual meaning of what has happened in the

two

 situations.

 In

 spite

 of its

 perceptual roots, however,

 what I

have

 been calling the concept of animal brings together a num-

ber

 of diverse perceptual analyses into a more

 abstract

 charac-

terization of what an animal is, that is, what Wellman and Gel-

man (1988) called the nonobvious

 aspects

 of something seen. It

is these nonobvious characteristics that 3-year-olds use concep-

tually

 to differentiate  pictures of statues  from  pictures of ani-

mals they have never seen before  (Massey & Gelman, 1988).

They say such things about a new animal as, It can go by itself

because  it has

 feet, even when

 no  feet  are visible in the  pic-

ture.

11

 Such inferential ability

 (in

 this case,

 the use of

 inheri-

tance properties) is the hallmark of concepts and cannot be

characterized as perceptual knowledge. The claim that I have

made here is

 that

 2- to 3-year-olds can only make such  infer-

ences because they have previously

 formed

 concepts through

10

 Focus

 on an object's

 path, rather than

 its beginning or e n d empha-

sizes the ongoing trajectory

 itself.

 An im age-schema of T R A V E R S A L - O F -

P A T H  could provide the basis for the early understandingof the progres-

sive aspect of

 verbs.

 

The claim that the

 animal

 has

 feet

  is a conceptual

  justification.

Th e actual basis of recognition of the animals versus the statues may be

their different  textures. Massey and

 Gelman

 (1988) reported children

saying such things

 as,

  The statue

 can't go by itself

 because

 it is

 shiny

Smith (1989b)

 made a

 similar

 point about the importance

 of texture

 in

object

 recognition.

Page 16: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 16/18

60 2

J EA N   M .

  HANDLER

the  redescription of perceptual

  information

  into image-sche-

matic

  form.

  The image-schemas allow them to represent the

idea

 of

 animacy, which

 in turn allows the

 inference

 of unseen

appendages.

 It is

 also

 what allows infants  to categorize

 winged

and

  legged

 creatures together.

In

 conclusion, I

 have

 proposed that human

 infants

 represent

information

 from

 an

 early

 age at more than one level of descrip-

tion. The first  level  is the result of a perceptual system

  that

parses and

 categorizes

 objects and object  movement (events). I

assume

  that

  this

  level

 of

 representation

 is roughly

  similar

  to

that

 found

  in

 many

 animal species. In

 addition,

 human  infants

have

  the capacity to

  analyze objects

  and

  events  into

 another

form  of

  representation that,

 while

 still

 somewhat

 perception-

like in character,

 contains

 only  fragments of the information

originally

 processed. The

 information

 in this

 next

 level of repre-

sentation

 is spatial and is represented in analog form  by means

of

 image-schemas.

 These

 image-schemas,

 such as SELF-MOTION

and CONTAINMENT, form  the

 earliest

 meanings

 that

 the

 mind

represents. The capacity to engage in this kind of perceptual

analysis

 allows

 new concepts to be

 formed

  that are not merely

combinations  of  earlier image-schemas;  in this  sense,  it is a

productive system. This

 level of representation allows the

 organ-

ism

 to

 form

  a conceptual system that is

 potentially

 accessible;

that is, it contains the

 information

 that is used to

 form

  images,

to recall, and eventually to plan. A similar

 level

 of representa-

tion apparently exists in

 primates

 as well (Premack, 1983)  and

perhaps

  in other mammals too

  (although

  the

  format  would

presumably vary

 as a

 function

 of the  particulars of the sensory

systems involved). Humans, of course, add still another level of

representation, namely,  language. Whatever the exact

 nature

 of

the step required to go

 from

  image-schemas to language, it may

not be a

 large one,

  at any rate not as large as would be required

to

 move

 directly

 from a

 conceptless organism to a speaking

 one.

References

Armstrong,  S., Gleitman,

 L. R., &

 Gleitman,

  H.

 (1983). What some

concepts might

 not be. Cognition

13, 263-308.

Baillargeon, R. (in  press).  Th e  object concept revisited:  N ew direc-

tions.  In C. E.

