48
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev

Magnetic phases and critical points of insulators and superconductors

Embed Size (px)

DESCRIPTION

Magnetic phases and critical points of insulators and superconductors. Colloquium article: Reviews of Modern Physics , 75 , 913 (2003). Talks online: Sachdev. What is a quantum phase transition ?. T. Quantum-critical. - PowerPoint PPT Presentation

Citation preview

Page 1: Magnetic phases and critical points of insulators and superconductors

Magnetic phases and critical points of insulators and superconductors

Colloquium article:Reviews of Modern Physics, 75, 913 (2003).

Talks online: Sachdev

Page 2: Magnetic phases and critical points of insulators and superconductors

What is a quantum phase transition ?Non-analyticity in ground state properties as a function of some control parameter

g

T Quantum-critical

Why study quantum phase transitions ?

ggc• Theory for a quantum system with strong correlations: describe phases on either side of gc by expanding in deviation from the quantum critical point. • Critical point is a novel state of matter without quasiparticle excitations

• Critical excitations control dynamics in the wide quantum-critical region at non-zero temperatures.

Page 3: Magnetic phases and critical points of insulators and superconductors

OutlineOutline

A. Coupled dimer antiferromagnetEffect of a magnetic field

B. Magnetic transitions in a superconductorEffect of a magnetic field

C. Spin gap state on the square latticeSpontaneous bond order

Page 4: Magnetic phases and critical points of insulators and superconductors

(A) Insulators Coupled dimer antiferromagnet

Page 5: Magnetic phases and critical points of insulators and superconductors

S=1/2 spins on coupled dimers

jiij

ij SSJH

10

JJ

Coupled Dimer AntiferromagnetM. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, 10801-10809 (1989).N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994).J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999).M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002).

Page 6: Magnetic phases and critical points of insulators and superconductors

close to 1Square lattice antiferromagnetExperimental realization: 42CuOLa

Ground state has long-rangemagnetic (Neel or spin density wave) order

01 0 NS yx iii

Excitations: 2 spin waves (magnons)2 2 2 2

p x x y yc p c p

Page 7: Magnetic phases and critical points of insulators and superconductors

close to 0 Weakly coupled dimers

Paramagnetic ground state 0iS

2

1

Page 8: Magnetic phases and critical points of insulators and superconductors

close to 0 Weakly coupled dimers

2

1

Excitation: S=1 triplon (exciton, spin collective mode)

Energy dispersion away from antiferromagnetic wavevector

2 2 2 2

2x x y y

p

c p c p

spin gap

Page 9: Magnetic phases and critical points of insulators and superconductors

close to 0 Weakly coupled dimers

2

1

S=1/2 spinons are confined by a linear potential into a S=1 triplon

Page 10: Magnetic phases and critical points of insulators and superconductors

1

c

Quantum paramagnet

0S

Neel state

0S N

Neel order N0 Spin gap

T=0

in cuprates

c = 0.52337(3)M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama,

Phys. Rev. B 65, 014407 (2002)

Page 11: Magnetic phases and critical points of insulators and superconductors

TlCuCl3M. Matsumoto, B. Normand, T.M. Rice, and

M. Sigrist, cond-mat/0309440.

J. Phys. Soc. Jpn 72, 1026 (2003)

Page 12: Magnetic phases and critical points of insulators and superconductors

close to c : use “soft spin” field

3-component antiferromagnetic order parameter

22 22 2 2 21

2 4!b x c

ud xd c S

Field theory for quantum criticality

Quantum criticality described by strongly-coupled critical theory with universal dynamic response functions dependent on

Triplon scattering amplitude is determined by kBT alone, and not by the value of microscopic coupling u

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).

Bk T

, BT T g k T

Page 13: Magnetic phases and critical points of insulators and superconductors

(A) Insulators Coupled dimer antiferromagnet:

effect of a magnetic field.

Page 14: Magnetic phases and critical points of insulators and superconductors

Effect of a field on paramagnet

Energy of zero

momentum triplon states

H

0

Bose-Einstein condensation of

Sz=1 triplon

Page 15: Magnetic phases and critical points of insulators and superconductors

TlCuCl3

Ch. Rüegg, N. Cavadini, A. Furrer, H.-U. Güdel, K. Krämer, H. Mutka, A. Wildes, K. Habicht, and P. Vorderwisch, Nature 423, 62 (2003).

