45
1 0.0 0.5 1.0 780 790 800 -0.05 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY + X ray absorption, XA + X ray magnetic circular dichoism, XMCD + X ray magnetic linear dichroism, XMLD + X ray magnetic microscopy + Magnetization Dynamics Elke Arenholz, Advanced Light Source E. Arenholz et al., Appl. Phys. Lett. 93 , 162506 (2008) 3 µm [100] E NiO Co NiO Co C. Boeglin et al., Nature 465, 458 (2011) Co 0.5 Pd 0.5 Co Co Co CoO 780 790 800 photon energy (eV) XA (arb. units) CoO_Co.opj 0.0 0.5 1.0 780 790 800 -0.5 0.0 photon energy (eV) XA (arb. units) FeCo_GaAs_XMCD.opj XMCD (arb. units)

MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

1

0.0

0.5

1.0

780 790 800-0.05

0.00

0.05

photon energy (eV)

XA (a

rb. u

nits

)XM

LD(a

rb. u

nits

)

Fe

Co_G

aAs_

XMLD

.opj

MAGNETIC SPECTROSCOPY

+ X ray absorption, XA

+ X ray magnetic circular dichoism, XMCD

+ X ray magnetic linear dichroism, XMLD

+ X ray magnetic microscopy

+ Magnetization Dynamics

Elke Arenholz, Advanced Light Source

E. Arenholz et al., Appl. Phys. Lett. 93, 162506 (2008)

3 µm

[100]

ENiO

Co

NiO

Co

C. Boeglin et al., Nature 465, 458 (2011)

Co0.5Pd0.5

Co

Co

Co

CoO

780 790 800photon energy (eV)

XA (a

rb. u

nits

)

Co

O_C

o.op

j 0.0

0.5

1.0

780 790 800-0.5

0.0

photon energy (eV)

XA (a

rb. u

nits

)

FeCo

_GaA

s_XM

CD.o

pj

XMCD

(arb

. uni

ts)

Page 2: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

2

X-RAY ABSORPTION – THE SIMPLEST X RAY TECHNIQUE

X-ray absorption: + Electrons excited from core shells to unoccupied valence states

through the absorption of a photon determined by energy and angular momentum conservation

Experiment/Measurement:Reduction in x ray flux transmitted through a sample.

Simplest model: One electron picture+ Photon transfers its energy and momentum to core electron + Core electron excited into unoccupied electronic state.

+ However: Not directly excited electrons also influenced by electronexcitation, i.e. hole in core shell

Page 3: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

3

Configuration model, e.g. L edge absorption :

+ Atom is excited from ground/initial state configuration, 2p63dn

to exited/final state configuration, 2p53dn+1

+ Omission of all full subshells (spherical symmetric)

+ Takes into account correlation effects in the ground state as well as in the excited state

+ Leads to multiplet effects/structure

X-RAY ABSORPTION

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

Page 4: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

4

Co2+

in CoOFe3+ inLaFeO3

Ni2+

in NiO

Fe Co Ni

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

XA provides + elemental specificity + sensitivity to valence

shell properties, i.e. valence state and lattice site symmetry

X-RAY ABSORPTION

Page 5: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

5

K. Edmonds et al.,Appl. Phys. Lett. 84, 4065(2004)

SURFACE EFFECTS IN (Ga,Mn)As

+ As grown/before etch: - Multiplet structure characteristic of MnO

+ After removal of the surface layer:- Multiplet structure is less pronounced - Spectrum shifted to 0.5 eV lower photon energy.

+ Comparison with calculated spectra:- localized Mn ground state for the untreated sample - hybridized ground state after etching.

Page 6: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

6

SENSITIVITY TO SITE SYMMETRY: Ti4+ L3,2

+ Electric dipole transitions: d0→2p53d1

+ Crystal field splitting 10Dq acting on 3d orbitals:

Octahedral symmetry: e orbitals towards ligands → higher energyt2 orbitals between ligands → lower energy

Tetragonal symmetry:e orbitals → b2 = dxy, e = dyz, dyz

t2 orbitals → b1 = dx2−y2, a1 = d3z2−r2

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

Page 7: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

7

770 780 790 8000

2

4

6

EY_T

M.o

pj

elec

tron

yiel

d I e /

I 0

photon energy (eV)

