42
* * Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Cont Structural Dynamics & Vibration Cont rol Lab. rol Lab. Korea Advanced Institute of Science & Technology Free Vibration Analysis of Non-Proportionally Damped Structures with Multiple or Close Frequencies Tokyo Univ.-KAIST Tokyo Univ.-KAIST 1st Bilateral Seminar on Construction Technology 1st Bilateral Seminar on Construction Technology KAIST, September 28-29, 1998 KAIST, September 28-29, 1998

*Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Embed Size (px)

Citation preview

Page 1: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

**Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and

In-Won LeeIn-Won Lee Structural Dynamics & Vibration Control Lab.Structural Dynamics & Vibration Control Lab. Korea Advanced Institute of Science & Technology

Free Vibration Analysis of Non-Proportionally Damped Structures with Multiple or Close Frequencies

Tokyo Univ.-KAIST Tokyo Univ.-KAIST

1st Bilateral Seminar on Construction Technology1st Bilateral Seminar on Construction TechnologyKAIST, September 28-29, 1998KAIST, September 28-29, 1998

Page 2: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

2

Problem Definition

Proposed Method

Numerical Examples

Conclusions

OUTLINE

Page 3: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

3

PROBLEM DEFINITION

Dynamic Equation of Motion

)()()()( tftuKtuCtuM

M

C

K)(tu

)(tf

(1)

where : Mass matrix, Positive definite

: Damping matrix

: Stiffness matrix, Positive semi-definite

: Displacement vector

: Load vector

Page 4: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

4

Methods of Dynamic Analysis Step by step integration method Mode superposition method

Mode Superposition Method Free vibration analysis should be first performed.

Page 5: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

5

Condition of Proportional Damping

Example : Rayleigh Damping

CMKKMC 11

KMC

(2)

Page 6: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

6

Eigenproblem of proportional damping systems

where : Real eigenvalue

: Natural frequency

: Real eigenvector(mode shape)

Low in cost Straightforward

niMK iii ,,2,1 (3)

2ii

ii

Page 7: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

7

Quadratic eigenproblem of non-proportionally damped systems

niKCM iiiii ,,2,102 (4)

where : Complex eigenvalue

: Complex eigenvector(mode shape)i

i

Page 8: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

8

niBA iii 2,,2,1 (5)

: Complex Eigenvector (6)

ii

ii

where

An efficient eigensolution technique of An efficient eigensolution technique of non-proportionally damped systems is required.non-proportionally damped systems is required.

: Complex Eigenvalue

Very expensive

M

KA

0

0

0M

MCB

i

Page 9: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

9

Current Methods for Solving the Non-Proportionally Damped Eigenproblems

Transformation method: Kaufman (1974)

Perturbation method: Meirovitch et al (1979)

Vector iteration method: Gupta (1974; 1981)

Subspace iteration method: Leung (1995)

Lanczos method: Chen (1993)

Efficient Methods

Page 10: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

10

PROPOSED METHOD Find p Smallest Eigenpairs

p 21

iii BA Solve

ijjTi B Subject to

For i iand pi ,,2,1

: multiple or close roots

BA

pT IB

where

p ,,, 21

pdiag ,,, 21

If p=1, then distinct root

Page 11: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

11

Relations between and Vectors in the Subspace of

BA

p ,,, 21

pdiag ,,, 21 where

X

(7)

(8)

(9)

XZ

pT IBXX

Let be the vectors in the subspace of and be orthonormal with respect to , then

pxxxX ,,, 21

(10)

(11)

BX

Page 12: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

12

ZDZ

where AXXdddD Tp ,,, 21 : Symmetric

Let (13)

Introducing Eq.(10) into Eq.(7)

BXZAXZ (12)

BXDZAXZ

BXDAX

or piBXdAx ii ,,2,1

Then

or

(14)

(15)

(16)

Page 13: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

13

Multiple or Close Eigenvalues

Multiple eigenvalues case : is a diagonal matrix.

Eigenvalues :

Eigenvectors :

Close eigenvalues case : is not a diagonal matrix. Solve the small standard eigenvalue problem.

Get the following eigenpairs.