Page 16: Magnetic phases and critical points of insulators and superconductors

TlCuCl3

Ch. Rüegg, N. Cavadini, A. Furrer, H.-U. Güdel, K. Krämer, H. Mutka, A. Wildes, K. Habicht, and P. Vorderwisch, Nature 423, 62 (2003).

“Spin wave (phonon) above critical field

Page 17: Magnetic phases and critical points of insulators and superconductors

H

1/

Spin singlet state with a spin gap

SDW

1 Tesla = 0.116 meV

Related theory applies to double layer quantum Hall systems at =2

Phase diagram in a magnetic field.

gBH =

2 *

2 2 2 2 2

2

Zeeman term leads to a uniform precession of spins

Take oriented along the direction.

.

, ~ , while for ,

Then

For

c x y c x y

c x c c c

i H i H

H

H H

H z

~ c

Page 18: Magnetic phases and critical points of insulators and superconductors

2 *

2 2 2 2 2

2

Zeeman term leads to a uniform precession of spins

Take oriented along the direction.

.

, ~ , while for ,

Then

For

c x y c x y

c x c c c

i H i H

H

H H

H z

~ c

H

1/

Spin singlet state with a spin gap

SDW

1 Tesla = 0.116 meV

Related theory applies to double layer quantum Hall systems at =2

Phase diagram in a magnetic field.

gBH =

2

Elastic scattering

intensity

0

I H

HI a

J

~c cH

Page 19: Magnetic phases and critical points of insulators and superconductors

TlCuCl3

M. Matsumoto, B. Normand, T.M. Rice,

and M. Sigrist, cond-mat/0309440.

Page 20: Magnetic phases and critical points of insulators and superconductors

(B) Superconductors Magnetic transitions in a superconductor:

effect of a magnetic field.

Page 21: Magnetic phases and critical points of insulators and superconductors

ky

kx

/a

/a0

Insulator

~0.12-0.140.055SC

0.020

J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432

(1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999)

S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, 172501 (2001).

(additional commensurability effects near =0.125)

T=0 phases of LSCO

Interplay of SDW and SC order in the cuprates

SC+SDWSDWNéel

Page 22: Magnetic phases and critical points of insulators and superconductors

• •• •

ky

kx

/a

/a0

Insulator

~0.12-0.140.055SC

0.020

J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432

(1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999)

S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, 172501 (2001).

(additional commensurability effects near =0.125)

T=0 phases of LSCO

SC+SDWSDWNéel

Interplay of SDW and SC order in the cuprates

Page 23: Magnetic phases and critical points of insulators and superconductors

••

•Superconductor with Tc,min =10 K•

ky

kx

/a

/a0

~0.12-0.140.055SC

0.020

J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432

(1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999)

S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, 172501 (2001).

(additional commensurability effects near =0.125)

T=0 phases of LSCO

SC+SDWSDWNéel

Interplay of SDW and SC order in the cuprates

Page 24: Magnetic phases and critical points of insulators and superconductors

Collinear magnetic (spin density wave) order

cos . sin .j jj K r K r ��������������������������������������������������������

1 2S N N

Collinear spins

, 0K ��������������

2; N

3 4, 0K ��������������

2; N

3 4,

2 1

K

��������������

2 1

;

N N

Page 25: Magnetic phases and critical points of insulators and superconductors

••

•Superconductor with Tc,min =10 K•

ky

kx

/a

/a0

~0.12-0.140.055SC

0.020

T=0 phases of LSCO

SC+SDWSDWNéel

H

Follow intensity of elastic Bragg spots in a magnetic field

Use simplest assumption of a direct second-order quantum phase transition between SC and SC+SDW phases

Interplay of SDW and SC order in the cuprates

Page 26: Magnetic phases and critical points of insulators and superconductors

Dominant effect of magnetic field: Abrikosov flux lattice

2 2

2

Spatially averaged superflow kinetic energy

3 ln c

sc

HHv

H H

1sv

r

r

Page 27: Magnetic phases and critical points of insulators and superconductors

1/ 2 22 2 2 22 2 21 2

0 2 2

T

b r

g gd r d c s S

2 22

2c d rd Sv

4

222

2GL rF d r iA

,

ln 0

GL b cFZ r D r e

Z r

r

S S

(extreme Type II superconductivity)Effect of magnetic field on SDW+SC to SC transition

