37
 unit time Magnetostatics; Faraday's Law; Quasi-Static Fields Reading:  Jackson 5.1 through 5.12, 5.15 through 5.18 Review of basic magnetostatics (i.e., cases with steady currents): There are no magnetic monopoles. Magnetic-flux density (or, magnetic induction) is produced by currents. Continuity eqn: In magnetostatics, is current density:  amount of positive charge crossing unit area per Biot-Savart Law:  A current I flowing along a differential length yields a differential flux density element at position (points from length element to observation point): 1

Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Embed Size (px)

Citation preview

Page 1: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

 unit time

Magnetostatics; Faraday's Law; Quasi­Static Fields

Reading:  Jackson 5.1 through 5.12, 5.15 through 5.18

Review of basic magnetostatics (i.e., cases with steady currents):

There are no magnetic monopoles.

Magnetic­flux density (or, magnetic induction) is produced by currents.

Continuity eqn:

In magnetostatics,

is current density:  amount of positive charge crossing unit area per 

Biot­Savart Law:  A current I flowing along a differential lengthyields a differential flux densityelement at position (points

from length element to observation point):

1

Page 2: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Force on an element of current:

Torque on a magnetic dipole:

For a distribution of current with density exposed to an external

Biot­Savart:

Since

2

Page 3: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Vector identity:

3

Page 4: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Vector identity:

=>

4

Page 5: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

in magnetostatics

= 0 for a localized current dist

5

Page 6: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Consider an open surface S bounded by a closed curve C.

Stokes's Thm  => (Ampère's Law)

The Vector Potential  (Jackson sec 5.4)

We want to solve the eqns of magnetostatics:

If in the region of interest, then we can introduce a magneticscalar potential 

M and  In this case, we can use the

techniques of electrostatics for solving Laplace's eqn (more later).

More generally,

is the “vector potential”.

6

Page 7: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

From Jackson 5.16 (or, p 3 of lecture notes),

[2nd term is OK since

is called a “gauge transformation”.

We can use gauge transformations to yield a convenient form for

Coulomb gauge:

(each Cartesian component of satisfies Poisson's eqn)

7

Page 8: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

for all space if the current dist is localized (from slides 4 and 5)

=>   = const   for Coulomb gauge applied to all space

Analogous to scalar potential for all space:

8

Page 9: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

A Circular Current Loop  (Jackson sec 5.5)

'

r

x

y

zThe loop has radius a, lies in the x­y plane, is centered on the origin, and carries current I.

Spherical coords:

9

Page 10: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Cylindrical symmetry  =>  freedom to place observation point in                                             the x­z plane ( = 0)

10

Page 11: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

11

Page 12: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Recall electric dipole fields:

=>  magnetic field has dipole character,                     with magnetic dipole moment

12

Page 13: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Next, consider the magnetic induction far from a localized, arbitrarycurrent dist  (Jackson sec 5.6).

So, each Cartesian component is

13

Page 14: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

To further simplify, we first derive a useful result.  Supposeare arbitrary functions and is localized

(but not necessarily divergenceless).

for a localized current dist

Now, take  f = 1,  g = xi',  and impose

14

=>

Page 15: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

= 0 = 0

15

Page 16: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Likewise for  i = 2, 3

(2)

16

Page 17: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Define the magnetic moment density, or magnetization, as

magnetic moment

Using lots of identities on the cover of Jackson, and with= a unit vector along

17

Page 18: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

=3 =0 =0

This has the same form as the field due to an electric dipole:

So, any localized current dist produces a dipole magnetic induction tofirst order at large distances.

18

Page 19: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

If the current is restricted to a single plane loop (of arbitrary shape),then

height of triangle

points ⊥ to the plane (use right hand rule with                                                                   current)

x' = base length

= area of triangle

Note that the circular current loop discussed earlier is a specific case ofthis general result (see slide 12).

19

Page 20: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Force and torque on (and energy of) a localized current distribution inan external magnetic induction (Jackson sec 5.7)

Brief mathematical prelude on the Levi­Civita tensor ijk

ijk

  =  1    for   i, j, k  =  1, 2, 3

­1    for   i, j, k  =  1, 3, 2  

2, 3, 13, 1, 2

2, 1, 33, 2, 1

0     otherwise  (i.e., for 2 or more indices equal)

For example, take i=1:

20

Page 21: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

kth component of the induction:

ith component of force:

= 0 for steady, localized current dist                                      (see slide 15)

Eq (2) on slide 16:

21

Page 22: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

For example,

(from Jackson cover;   explicitly verified                 on next page)

=>

22

Page 23: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Explicit verification, for i=1:

So, to get the lowest­order force on a current dist due to an external1) Pick an origin within the dist,  2) Compute wrt that origin,3) Take the derivative 4) Evaluate at the origin.