Eigenvalues :

Eigenvectors :

ZDZ

D

D

XZ

DX

(13)

(10)

Page 14: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

14

pidXBxA ki

kki ,,2,10)1()1()1(

pkTk IXMX )1()1( )(

(17)

(18)

)()()1( ki

ki

ki ddd

)()()1( ki

ki

ki xxx

)1()1(2

)1(1

)1( ,...,, kp

kkk xxxX

,)(kid )(k

ix

where

: unknown incremental values

(19)

(20)

(21)

Newton-Raphson Technique

Page 15: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

15

)()()()( ki

kki

ki dXBAxr where : residual vector

)()()()()()( ki

ki

kki

kii

ki rdBXxBdxA

0)( )()( ki

Tk xBX

(22)

(23)

Introducing Eqs.(19) and (20) into Eqs.(17) and (18) and neglecting nonlinear terms

Matrix form of Eqs.(22) and (23)

pi

r

d

x

X

BXBdA ki

ki

ki

Tk

kkii

,,2,1

00B)(

)(

)(

)(

)(

)()(

(24)

Coefficient matrix : • Symmetric• Nonsingular

Page 16: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

16

pi

r

d

x

X

BXBdA ki

ki

ki

Tk

kkii

,,2,1

00B)(

)(

)(

)(

)(

)()(

Coefficient matrix : • Symmetric• Nonsingular

(24)

Introducing modified Newton-Raphson technique

00B)(

)(

)(

)(

)(

)()0( ki

ki

ki

Tk

kii r

d

x

X

BXBdA

)()()1( ki

ki

ki ddd

)()()1( ki

ki

ki xxx

(25)

(20)

(19)

Modified Newton-Raphson Technique

Page 17: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

17

Algorithm of Proposed Method

Step 2: Solve for and )(kid

00B)(

)(

)(

)(

)(

)()0( ki

ki

ki

Tk

kii r

d

x

X

BXBdA

Step 3: Compute)()()1( k

ik

ik

i ddd

)()()1( ki

ki

ki xxx

Step 1: Start with approximate eigenpairs ,)0(X )0(D

,)()0( kiix pid k

iii ,,2,1)()0(

)(kix

Page 18: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

18

Step 4: Check the error norm.

Error norm =

If the error norm is more than the tolerance, then go to Step 2 and if not, go to Step 5.

Step 5: Check if is a diagonal matrix, go to Step 6, if not, go to Step 7.

2

)(2

)()()(

ki

ki

kki

xA

dXBxA

D

Page 19: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

19

Step 7: Close case Step 6: Multiple case

XD

Go to step 8. Go to step 8.

ZDZ

XZ

Step 8: Check the error norm.

piA

BA

i

iii,,1

2

2

Error norm =

Stop !

Page 20: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

20

Initial Values of the Proposed Method

Intermediate results of the iteration methods Vector iteration method Subspace iteration method

Results of the approximate methods Static Condensation method Lanczos method

Page 21: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

21

NUMERICAL EXAMPLES Structures

Cantilever beam(distinct) Grid structure(multiple) Three-dimensional framed structure(close)

Analysis Methods Proposed method Subspace iteration method (Leung 1988) Lanczos method (Chen 1993)

Page 22: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

22

Comparisons Solution time(CPU) Convergence

Convex with 100 MIPS, 200 MFLOPS

Page 23: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

23

Cantilever Beam with Lumped Dampers (Distinct Case)

1 2 3 4 99 100 101

C

5

Material PropertiesTangential Damper :c = 0.3

Rayleigh Damping : = = 0.001

Young’s Modulus :1000

Mass Density :1

Cross-section Inertia :1

Cross-section Area :1

System DataNumber of Equations :200

Number of Matrix Elements :696

Maximum Half Bandwidths :4

Mean Half Bandwidths :4

Page 24: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

24

Proposed MethodMode

Number

Error Norm ofStarting Eigenpair(Lanczos method)