Quantum theory for dynamic and critical spin fluctuations

Static Ginzburg-Landau theory for non-critical superconductivity

1 2N iN

Page 28: Magnetic phases and critical points of insulators and superconductors

Triplon wavefunction in bare potential V0(x)

Energy

x0

Spin gap

Vortex cores

2

0

Bare triplon potential

V s r rv

D. P. Arovas, A. J. Berlinsky, C. Kallin, and S.-C. Zhang, Phys. Rev. Lett. 79, 2871 (1997) proposed static magnetism

(with =0) localized within vortex cores

Page 29: Magnetic phases and critical points of insulators and superconductors

2

0

Wavefunction of lowest energy triplon

after including triplon interactions: V V g

r r r

E. Demler, S. Sachdev, and Y

. Zhang, . , 067202 (2001).

A.J. Bray and

repulsive interactions between excitons imply that triplons must be extended as 0.

Phys. Rev. Lett

Strongly relevant

87

M.A. Moore, . C , L7 65 (1982).

J.A. Hertz, A. Fleishman, and P.W. Anderson, . , 942 (1979).

J. Phys

Phys. Rev. Lett

15

43

Energy

x0

Spin gap

Vortex cores

2

0

Bare triplon potential

V s r rv

Page 30: Magnetic phases and critical points of insulators and superconductors

2 2

2

Spatially averaged superflow kinetic energy

3 ln c

sc

H Hv

H H

1sv

r

r

Phase diagram of SC and SDW order in a magnetic field

2eff

2

The suppression of SC order appears to the SDW order as a effective "doping" :

3 ln c

c

HHH C

H H

uniform

E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, 067202 (2001).

Page 31: Magnetic phases and critical points of insulators and superconductors

E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, 067202 (2001).

eff

( )~

ln 1/

c

c

c

H

H

Phase diagram of SC and SDW order in a magnetic field

eff

2

2

Elastic scattering intensity

, 0,

3 0, ln c

c

I H I

HHI a

H H

Page 32: Magnetic phases and critical points of insulators and superconductors

2- 4Neutron scattering of La Sr CuO at =0.1x x x

B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, T. E. Mason, Nature, 415, 299 (2002).

2

2

Solid line - fit ( ) nto : l c

c

HHI H a

H H

See also S. Katano, M. Sato, K. Yamada, T. Suzuki, and T. Fukase, Phys. Rev. B 62, R14677 (2000).

Page 33: Magnetic phases and critical points of insulators and superconductors

2

2

2

Solid line --- fit to :

is the only fitting parameter

Best fit value - = 2.4 with

3.01 l

= 6

n

0 T

0

c

c

c

I H HH

H

a

aI H

a H

Neutron scattering measurements of static spin correlations of the superconductor+spin-density-wave (SC+CM) in a magnetic field

H (Tesla)

2 4

B. Khaykovich, Y. S. Lee, S. Wakimoto,

K. J. Thomas, M. A. Kastner,

and R.J. Birge

Elastic neutron scatt

neau, B ,

014528 (2002)

ering off La C O

.

u y

Phys. Rev.

66

Page 34: Magnetic phases and critical points of insulators and superconductors

E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, 067202 (2001).

Neutron scattering observation of SDW order enhanced by

superflow.

eff

( )~

ln 1/

c

c

c

H

H

Phase diagram of a superconductor in a magnetic field

Prediction: SDW fluctuations enhanced by superflow and bond order pinned by vortex cores (no

spins in vortices). Should be observable in STM

K. Park and S. Sachdev Physical Review B 64, 184510 (2001); Y. Zhang, E. Demler and S. Sachdev, Physical Review B 66, 094501 (2002).

2

2

1 triplon energy

30 ln c

c

S

HHH b

H H

Page 35: Magnetic phases and critical points of insulators and superconductors

Collinear magnetic (spin density wave) order

cos . sin .j jj K r K r ��������������������������������������������������������

1 2S N N

Collinear spins

, 0K ��������������

2; N

3 4, 0K ��������������

2; N

3 4,

2 1

K

��������������

2 1

;

N N

Page 36: Magnetic phases and critical points of insulators and superconductors

STM around vortices induced by a magnetic field in the superconducting state

J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).

-120 -80 -40 0 40 80 1200.0

0.5

1.0

1.5

2.0

2.5

3.0

Regular QPSR Vortex

Diffe

rential C

onducta

nce (

nS

)

Sample Bias (mV)

Local density of states

1Å spatial resolution image of integrated

LDOS of Bi2Sr2CaCu2O8+

( 1meV to 12 meV) at B=5 Tesla.