23

Page 24: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Torque:

Since the second integral is

Recall eq 1 on slide 14:

On top of slide 22, we found

to lowest order

24

Page 25: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Potential energy of a permanent magnetic dipole in an external induction:

Also,

25

SP 5.1—5.5 

Page 26: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Macroscopic Equations and Boundary Conditions  (Jackson sec 5.8)

Magnetic dipole moment of matter comes from  1) current of electronsand  2) intrinsic magnetic moments of atoms.

As with electrostatics, averaging of the microscopic eqns yields themacroscopic eqns:

(only free current is included here)

is called the “magnetic field”.

is the magnetization, i.e., dipole moment per                                                      unit volume)

effective current density

For linear, isotropic, paramagnetic and diamagnetic materials,

( is called the “magnetic permeability”)

26

(Jackson p. 192; analogous to electrostatic development in Topic 4, slides 8                                                                                                                  through 10)

Page 27: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

More complicated for ferromagnetic materials, where dependson history and may be non­zero even for zero applied induction.

Boundary conditions:

= free surface current density

First eqn yields

If 1 ≫ 

2, then has a much larger normal than tangential

component (as long as is not huge)  => is normal to theboundary surface, just as an external electric field is at a conducting surface.

(i.e., current per unit transverse length)

27

Page 28: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Magnetic Boundary­Value Problems when (Jackson sec 5.9)

For linear media  =>

If  is piecewise constant, then

in each region of constant .

For “hard ferromagnets”, is fixed (doesn't depend on applied field).

where the effective magnetic­charge density

28

(magnetic scalar potential)

Page 29: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

If there are no boundary surfaces, then in analogy with electrostatics

If is well­behaved and localized, then integration by parts yields

Far from the region of non­vanishing magnetization,

= magnetic dipole moment

Suppose is discontinuous: inside the ferromagnet andoutside.

29

Page 30: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Gaussian pillbox straddling the surface:

= outwardly­directed normal

“Magnetic charge” inside

=>  effective magnetic surface­charge density

30

SP 5.6

Page 31: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Faraday's Law    (Jackson sec 5.15)

If a closed curve C bounds surface S, then

where is the electric field at in its rest frame.  The time derivativeis a total derivative, accounting both for time variations in andmotion of the loop in space.

Adopting the rest frame of the loop:

This generalizes for static fields to the dynamic case.

is called the “electromotive force”  (emf)

31

Page 32: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Magnetic Field Energy    (Jackson sec 5.16)

The work done to generate the currents that yield a static magnetic field is

For a linear medium,

For a localized current distribution,

32

Page 33: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Inductance    (Jackson sec 5.17)

Consider N current­carrying circuits (the ith one has current Ii) in vacuum.

with

33

Page 34: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

(“self­inductance”)

(“mutual inductance”)

34

If the circuits are negligibly thin, then

=  magnetic flux in i due to field produced by j, divided by         current in j

Similarly for self­inductance.

SP 5.7, 5.8

Page 35: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Quasi­static Magnetic Fields in Conductors     (Jackson sec 5.18) 35

Suppose the variation in is sufficiently slow that dominatesover the induced

Conductor: ( = conductivity)

Faraday's Law:

In cases of negligible free charge, the variation ofis the only source of

Consider a medium with uniform and frequency­independent permeability  and frequency­independent conductivity .

Page 36: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Ampère's Law:

Adopt Coulomb gauge:

36

(diffusion eqn)

Taking time derivative:

(diffusion eqn again)

Page 37: Magnetostatics; Faraday's Law; QuasiStatic Fieldsphysics.gmu.edu/~joe/PHYS685/Topic5.pdf · => magnetic field has dipole character, ... to electrostatic development in Topic 4, slides

Suppose the field initially varies on a spatial scale ~ L

If the timescale for field decay is , then

Or, if the conductor is subjected to external fields that vary withfrequency  = ­1, then the fields penetrate into the conductor to a distance

37