 Granrud

  (Ed.),  Visual perception

  and cognition in in-

fancy:

  Carnegie-Mellon

  symposia  on  cognition. Hillsdale,  N J:

  Erl-

baum.

Baillargeon, R .,  DeVos, J., & Graber,  M. (1989). Location memory in

8-month-old

 infants in a non-search A B task: Further evidence. C og-

nitive Developm ent,  4,

 345-367.

Baillargeon,  R., Needham,  A.,

 &

 DeVos,

 J.

 (1991).

 T he development  o f

y o u n g  infants'  intuitions about

  support.  Unpublished manuscript,

University of

 Illinois, Urbana,  IL .

Bates, E., O'Connell, B., & Shore, C. (1987). Language and communica-

tion  in infancy.  In J.

 Osofsky

 (Ed.), Handbook of

  infant

  development

(2nd ed.,  pp . 149-203). N ew

 York:

 Wiley.

Bertenthal,

 B. I. (in

 press). Infants'

 perception of

 biomechanical

  mo-

tions: Intrinsic image

  and

  knowledge-based  constraints.

  In C.

Granrud

  (Ed.),

  Visual perception  an d

 cogn ition

 in infancy:  Carnegie-

Mellon

 symposia on cognition.

 Hillsdale,  NJ: Erlbaum.

Bloom,L.(1970). Language development: Form

 and function in

 emerg-

ing

 grammars.

 Cambridge, MA: MIT Press.

Bonvillian,

 J. D., Orlansky, M. D., &Novack, L. L. (1983). Developmen-

tal milestones: Sign language and motor development. Child Devel-

opmen t ,

 54,1435-1445.

Bowerman, M . (1973). Early syntactic development: Across-linguistic

study with special reference to Finnish. Cambridge, England: Cam-

bridge University Press.

Bowerman,

 M. (1987). Commentary. In B. MacW hinney (Ed.), Mecha-

nisms o f  language acquisition. Hillsdale,  NJ: Erlbaum.

Bowerman, M. (1989). Learning a semantic system: What role do cog-

nitive  predispositions

  play?

  In M. L. Rice  & R. L. Schiefelbusch

(Eds.),

  The teachability  of  language

 (pp.  133-169). Baltimore, M D:

Brookes.

Braine,

  M. D. S., & Rumain,  B. (1983). Logical reasoning.  In P. H.

Mussen (Series Ed.) & J. H. Flavell & E. M. Markman (Vol.

 Eds.),

Handbook

  of

  child

  psychology:

  V o l .

  3.

  Cognitive development.

 New

York: Wiley.

Brown, R.

 (1973).

 A firs t language: T he

 early

 stages. Cambridge, M A:

Harvard University Press.

Bruce,

 V ,

 Burton, M ., Dench,

 N .,

 Hanna,  E., Healey,

 P., &

 Mason, Q

(1991,

 July). Sex discrimination: H ow do we tell the

 difference

  between

male and female faces?Paper

 presented

 at the

 meetingof

 the Experi-

mental Psychology Society, Sussex, England.

Brugm an, C. M. (1988).

 The story o f  over:

 Polysemy,

  semantics

andthe

s tructure

 o f  th e lexicon.

 New York: Garland.

Carey,  S. (1985). C onceptual

  change  in childhood.

  Cambridge,  MA :

MIT Press.

Chambers,

 D,

 &

 Reisberg,

 D.

 (1992). What

 an

 image depicts depends

on  what an image means. C ognitive Psychology,  24,145-174.

Choi,

 S.,

 & Bowerman, M . (1992). Learning to express motion events

in English

 and

  Korean:

 Th e

  influence

 of

  language-specific lexicali-

zation patterns.

 Cognition 41,

 83-121.

Clark,

  E. V  (1977).

 Strategies

  and the

 mapping problem

  in first

 lan-

guage

 acquisition.

  In J.

 Macnamara  (Ed.), Language  learning an d

thought .

 San Diego, C A: Academic Press.

Clark, H. H.