S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

Page 37: Magnetic phases and critical points of insulators and superconductors

100Å

b7 pA

0 pA

Vortex-induced LDOS of Bi2Sr2CaCu2O8+ integrated from 1meV to 12meV

J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).

Our interpretation: LDOS modulations are

signals of bond order of period 4 revealed in

vortex halo

See also: S. A. Kivelson, E. Fradkin, V. Oganesyan, I. P. Bindloss, J. M. Tranquada, A. Kapitulnik, and C. Howald, cond-

mat/0210683.

Page 38: Magnetic phases and critical points of insulators and superconductors

(C) Spin gap state on the square lattice: Spontaneous bond order

Page 39: Magnetic phases and critical points of insulators and superconductors

Paramagnetic ground state of coupled ladder model

Page 40: Magnetic phases and critical points of insulators and superconductors

Can such a state with bond order be the ground state of a system with full square lattice symmetry ?

Page 41: Magnetic phases and critical points of insulators and superconductors

Collinear spins and compact U(1) gauge theory

Key ingredient: Spin Berry PhasesKey ingredient: Spin Berry Phases

iSAe

A

Write down path integral for quantum spin fluctuations

Page 42: Magnetic phases and critical points of insulators and superconductors

Collinear spins and compact U(1) gauge theory

Key ingredient: Spin Berry PhasesKey ingredient: Spin Berry Phases

iSAe

A

Write down path integral for quantum spin fluctuations

Page 43: Magnetic phases and critical points of insulators and superconductors

Class A: Collinear spins and compact U(1) gauge theory

S=1/2 square lattice antiferromagnet with non-nearest neighbor exchange

ij i ji j

H J S S

Include Berry phases after discretizing coherent state path integral on a cubic lattice in spacetime

,

a 1 on two square sublattices ;

Neel order parameter;

oriented area of spheri

11

cal trian

exp2

~

g

l

2a a a a a a

a aa

a a a

a

iZ d A

g

S

A

n n n n

n

0,

e

formed by and an arbitrary reference point , a a n n n

Page 44: Magnetic phases and critical points of insulators and superconductors

a n

0n

an

aA

Page 45: Magnetic phases and critical points of insulators and superconductors

a n

0n

an

aA

a a

Change in choice of n0 is like a “gauge transformation”

a a a aA A

(a is the oriented area of the spherical triangle formed by na and the two choices for n0 ).

0n

aA

The area of the triangle is uncertain modulo 4and the action is invariant under4a aA A

These principles strongly constrain the effective action for Aawhich provides description of the large g phase

Page 46: Magnetic phases and critical points of insulators and superconductors

,

2 2

2

with

This is compact QED in

1 1e

+1 dimensions with

static char

xp co

ges 1 on two sublattice

s2

~

s.

22

a a a a aaa

d

iZ dA A A A

e

e g

Simplest large g effective action for the Aa

This theory can be reliably analyzed by a duality mapping.

d=2: The gauge theory is always in a confiningconfining phase and there is bond order in the ground state.

d=3: A deconfined phase with a gapless “photon” is possible.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990).

K. Park and S. Sachdev, Phys. Rev. B 65, 220405 (2002).

Page 47: Magnetic phases and critical points of insulators and superconductors

g

Critical theory is not expressed in terms of order parameter of either phase, but instead contains spinons interacting the a non-compact U(1) gauge force

Phase diagram of S=1/2 square lattice antiferromagnet

or

Neel order Spontaneous bond order, confined spinons, and “triplon” excitations

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, submitted to Science

Page 48: Magnetic phases and critical points of insulators and superconductors

Conclusions

I. Introduction to magnetic quantum criticality in coupled dimer antiferromagnet.

II. Theory of quantum phase transitions provides semi-quantitative predictions for neutron scattering measurements of spin-density-wave order in superconductors; theory also proposes a connection to STM experiments.

III. Spontaneous bond order in spin gap state on the square lattice: possible connection to modulations observed in vortex halo.

Conclusions

I. Introduction to magnetic quantum criticality in coupled dimer antiferromagnet.

II. Theory of quantum phase transitions provides semi-quantitative predictions for neutron scattering measurements of spin-density-wave order in superconductors; theory also proposes a connection to STM experiments.

III. Spontaneous bond order in spin gap state on the square lattice: possible connection to modulations observed in vortex halo.