Number ofIterations

Eigenvalue Error Norm

12345678910

0.234069E-030.234069E-030.192793E-030.192793E-030.148072E-040.148072E-040.619329E-020.619329E-020.377004E+000.377004E+00

1111111111

-2.57457 + j 3.17201-2.57457 - j 3.17201-1.53800 + j 18.3566-1.53800 - j 18.3566-1.69581 + j 39.6477-1.69581 - j 39.6477-2.43492 + j 61.0104-2.43492 - j 61.0104-3.78360 + j 82.3222-3.78360 - j 82.3222

0.232258E-070.232258E-070.428428E-090.428428E-090.727353E-100.727353E-100.204824E-100.204824E-100.997372E-070.997372E-07

Results of Cantilever Beam Structure (Distinct)

Page 25: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

25

Method CPU time in seconds Ratio

Proposed method(Lanczos method + Iteration scheme)

Subspace Iteration Method

76.10(10.42 + 65.64)

100.94

1.00

1.33

CPU Time for 10 Lowest Eigenpairs, Cantilever Beam

Page 26: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

26

2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 11 0

N u m b er o f G en era ted L a n czos V ecto rs

1 .0 E -8

1 .0E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0E + 0E

rror

Nor

m

E rror L im it

Convergence by Lanczos method(Chen 1993)Cantilever beam (distinct)

Starting values of proposed method

: 1st, 2nd eigenpairs : 3rd, 4th eigenpairs : 5th, 6th eigenpairs : 7th, 8th eigenpairs : 9th, 10th eigenpairs

Page 27: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

27

1 2 3 4 5

Itera tio n N u m b er

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Convergence of the 1st eigenpairCantilever beam (distinct)

: Proposed Method : Subspace Iteration Method (q=2p)

Page 28: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

28

1 2 3 4 5 6 7 8 9

Ite ra tio n N u m b er

1 .0 E -11

1 .0E -1 0

1 .0E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rror L im it

Convergence of the 5th eigenpairCantilever beam (distinct)

: Proposed Method : Subspace Iteration Method (q=2p)

Page 29: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

29

Grid Structure with Lumped Dampers (Multiple Case)

Material Properties

Tangential Damper :c = 0.3

Rayleigh Damping : = = 0.001

Young’s Modulus :1,000

Mass Density :1

Cross-section Inertia :1

Cross-section Area :1

System Data

Number of Equations :590

Number of Matrix Elements :8,115

Maximum Half Bandwidths :15

Mean Half Bandwidths :[email protected]=10

[email protected]=

10

Page 30: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

30

Proposed MethodMode

Number

Error Norm ofStarting Eigenpair(Lanczos method)

Number ofIterations

Eigenvalue Error Norm

123456789101112

0.467621E-070.325701E-050.467621E-070.325701E-050.170965E-060.823644E-060.170965E-060.823644E-060.250670E-040.786392E-000.250670E-040.786392E-00

010100001111

-0.09590 + j 8.66792-0.09590 + j 8.66792-0.09590 - j 8.66792-0.09590 - j 8.66792-0.60556 + j 15.5371-0.60556 +j 15.5371-0.60556 - j 15.5371-0.60556 - j 15.5371-0.57725 + j 20.7299-0.57725 + j 20.7299-0.57725 - j 20.7299-0.57725 - j 20.7299

0.467621E-070.805278E-100.467621E-070.805278E-100.170965E-060.823644E-060.170965E-060.823644E-060.344167E-100.432693E-090.344167E-100.432693E-09

Results of Grid Structure (Multiple)

Page 31: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

31

Method CPU time in seconds Ratio

Proposed method(Lanczos method + Iteration scheme)

Subspace Iteration Method

872.67(214.28 + 658.39)

3,096.62

1.00

3.55

CPU Time for 12 Lowest Eigenpairs, Grid Structure

Page 32: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

32

24 3 6 4 8 6 0 7 2 84 96 10 8

N u m b er o f G en era ted L a n czos V ec to rs

1 .0 E -10

1 .0E -9

1 .0E -8

1 .0 E -7

1 .0E -6

1 .0 E -5

1 .0 E -4

1 .0E -3

1 .0 E -2

1 .0E -1

1 .0E + 0E

rror

Nor

m

E rro r L im it

Convergence by Lanczos method(Chen 1993)Grid structure (multiple)