770 780 790 8000.6

0.7

0.8

0.9

1.0

photon energy (eV)

trans

mitt

ed in

tens

ity I t /

I 0

EY_T

M.o

pj

X-RAY ABSORPTION − MEASUREMENTS

photonsabsorbed

electronsgenerated

Electron yield: + Absorbed photons create core holes that are filled predominantly by Auger electron emission+ Auger electrons create low-energy secondary electron cascade through inelastic scattering+ Emitted electrons ∝ probability of Auger electron creating ∝ absorption probability

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

Page 8: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

8

SAMPLING DEPTH OF ELECTRON YIELD

+ Electron sample depth: 2nm in Fe, Co, Ni ⇒ 60% of the electron yield originates form the topmost 2nm

+ X ray absorption length: 500nm before the absorption edge 20nm at the L3 edge

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

Page 9: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

9

+ Tunable photon source in the soft x ray range, 200-2000eV, i.e. undulator or bend magnet, at synchrotron.

+ Beamlines/Monochromators provide photons withwell defined characteristics: - tunable energy/wavelength - fixed polarization: (variable) linear, circular, elliptical, …

Advanced Light Source

BL6.3.1

PHOTON SOURCES AND MONOCHROMATORS

Page 10: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

10

+ Endstations provide well defined sample environments for the interaction with photons:- precisely defined experimental geometries - sample temperature- external magnetic and electric fields…

ENDSTATIONS

2cm 2T magnet atALS BL6.3.1

Page 11: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

11

2cmVector magnet at ALS BL4.0.2

H

H1 H2H3 H4

+ Magnetic fields in arbitrary directions obtained through superposition of fields generated by 4 dipole pairs in octahedral configuration.

bias mesh

azimuthal rotation

sample

ENDSTATIONS

Page 12: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

12

+ Magnetic moments in Fe, Co, Ni are well described by the Stoner model:d-bands containing up and down spins shifted relative to each other by “exchange splitting”

+ Spin- up and spin-down bands filled according to Fermi statistics.

+ Magnetic moment |m| determined the difference in number of electrons in majority and minority bands

empty states,“holes”

exchange splitting

3d shell

spin-upspin-down

empty states,“holes”

)n(nμ |m| mine

majeB −=

STONER MODEL FOR FERROMAGNETIC TRANSITION METALS

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

Page 13: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

13

Photoelectrons excited from 2p3/2, 2p1/2 to 3d states

First step:+ Excitation of electron from 2p states by absorption of circularly

polarized x rays. + Note: Dipole operator does not act on the spin and

⇒ No spin flips during excitation.+ Conservation of angular momentum ⇒ transfer of angular momentum (±ħ) from photon to electron

+ Spin-orbit coupling: Angular momentum of photon transferredin part to electron spin

⇒ Excited photoelectrons are spin polarized

Second step:+ Unequal spin-up and spin-down populations

determines spin or orbital momentum of possible excitations

TWO-STEP MODEL OF XMCD

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

Page 14: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

14

TWO-STEP MODEL OF XMCD

Magnitude of the dichroismeffect depends on

+ degree of circular photon polarization, Pcirc

+ angle θ between photon angular momentum, Lph and magnetic moment, m

+ expectation value of 3dmagnetic moment

IXMCD ∝ Pcirc ⟨m⟩ cos θ

+ XMCD allows studying ferri-and ferromagnets.

IXMCD = I↑↓ − I↑↑

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

0.0

0.5

1.0

770 780 790 800

-0.4

-0.2

0.0

photon energy (eV)

XA (a

rb. u

nits

)

FeCo

_GaA

s_XM

CD.o

pj

XMCD

(arb

. uni

ts)

L3 L2

Co

Page 15: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

15

TWO-STEP MODEL OF XMCD

+ 2p3/2 and 2p1/2 have opposite spin orbit coupling (l+s, l −s) ⇒ Spin polarization and

XMCD have opposite sign at two edges

+ Spin polarization opposite for x rays with opposite helicity, i.e. photon spin, ±ħ ⇒ XMCD reverses sign with

polarization

+ Reversing the x ray polarization is equivalent to reversing magnetization/spin direction

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

0.0

0.5

1.0

770 780 790 800

-0.4

-0.2

0.0

photon energy (eV)

XA (a

rb. u

nits

)

FeCo

_GaA

s_XM

CD.o

pj

XMCD

(arb

. uni

ts)

L3 L2

Co

Page 16: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

16

0.0

0.5

1.0

700 710 720 730 780 790 800

-0.2

0.0

XA (a

rb. u

nits

)

photon energy (eV)

XMCD

(arb

. uni

ts)