  (1973).

 Space, time, semantics,  and the  child.  In T. E.

Moore (Ed.),

 Co gni t ive development and the acquisition of  language

(pp. 27-63). San Diego, CA: Academic Press.

Cohen, L. B., & \bunger, B . A.

 (1983).

 Perceptual categorization in the

infant. I nE . Scholnick(Ed.), New trends in conceptual representation.

Hillsdale, NJ: Erlbaum.

Deutsch,

 W , &

 Budwig,

 N.

 (1983). Form

 and  function in the develop-

ment

 of

 possessives.

  Papers

 a nd Reports on C h i ld

 Language

 Develop-

ment 22,

 36-42.

Fagan,

 J.

 F, III,

 &

 Singer,

 L. T.

 (1979).

 The

 role

 of

 simple feature differ-

ences  in

  infant

  recognition  of  faces.

  Infant  Behavior and

  Develop-

ment

2, 39-46.

Fauconnier,  G. (1985). Mental  spaces. Cambridge,  MA: MIT  Press.

Fillmore,  C.  (1982). Towards  a  descriptive framework  for  spatial

deixis. In R. J.

 Jarvella

 & W

 Klein (Eds.),

 Speech, place and action.

Ne w

 York: Wiley.

Fodor,  J. (1975).

 Th e language

 of

  thought .

 N ew York: Crowell.

Fodor,  J. (1981). Representations. Cambridge, M A: MIT  Press.

Fox,  N.,  Kagan,  J.,

 &

 Weiskopf,

 S. (1979). The

  growth

  of

  memory

during

 infancy. Genetic Psychology Mo nographs,  99 , 91

 -130.

Freeman,  N .

 H.,

 Lloyd,

 S.,

 & Sinha, C. G. (1980).

 Infant

  search tasks

reveal

 early concepts of containment and canonical usage of objects.

Cogn i t ion , 8 ,

  243-262.

Frye,

  D.,  Rawling,

  P.,

 Moore,

  C., &

 Myers,

  I.

  (1983). Object-person

discrimination

 and

 communication

 at

 3 and 10 months.

  Developmen-

ta l Psychology,  19 , 303-309.

Gelman, R. (1990). First principles organize attention to and learning

about relevant data: Number and the

 animate-inanimate

  distinction

as examples.  Cognitive Science 14,  79-106.

Gleitman,

  L.

 (1990).

  The

  structural source

 of

 word meanings.

  Lan-

guage Acquisition 1,

  3-55.

Golinkoff,

  R. M., &

 Halperin,

 M. S.

 (1983).

 The

 concept

 of

 animal:

On e

 infant's view.

 Infant  Behavior

 an d

  Development,

  6, 229-233.

Greco,  C., Hayne, H.,

 &

 Rovee-Collier,

  C.

  (1990). Roles

 of

  function,

Page 17: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 17/18

CONCEPTUAL PRIMITIVES

603

reminding,

 and variability in categorization by 3-month-old infants.

Journal  o f  Experimental

 Psychology:

 Learning,

  Memory , and

 Cogni -

t ion,

 1 6, 617-633.

Hamad,

  S.

 (1990).

 The

 symbol grounding problem.  Physica  D, 42,

335-346.

Intons-Peterson,

 M.

 J,

 & Roskos-Ewoldsen, B. B.

 (1989). Sensory-per-

ceptual qualities  of  images.  Journal  o f

  Experimental

  Psychology:

Learning, Memory ,  and Cogn i tion ,

 15,188-199.

Intraub, H., & Richardson, M. (1989). Wide-angle memories of close-

up  scenes.  Journal

  of  Experimental

  Psychology: Learning,

  Memory ,

andCogni t ion ,  15,

179-187.

Janowsky,

 J. S. (1985).

 C ognitive

 development and

  reorganization

  after

early

 brain

 injury. Unpublished doctoral dissertation, Cornell Univer-

sity,

 Ithaca,

 NY.

Johnson,

 M.

 (1987). Th e

 body

  in the mind: T he

 bodily

 basis of

 meaning ,

imagination, a nd

 reasoning.