: 1st, 3rd eigenpairs : 2nd, 4th eigenpairs : 5th, 7th eigenpairs : 6th, 8th eigenpairs : 9th, 11th eigenpairs : 10th, 12th eigenpairs

Starting values of proposed method

Page 33: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

33

Convergence of the 2nd eigenpairGrid structure (multiple)

: Proposed Method : Subspace Iteration Method (q=2p)

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 1 4 1 5

Itera tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Page 34: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

34

Convergence of the 9th eigenpairGrid structure (multiple)

: Proposed Method : Subspace Iteration Method (q=2p)

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 4 1 4 3 4 5 4 7 4 9

Itera tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Page 35: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

35

Three-Dimensional Framed Structure with Lumped Dampers(Close Case)

[email protected]=6.02

6@3=

18

2@3=6

[email protected]=18.06

12@3=

36

Page 36: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

36

Material Properties

Lumped Damper :c = 12,000.0

Rayleigh Damping : =-0.1755 = 0.02005

Young’s Modulus :2.1E+11

Mass Density :7,850

Cross-section Inertia :8.3E-06

Cross-section Area :0.01

System Data

Number of Equations :1,128

Number of Matrix Elements :135,276

Maximum Half Bandwidths :300

Mean Half Bandwidths :120

Page 37: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

37

Proposed MethodMode

Number

Error Norm ofStarting Eigenpair(Lanczos method)

Number ofIterations

Eigenvalue Error Norm

123456789101112

0.579542E-060.579542E-060.567549E-060.567549E-060.929150E-050.929150E-050.767207E-030.767207E-030.910611E-000.910611E-000.920451E-000.920451E-00

00001133

11111111

-0.13763 + j 3.08907-0.13763 - j 3.08907-0.13803 + j 3.09109-0.13803 - j 3.09109-3.52574 + j 2.20649-3.52574 - j 2.20649-0.24236 + j 4.16556-0.24236 – j 4.16556-1.64294 + j 7.02958-1.64294 - j 7.02958-1.65070 + j 7.03590-1.65070 - j 7.03590

0.579542E-060.579542E-060.567549E-060.567549E-060.421992E-090.421992E-090.614880E-060.614880E-060.624657E-060.624657E-060.660196E-060.660196E-06

Results of Three-Dimensional Framed Structure (Close)

Page 38: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

38

Method CPU time in seconds Ratio

Proposed method(Lanczos method + Iteration scheme)

Subspace Iteration Method

8,335.20(918.15 + 7417.05)

9,644.75

1.00

1.16

CPU Time for 12 Lowest Eigenpairs, 3-D. Framed Structure

Page 39: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

39

Convergence by Lanczos method(Chen 1993)3-D. framed structure (close)

: 1st, 2nd eigenpairs : 3rd, 4th eigenpairs : 5th, 6th eigenpairs : 7th, 8th eigenpairs

: 9th, 10th eigenpairs : 11th, 12th eigenpairs

Starting values of proposed method

2 4 3 6 4 8 6 0 7 2 8 4 96 10 8

N u m b er o f G en era ted L a n czos V ecto rs

1 .0 E -8

1 .0E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0E + 0E

rror

Nor

m

E rror L im it

Page 40: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

40

Convergence of the 9th eigenpair3-D. framed structure (close)

: Proposed Method : Subspace Iteration Method (q=2p)

1 3 5 7 9 1 1 1 3 1 5 1 7 19 2 1 23 2 5 27 2 9

Ite ra tio n N u m b er

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0E -2

1 .0E -1

1 .0 E + 0E

rror

Nor

m

E rror L im it

Page 41: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

41

CONCLUSIONS

The proposed method is simple guarantees numerical stability converges fast.

An efficient Eigensolution technique !

Page 42: *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and *Man-Cheol Kim, Hyung-Jo Jung, Sun-Kyu Park and In-Won Lee In-Won Lee Structural Dynamics & Vibration Control

Structural Dynamics & Vibration Control Lab., KAIST, Korea

42

Thank you for your attention.