Co

Fe2O

4.op

j

L3 Fe Co

L2

L3

L2

CoFe2O4

Fe2+,Oh

Fe3+, Oh

Fe3+, Td

Co2+

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

H

circularlypolarized

+ XMCD provides magnetic information resolving elements Fe, Co, …valence states: Fe2+, Fe3+, …lattice sites: octahedral, Oh, tetrahedral, Td, …

X RAY MAGNETIC CIRCULAR DICHROISM (XMCD)

Page 17: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

17

P. Morrall et al.,Phys. Rev. B 67, 214408 (2003)The Department of Geology and Geophysics,

University of Wisconsin-Madison

+ Geobacter sulfurreducens bacteria form magnetite via extracellular reduction of amorphous Fe(III)-bearing minerals

V. Cocker et al., Eur. J. Mineral. 19, 707–716 (2007)

CHARACTERISTICS OF MAGNETIC BIONANOSPINELS

Page 18: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

18

Magnetite and Co ferrites produced from Co(II) containing Fe(III)-oxyhydroxides using metal-reducing bacterium (Geobacter sulfurreducens)+ Up to 23at% Co2+ incorporated

(compared to 1at% using magnetotactic bacteria)

+ Co2+ in Fe2+ Oh sites+ 10fold increase in magnetic anisotropy

Fe3O4

Co-ferrite-1 6 at% Co

Co-ferrite-2 23 at% Co

XMCD

photon energy (eV)

710 720 730 710 720 730

expt.sim.

−2 0 +2

M (e

mu

g−1 ) −60

0

+60

H (T)V. Cocker et al., Eur. J. Mineral. 19, 707–716 (2007)

CHARACTERISTICS OF MAGNETIC BIONANOSPINELS

Page 19: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

19

+ Comparing XMCD spectra with model compounds and/or theoretical multiplet calculations allows

⇒ Identifying the contributions to the magnetic phase of a system.

XMC

D (a

rb. u

nits

)XA

(arb

. uni

ts)

J.-Y. Kim et al., Phys. Rev. Lett. 90, 017401 (2003)

XA, X

MCD

Co metal

XA

XA

XMCD

XMCD

photon energy (eV)

Co2+ in CoFe2O4

780 790 800

0

0

XA, X

MCD

Co_C

o2+.

opj

Co-DOPED TiO2

Page 20: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

20

CuCoCuCo

+ The element-specificity makes XMCD measurements an ideal tool to determine induced moments at interfaces between magnetic and non-magnetic elements.

INDUCED MOMENTS AT Co/Cu INTERFACES

M. G. Samant et al.,Phys. Rev. Lett. 72, 1112 (1994)

Page 21: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

21

1.0

1.5

2.0

2.5

Co L3,2

Mn L3,2

XMCD

(%)

XA(a

rb. u

nits

)

630 640 650 660 770 780 790 800 810

-5

0

photon energy (eV)

-0.2

0.0

20 Å Co / 200 Å Ir20Mn80

+ The weak Mn XMCD signal indicates uncompensated Mn at the Co/IrMn interface.

+ The same sign of XMCD signal for Co and Mn and indicates parallel coupling.

+ The nominal thickness of uncompensated interface moments is (0.5±0.1)ML for Co/Ir20Mn80.

IrMn

Co

ANTIFERROMAGNET/FERROMAGNETIC INTERFACES

Page 22: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

22

MAGNETISM AT FERROMAGNET/SUPERCONDUCTOR INTERFACES

J. Chakhalian et al.,Nature Phys. 2, 244 (2006)

+ LCMO : significant Mn L3,2 XMCD at T = 30K ferromagnetic transition ~180 K

+ YBCO: Weak Cu L3,2 XMCD⇔ net ferromagnetic polarization on Cu

i.e. presence of uncompensated induced magneticmoment in the YBCO layer close to LCMO interface.

+ opposite sign of Cu and Mn XMCD ⇔ antiparallel orientation of Cu and Mn moments

Page 23: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

23

640 650 660 710 720 730

0.0

0.5

1.0

XMCD

(arb

. uni

ts)

XA

(arb

. uni

ts)

photon energy (eV)

Mn

Fe

x20

0 100 200 3000.0

0.1

0.2

temperature (K)

XMCD

(arb

. uni

ts)

Fe Mn

+ La0.7Sr0.3MnO3 : significant Mn L3,2 XMCD at T = 10K ferromagnetic transition ~300 K

+ BiFeO3: Weak Fe L3,2 XMCD⇔ net ferromagnetic polarization on Fe

i.e. presence of uncompensated induced magneticmoment in the BiFeO3 layer close to La0.7Sr0.3MnO3

interface.