 Chicago: University

 of

 Chicago Press.

Johnson,  M. H.,  & Morton,  J. (1991). Biology

  an d

 co gni t ive  develop-

m e n t : The case of  face  recogni t ion. Oxford, England: Blackwell.

Johnston, J. R. (1988). Children's verbal representation of spatial loca-

tion. In J. Stiles-Davis, M . Kritchevsky, & U. Bellugi (Eds.),  Spatial

cognition: Brain bases

 an d

 development  (pp.

  195-205).

 Hillsdale, N J:

Erlbaum.

Karmiloff-Smith,

  A. (1986). From

  meta-processes

 to  conscious  ac-

cess: Evidence from children's metalinguistic

 and

 repair data.

 Cog-

nition,

 2 3 , 95-147.

Karmiloff-Smith,

  A .

 (1991). Beyond modularity: Innate constraints

and

 developmental change.

 In S.

 Carey

 & R.

  Gelman

  (Eds.), The

epigenesis

  of

  mind:

 Essay s o n

 biology

  and cogni t ion  pp.  171-197).

Hillsdale, NJ:

 Erlbaum.

Keil,

 F. C.

 (1989). Con cepts,  kinds, and  cogni t ive development.  Cam-

bridge, MA: MIT Press.

Kellman, P. J.

 (1988).

 Theories of perception and research in percep-

tual development. In A .

 \bnas

 (Ed.),

  Perceptual

 development  in in-

fancy  (pp.  267-281). Hillsdale,

 N J:

 Erlbaum.

Kellm an, P. J.,

 Gleitman, H.,

  &

 Spelke,

 E. S.

 (1987). Object

 and

  ob-

server  motion

  in the

  perception

  of

 objects

  by

  infants.  Journal  o f

Experimental  Psychology:  Human Perception  an d  Performance,  13 ,

586-593.

Kolstad,  V T.

  (1991, April).

  Understanding

  of containment in

 5.5-

month-old

 infants.  Poster presented at the meeting of the Society for

Research in

 Child Development,

  Seattle, WA.

Kosslyn, S. M.

 (1980). Image a n d mind. Cambridge,

  MA:

  Harvard

University Press.

Lakoff,  G. (1987). W o m e n ,  fire, and dangerous

 things:

 What

  categories

reveal about the mind. Chicago: University

 of

 Chicago Press.

Landau, B. L., & Gleitman, L. R. (1985).  Language and  experience:

Evidence  from  th e blind child. Cambridge,  MA: Harvard University

Press.

Langacker,

 R. (1987). Foundations  oj cognitive grammar Vol.

 1) .

 Stan-

ford,  CA : Stanford University Press.

Leslie,

 A. M.

 (1982).

 The

 perception

 o f

 causality

 in

 infants. Perception,

11,173-186.

Leslie, A.

 (1984).

 Infant

 perception

 of a manual pick-up event. British

Journal

  of

  Developmental Psychology,  2,19-32.

Leslie,

 A. (1988). The

 necessity

 of

 illusion: Perception

 and

 thought

 in

infancy. In L. Weiskrantz

 (Ed.),

 Thought

 without languag e

 (pp.

  185-

210) . Oxford, England: Clarendon.

Lindner,

 S.

 (1981). A

 lexico-semantic

 analysis

 of

 verb-panicle

 construc-

tions with up and out. Unpublished doctoral dissertation, University

of California, San Diego, CA.

Lloyd, S. E., Sinha, C. G., & Freeman, N. H. (1981). Spatial references

systems and the canonicality effect  in infant search.  Journal  of

  Ex-

perimenta l Child Psychology,  32,  1-10.

Lyons,

 J.

 (1968). Existence, location, possession

  and

 transitivity.

 In B.

van

 Rootselaar

  & J. F. Staal

 (Eds.), Logic, methodology

  an d

 philos-

ophy

  of science

 III (pp.  495-504).

 Amsterdam: North-Holland.

Mandler, G.

 (1985).

 C ognitive Psychology. Hillsdale, NJ: Erlbaum.