+ opposite sign of Fe and Mn XMCD ⇔ antiparallel orientation of Fe and Mn moments

+ Transition temperature of the magnetic phase in BiFeO3 significantly lower than La0.7Sr0.3MnO3

T = 10K

La0.7Sr0.3MnO3 / BiFeO3 INTERFACE

P. Yu et al., Phys. Rev. Lett. 105, 027201 (2010)

Page 24: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

24

1.01.52.02.5

×3

( )

H=+0.2 TH=−0.2 T

inte

nsity

(arb

. uni

ts)

700 750 800 850-10-505

asym

. (%

)

photon energy (eV)

ELEMENT-SPECIFIC MAGNETIZATION REVERSAL

-2000 -1000 0 1000 2000-10

-5

0

5

10

XM

CD (%

)

field (G)

NiFeCo

Fe

Co

Ni

5 ML Co

8,10 ML Fe

18 ML Ni

-400 -200 0 200 400-10

-5

0

5

10

XMCD

(%)

field (Oe)

NiFeCo

+ Monitoring the field dependence of the XMCD signal

⇒ Detailed information on magnetization reversal in complexmagnetic hetero-structures

8 ML Fe 10 ML Fe

Page 25: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

25

A < 0

B > 0

+ Theoretically derived sum rules correlate the XMCD spectra with the spin and orbital moment providing a unique tool for studying magnetic materials.

mS = µB⟨–A + 2B⟩ / C mL = –2µB⟨A + B⟩ / 3CNh = ⟨ IL3 + IL2 ⟩/C

SUM RULES

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

Page 26: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

26

morb

mspin

2q9p – 6q=

C.T. Chen et al., Phys. Rev. Lett. 75, 152(1995)

+ Separation of spin and orbital moments requires very high quality data.

morb = – –––––––––––4q (10 – n3d)

3r

mspin = – –––––––––––––––––(6p – 4q) (10 – n3d)

r

SUM RULES

Page 27: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

27

+ Strong variation of orbital and spin magnetic moment observable as change in L3 and L2 in the XMCD spectrum.

+ Co atoms and nanoparticles on Pt have enhanced orbital moments up to 1.1 µB

P. Gambardella et al.,Science 300, 1130 (2003)

ORBITAL MOMENT OF Co NANOPARTICLES

Page 28: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

28

L2mS and mL

only mL

XMCD

photon energy

only mS

L3

+ Spin and orbital moment only systems have distinct XMCD spectra:

mS = µB⟨–A + 2B⟩ / C = 0 for A = 2B

mL = –2µB⟨A + B⟩ / 3C = 0 for A = –B

A < 0

B > 0

SUM RULES

Page 29: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

29

+ Linear dichroism: difference in x-ray absorption for different polarization direction relative to crystalline and/or spin axis.

+ Linear dichroism is due to the anisotropic charge distribution about the absorbing atom caused by bonding and/or magnetic order.

+ “Search Light Effect”: X ray absorption of linear polarized x rays proportional to density of empty valence states in direction of electric field vector E.

Cu

O

photon energy (eV)920 940 960

La1.85Sr0.15CuO4

L2

Cu

XA (a

rb. u

nits

)

L3

C. T. Chen et al. PRL 68, 2543 (1992)

X-RAY LINEAR DICHROISM

E

Page 30: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

30

Pb2+ O2− Ti4+, Zr4+

+

ferroelectric polarization

+ Spontaneous electric polarizationdue to off-center shift of Ti4+, Zr4+ ;associated with tetragonal distortion ⇔ linear dichroism

+ Reversing the polarization changes XA ⇔ Change in tetragonal distortion

0.0

0.5

1.0

455 460 465 470

-0.05

0.00

XA(a

rb. u

nits

)

diffe

renc

e (a

rb. u

nits

)

// //

0.0

0.5

1.0

XA(a

rb. u

nits

)

-0.2

0.0

0.2

photon energy (eV)

diffe

renc

e (a

rb. u

nits

)

////

////

STRUCTURAL CHANGES IN PbZr0.2Ti0.8O3

as grown

reversed

Page 31: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

31

0.0

0.5

1.0

XMLD

(arb

. uni

ts)

XA (a

rb. u

nits

)-0.02

0.00

0.02

photon energy (eV)

700 710 720 730 780 790 800

//

//

//

+ IXMLD = I|| − I⊥ ∝ ⟨m 2 ⟩, ⟨m 2⟩ = expectation value of the square of the atomic magnetic moment

+ XMLD allows investigating ferri- and ferromagnets as well as antiferromagnets.

+ XMLD spectral shape and angular dependence are determined by magnetic order and lattice symmetry.

L3

Fe Co

L3L2

Isotropic d electron charge density⇒ No polarization dependence

magnetically alignedSpin-orbit coupling distorts

charge density⇒ polarization dependence

CoFe2O4

L2

θ = 0°

S→

θ = 45°H

H

X-RAY MAGNETIC LINEAR DICHROISM

L[001]

Page 32: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

32

770 780 790 850 860 870

0.0

0.5

1.0L3

L2

L2Ni

Co

CoNi

O_6

.3.1

.opj

XM

CD, X

A (a

rb. u

nits

)

photon energy (eV)

Co/NiO

x50

L3

A. Scholl et al.,Phys. Rev. Lett. 92, 247201 (2004)

Co

NiO

1

2

868 870 872

-0.2

0.0

photon energy (eV)

XMLD

(arb

. uni

ts)

NiO

Co/NiO

XA(a

rb. u

nits

)

0.0 0.2 0.4 0.6

0.9

1.0

1.1

1.2

Ni L

2 rat

io

applied field (T)

E⊥H E||H

0o

10o

20o

30o

40o

50o

wall angle

H

-0.5 0.0 0.5

-10

0

10

Co X

MCD

(arb

. uni

ts)

field (T)

NiOCo

HH

PLANAR DOMAIN WALL NEAR Co/NiO INTERFACES

Page 33: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

33

LSFO

640 650-0.2

0.0

0.0

0.5

1.0

XA (a

rb. u

nits

)

photon energy (eV)

XMCD

(arb

. uni

ts)

0.0

0.5

1.0

710 720-0.2

0.0

0.2

XA (a

rb. u

nits

)

expt. calc.

photon energy (eV)

XMLD

(arb

. uni

ts)

0.0

0.5

1.0

710 720-0.1

0.0

0.1

XA (a

rb. u

nits

)

XMLD

(arb

. uni

ts)

photon energy (eV)

MAGNETIC COUPLING AT La0.7Sr0.3MnO3/La0.7Sr0.3FeO3 INTERFACES

HMn XMCD

Fe XMLD

H

⇒ Perpendicular coupling at LSMO/LSFO interface

LSMO

La0.7Sr0.3MnO3 (LSMO)ferromagnet

La0.7Sr0.3FeO3 (LSFO)antiferromagnet

H

0.0

0.5

1.0

0.0

0.5

1.0

0 100 200 300 4000.0

0.5

1.0

Fe L3,2 XM

LD (arb. units)

Mn

L 3,2 X

MCD

(a

rb. u

nits

)Fe

L3,

2 XM

LD

(arb

. uni

ts)

temperature (K)

Page 34: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

34

MAGNETIC MICROSCOPY

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

Magnetism

Page 35: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

35

MAGNETIC MICROSCOPY

10-50 nm spatial resolutionJ. Stöhr, H.C. Siegmann,Magnetism (Springer)

Page 36: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

36

i070

725_

046_

047_

div.

jpg

A / B

A − B

IMAGING FERROMAGNETIC DOMAINS USING XMCD

i070

725_

049_

050_

div.

jpg

2µm

A / B A − B

A

i070

725_

046.

jpg

B

i070

725_

050.

jpg

left circ. right circ.

780 790 800

0.0

0.5

1.0Co/NiO(001)

photon energy (eV)

XMCD

, XA

(arb

. uni

ts)

0707

27_C

o_XM

CD.o

pj

+ Images taken with left and right circularly polarized x-rays at photon energies with XMCD, i.e. Co L3 edge, provide magnetic contrast and domain images.

Page 37: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

37

850 860 870 8800.0

0.2

0.4

0.6

0.8

1.0

photon energy (eV)

XA (a

rb. u

nits

)

Co/NiO(001)

B

AB

A − BA / B

2µm

A

IMAGING ANTIFERROMAGNETIC DOMAINS USING XMLD

E in plane

5 µm

+ Images taken with linearly polarized x-rays at photon energies with XMLD, i.e. Ni L2 edge, provide magnetic contrast and domain images.