Mandler, J. M. (1988). How to build a baby: On the development of an

accessible representational system.  Cognitive Development,

 3,

113-

136.

Mandler, J. M.

 (1991).

 Prelinguistic

 primitives. In L. A. Sutton & C.

Johnson

 (Eds.),

 Proceedings

 o f

 the seventeenth

 annual meeting

 of

  th e

Berkeley Linguistics Society  (pp.  414-425).  Berkeley, CA : Berkeley

Linguistics Society.

Mandler, J . M., & Bauer, P . J. (1988). The cradle  of categorization:  Is

the basic level basic? Cognitive Development, 3, 237-264.

Mandler,

  J. M.,

 Bauer,

 P. J., &

 McDonough,

 L.

 (1991). Separating

  the

sheep

  from  the

  goats:

  Differentiating

  global categories.  Cognitive

Psychology,   23 ,

 263-298.

Markman, E. M. (1989). Categorization an d naming in children: Prob-

l ems  o f  induction. Cambridge, MA: MIT Press.

Massey, C. M., & Gelman, R. (1988). Preschoolers' ability to decide

whether a photographed unfam il iar object can move itself.  Develop-

mental  Psychology,  24 , 307-317.

McDonough,

 L.,

 & Mandler, J. M. (1990, April). Verylongterm  recall

 in

two-year-olds.  Poster presented at the meeting of the  International

Conference

 on

  Infant

 Studies,

 Montreal, Canada.

McDonough,

 L.,

 &

 Mandler,

 J. M. (1991,

 June).

  Differentiation

  of

 glob-

ally-defined

  categories

 in 9- and 11-month

 olds.

 Poster presented

  at

the meeting of the American Psychological Society, Washington,

DC.

Medin, D, & Ortony, A.

 (1989).

 Psychological essentialism. In S. V os-

niadou & A .

 Ortony

 (Eds.),

 Similarity an d analogical reasoning  (pp.

179-195). Cambridge, England: Cambridge University Press.

Medin,

  D.

 L.,

 &

 Wattenmaker,

 W D.

 (1987). Category cohesiveness,

theories

 and

 cognitive archeology.

 In U.

 Neisser (Ed.), Concepts and

conceptual developm ent:

 Ecologicaland

 intellectua l factors i n

 categori-

zat ion  (pp.  25-62).  Cambridge, England: Cambridge University

Press.

Meier,

 R. P., &

 Newport,

 E. L.

 (1990).

 Out of the

 hands

 of

 babes:

 On a

possible sign advantage in language acquisition. Language, 66,1-23.

Meltzoff,

  A. N.

 (1988).

  Infant

  imitation

  and

  memory. Nine-month-

olds in

 immediate

  and

 deferred tests. Child Development,

 59, 217-

225.

Michotte,

 A .

 (1963). T he

  perception

  of

  causality.

 London: Methuen.

Mills,

 A. E. (1985). The acquisition of German. In D. I. Slobin

  (Ed.),

The crosslinguistic study  of lan guage acquisi t ion (Vol.

 1).

 Hillsdale,

NJ: Erlbaum.

Myers,

 N. A., Clifton, R. K., & Clarkson, M. G. (1987). When they

were very young: Almost-threes remember two years ago.  Infant

B ehav ior

 a n d

  Development, 10,123-132.

Needham,  A.,

 &

 Baillargeon,

  R. (1991).

 Reasoning about

 support  in

3-month-old

 infants.

  Unpublished manuscript, University

 of

 Illinois,

Urbana, IL.

Nelson, K. (1974). Concept, word, and sentence: Interrelations in ac-

quisition  and development.  Psychological Review,

 81,

 267-285.

Nelson,

  K.

  (1985).

  Making sense: The acquisi t ion

 of

  shared meaning.

San

 Diego, CA: Academic Press.

Oakes, L.

  M.,

 Madole, K.

  L.,

 & Cohen, L. B. (1991). Infants' object

examining:

 Habituation

 and

 categorization.

 C ogni t ive  Development,

6,  377-392.

Palermo,

 D. S.

 (1986). Metaphor:

 A

 portal for viewing

 the

 child's mind.

In

  L. P. Lipsitt  & J. H. Cantor

 (Eds.),

  Experimental  chi ld psycholo-

gist: Essays and experiments in honor

 of Charles

 C . Spiker.

 Hillsdale,

NJ: Erlbaum.

Petitto,

 L. A. (1987). On the autonomy of language and gesture: Evi-

dence from the acquisition of personal

 pronouns

 in

 American Sign

Language.  Cognition, 27,1-52.

Page 18: Mandler_1992_How to Build a Baby_ II. Conceptual Primitives

7/18/2019 Mandler_1992_How to Build a Baby_ II. Conceptual Primitives.

http://slidepdf.com/reader/full/mandler1992how-to-build-a-baby-ii-conceptual-primitives 18/18

604

J EA N

  M. MANDLER

Piaget,

  J.

  (1951) .  Play, dreams, a n d  imitation i n childhood. London:

Regan

 Paul, Trench, &

 Trubner.

Piaget,

  J.

 (1952).

 The origins  of  intelligence in

  children.

 Madison,

  CT :

International Universities Press.

Piaget,  J. (1954). T he

  child's

  construction of  reality.  New  York: Basic

Books.

Piaget,

 J., &

 Inhelder,

 B . (1971). M e n ta l imagery in the child.

 London:

Routledge & Kegan Paul.

Poulin-Dubois, D., & Shultz, T. R. (1988). The development of the

understanding of human behavior: From agency to intentionality. In

J.

 W Astington, P. L. Harris, & D. R. Olson

 (Eds.),

  Developing

 the-

ories

 o f mind  (pp.  109-125).

 Cambridge, England: Cambridge Uni-

versity

 Press.

Premack, D. (1983). The codes of man and beast. The

  Behavioral

 and

Brain Sciences ,

 6,125-137.

Premack, D. (1990). The infant's theory of self-propelled objects. Cog-

nition, 36,1-16.

Quine, W V O . (1960). Word  an d

 object.

 Cambridge,  MA: MIT  Press.

Quinn,

  P, &

 Eimas,

  P.

 (1986).

  On

  categorization

  in

  early  infancy.

Merri l l -Palmer  Quarterly,  32,

 331-363.

Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the

internal structure

 of categories. Co gni t ive Psychology,  7 573-605.

Rovee-Collier, C.

 (1987).

  Learning

 and

  memory

  in

  infancy.

 In J. D.

Osovsky  (Ed.), Handbook

  of

  infant  development (2nd ed.,  pp. 98-

148). New York: Wiley.

Ruff,

 H. A.

 (1986). Components

 o f

 attention during infants' manipula-

tive

 exploration.

 C hi ld Development ,

 57,105-114.

Sameroff,

  A. J., &

  Cavanaugh,

  P. J.

 (1979). Learning

  in  infancy:  A

developmental perspective.  In J. D. Osovsky (Ed.), Handbook o f

  in-

fan t deve lopment

  pp.

 344-392).

 New Y ork:

 Wiley.

Sinclair,

 H.

 (1971). Sensorimotor action patterns

 as a

 condition for

 the

acquisition of syntax. In R. Huxley & E. Ingram

  (Eds.),

 Language

acquisi t ion: M ode ls an d methods

 (pp.

 121-135).

 San

 Diego,

 CA :

 Aca-

demic Press.

Slobin, D.

 (1985).

  Crosslinguistic evidence for the

  language-making

capacity.

 In D. I. Slobin (Ed.), The cro sslinguistic study  of  language

acquisi t ion:

 V o l .

  2. Theoretical

 issues

 (pp.

  1157-1256). Hillsdale,

  NJ:

Erlbaum.

Smith,

  E. E., &

 Medin,

  D. L.

 (1981).

 Categories  an d  concepts.

  Cam-

bridge,

 MA:

 Harvard University Press.