Page 38: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

38

Co XMCD

Ni XMLD

probing out-of-planeprobing in-plane

5 µm

5 µm5 µm

x rays

+ Taking into account the geometry dependence of the Ni XMLD signal⇒ perpendicular coupling of Co and NiO

moments at the interface.

MAGNETIC COUPLING AT Co/NiO INTERFACE

Page 39: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

39

+ First direct observation of vortex state in antiferromagnetic CoO and NiO disks in Fe/CoO and Fe/NiO bilayers using XMCD and XMLD.

+ Two types of AFM vortices:- conventional curling vortex

as in ferromagnets- divergent vortex,

forbidden in ferromagnets- thickness dependence of magnetic

interface coupling

J. Wu et al., Nature Phys. 7, 303 (2011)

divergent vortexconventional curling vortex

OBSERVATION OF ANTIFERROMAGNETIC VORTICES

Page 40: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

40

τel-sp τlat-sp

τel-lat

ULTRAFAST MAGNETISM

Spin-lattice relaxation time

Electron-phonon relaxation time

Electron-spinrelaxation time

+ Energy reservoirs in a ferromagnetic metal

+ Deposition of energy in one reservoir

⇒ Non-equilibrium distribution and subsequent relation through energy and angular momentum exchange

J. Stöhr, H.C. Siegmann,Magnetism (Springer)

Page 41: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

41

+ 256-320 bunches for 500mA beam current+ Possibility of one or two 5mA "camshaft"

bunches in filling gaps+ Bunch spacing:

multibunch mode: 2 nstwo-bunch mode: 328 ns

+ Pulse length 70ps

ALS TIME STRUCTURE

bunch spacing

Pulse length 70 ps

camshaft

+ <300 fs x ray pulses though “laser bunch-slicing technique”

Page 42: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

42

C. Boeglin, et al., Nature 465, 458 (2010)

+ Orbital (L) and spin (S) magnetic moments can change with total angular momentum is conserved.

+ Efficient transfer between L and S through spin–orbit interaction in solids

+ Transfer between L and S occurs on fs timescales.

+ Co0.5Pt0.5 with perpendicularmagnetic anisotropy

+ 60 fs optical laser pulses change magnetization

+ Dynamics probed with XMCD using 120fs x-ray pulses

+ Linear relation connects Co L3 and L2 XMCD with Lz and Sz using sum rules

Co0.5Pt0.5

ULTRAFAST DYNAMICS OF SPIN AND ORBITAL MOMENTS

Page 43: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

43

ULTRAFAST DYNAMICS OF SPIN AND ORBITAL MOMENTS

+ Characteristic thermalization:Faster decrease of orbital moment

+ Theory: Orbital magnetic moment strongly correlated with magnetocrystalline anisotropy

+ Reduction in orbital moment ⇔ Reduction in magnetocrystalline anisotropy

+ Typically observed at elevated temperatures in static measurements as well

+ Further studies needed

C. Boeglin, et al., Nature 465, 458 (2010)

Page 44: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

44

0.0

0.5

1.0

780 790 800-0.05

0.00

0.05

photon energy (eV)

XA (a

rb. u

nits

)XM

LD(a

rb. u

nits

)

Fe

Co_G

aAs_

XMLD

.opj

MAGNETIC SPECTROSCOPY

+ X ray absorption

+ X ray magnetic circular dichoism, XMCD

+ X ray magnetic linear dichroism, XMLD

+ X ray magnetic microscopy

+ Magnetization Dynamics

E. Arenholz et al., Appl. Phys. Lett. 93, 162506 (2008)

3 µm

[100]

ENiO

Co

NiO

Co

C. Boeglin et al., Nature 465, 458 (2011)

Co0.5Pd0.5

Co

Co

Co

CoO

780 790 800photon energy (eV)

XA (a

rb. u

nits

)

Co

O_C

o.op

j 0.0

0.5

1.0

780 790 800-0.5

0.0

photon energy (eV)

XA (a

rb. u

nits

)

FeCo

_GaA

s_XM

CD.o

pj

XMCD

(arb

. uni

ts)

Page 45: MAGNETIC SPECTROSCOPY - ORNL · 2017-03-13 · 1 0.0 0.5 1.0-0.05 780 790 800 0.00 0.05 photon energy (eV) XA (arb. units) XMLD (arb. units) FeCo_GaAs_XMLD.opj MAGNETIC SPECTROSCOPY

45

J. Stöhr, H.C. SiegmannMagnetism− From Fundamentals to Nanoscale DynamicsSpringer

D. AttwoodSoft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications

REFERENCES AND FURTHER READING