Smith, L. B. (1989a). From global similarities to kinds of similarities:

The construction of dimensions in development. In S. Vosniadou &

A. Ortony

 (Eds.),

 Similarity an d ana log ica l

 reasoning (pp.

  146-178).

Cambridge, England: Cambridge University Press.

Smith,  L. B. (1989b, April). I n  defense of

 perceptual s imi larity .

  Paper

presented at the meeting of the Society for Research in Child Devel-

opment, Kansas City.

Spelke,

 E. S.

 (1976). Infants' intermodal perception

  of

 events.

  C ogn i -

tive Psychology,

  8,

 626-636.

Spelke,  E. S.

  (1985).

  Perception  of

  unity,

  persistence,  and  identity:

Thoughts

 on  infants'

  conceptions

 of

 objects.

  In J.

 Mehler

 & R. Fox

(Eds.),  Neonate cogni t ion: Beyond  th e blooming buzzing  confusion.

Hillsdale, NJ:

 Erlbaum.

Spelke, E. S. (1988). Where perceiving ends and thinking begins: The

apprehension

  of

  objects

  in

  infancy.

  In A. Yonas (Ed.),

  Perceptual

development in

 infancy

  (pp.  197-234). Hillsdale,  N J: Erlbaum.

Stewart,

 J .

 (1984, November).

 Object

  motion

 and the

 perception

  ofani-

macy .

 Paper presented at the meeting of the Psychonomic Society,

Sa n Antonio, TX.

Strauss,

  M. S.

 (1979). Abstraction

  of

  prototypical information

 by

adults  and 10-month-old

  infants.  Journal

  of  Experimental

  Psychol-

ogy: Human Learning an d M e m o r y ,  5, 618-632.

Sugarman,

  S.

 (1987).

 Piaget's  construction of  th e  child's  reality.

  Cam-

bridge, England: Cambridge University Press.

Sweetser,  E. (1990). From etymology to pragmatics: Metaphorical  an d

cultural  aspects o f  semantic structure. Cambridge, England: Cam-

bridge

 University Press.

Talmy, L. (1983). How language structures space. In H. L. Pick, Jr. &

L. P. Acredolo

 (Eds.), Spatial o r ientat ion: Theory ,  research,  andappli-

ca t i on .

 New

 \brk:

 Plenum Press.

Talmy,

 L. (1985). Force dynamics in language and thought. In W H.

Eilfort, P. D. Kroeber, & K. L . Peterson

  (Eds.),

 Papers from t he

 para-

ses s ion o n

 causatives

 and age ntivity at the  twenty-first

  regional

 meet-

ing. Chicago: Chicago Linguistic Society.

Talmy, L. (1988). Force dynamics in language and cognition.

 Cogni t ive

Science,

 12 ,

 49-100.

Traugott, E. C. (1978). On the expression of spatio-temporal relations

in language. In J. H. Greenberg(E d-), Universals  of human language:

Vol3.  Word structure (pp.  369-400).

 Stanford,

 C A:

 Stanford Univer-

sity Press.

Wagner,

 S.,

 Winner, E., Cicchetti, D., & Gardner, H. (1981).  Metaphor-

ical mapping in human  infants. Child Development , 52, 728-731.

Watson,

  J.

 (1972). Smiling,

  cooing, and

  the

  game. Merri l l -Palmer

Quarterly,  18 , 323-340.

Wellman, H. M .,

 &Gelman,

 S. A.

 (1988). Children's understanding

 of

the

 nonobvious.

 In R.

 Sternberg

 (Ed.),

 Advances

 in the psy chology

  o f

intelligence

  Vol. 4). Hillsdale, NJ: Erlbaum.

Werner,

 H.,

 & Kaplan, B . (1963). Symbol fo rmat ion .  N ew York: Wiley.

Wilson, N . (1986). A n

  implementation

 and perceptual tes t  of  a

 princi-

pled model of

 biological

 motion. Unpublished

 master's

 thesis, Univer-

sity of Pennsylvania, Philadelphia, PA .

Received

 January

 24,1991

Revision

 received November

 19,1991

Accepted December 4,1991  •