55
Magnetic Phase Competition in Off-Stoichiometric Heusler Alloys: The Case of Ni 50-x Co x Mn 25+y Sn 25-y K. P. Bhatti, D.P. Phelan, C. Leighton Chemical Engineering and Materials Science, University of Minnesota V. Srivastava, R.D. James Aerospace Engineering and Mechanics, University of Minnesota S. El-Khatib Physics, American University of Sharjah NIST Center for Neutron Research S. Yuan, P.L. Kuhns, A.P. Reyes, J.S. Brooks, M.J.R. Hoch National High Magnetic Field Laboratory

Magnetic Phase Competition in Off-Stoichiometric Heusler ...cspin.umn.edu/events/heuslers2015/presentations/c_leighton.pdfMagnetic Phase Competition in Off-Stoichiometric Heusler Alloys:

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Magnetic Phase Competition in Off-Stoichiometric HeuslerAlloys: The Case of Ni50-xCoxMn25+ySn25-y

    K. P. Bhatti, D.P. Phelan, C. LeightonChemical Engineering and Materials Science, University of Minnesota

    V. Srivastava, R.D. JamesAerospace Engineering and Mechanics, University of Minnesota

    S. El-KhatibPhysics, American University of Sharjah

    NIST Center for Neutron Research

    S. Yuan, P.L. Kuhns, A.P. Reyes, J.S. Brooks, M.J.R. HochNational High Magnetic Field Laboratory

  • Multiferroic alloys (ferroelastic + magnetic)

    > Magnetoelasticity, magnetic shape memory,field-induced phase transformations, magnetocaloric and barocaloric effects

    > Actuators/sensors, magnetic refrigeration, energy conversion, heat-assisted recording?

    Thermal hysteresis: Vital for applications, but fundamentals elusive….

    Introduction: Martensitic (Magnetic) Alloys

    T

    TM(first-order

    MPT)

    AusteniteMartensite

    T (K)

    Krenke et al.Nat. Mater. (2005)

  • Introduction: Minimization of Thermal Hysteresis

    Recent theoretical work by James et al.: Geometrical compatibility between austenite and martensite unit cells vital for T.

    An invariant plane occurs at their interface if, 2 = 1, where 1,2,3 are the ordered eigenvalues of the transformation stretch matrix, U.

    Cui et al. Nat. Mater. (2006)Zhang et al. Acta. Mat. (2009)

    Experiment: Remarkable correlations between T and2. Direct observation of “ideal” interface by HRTEM

    T

  • Application to Magnetic Alloys: The Route to Ni50-xCoxMn40Sn10

    Step I Full Heusler alloys Ni2MnZ, Z = Sn, In, Ga, etc. (e.g. Ni2MnSn, F, TC = 350 K)

    [ ]

    [ ]

    [ ]

  • Application to Magnetic Alloys: The Route to Ni50-xCoxMn40Sn10

    Step I Full Heusler alloys Ni2MnZ, Z = Sn, In, Ga, etc. (e.g. Ni2MnSn, F, TC = 350 K)

    Step II Ni50Mn25+yZ25-y:Tunable magnetic interactions (F vs. AF)*MPT for y > 52 1. [ ]

    [ ]

    [ ]

    (001) plane

    excess Mn*Krenke, Acet, Wasserman, Moya, Manosa, Planes, PRB (2005, 2006)

  • Application to Magnetic Alloys: The Route to Ni50-xCoxMn40Sn10

    Step I Full Heusler alloys Ni2MnZ, Z = Sn, In, Ga, etc. (e.g. Ni2MnSn, F, TC = 350 K)

    Step II Ni50Mn25+yZ25-y:Tunable magnetic interactions (F vs. AF)*MPT for y > 52 1.

    *Krenke, Acet, Wasserman, Moya, Manosa, Planes, PRB (2005, 2006)

    ?

  • Application to Magnetic Alloys: The Route to Ni50-xCoxMn40Sn10

    Step I Full Heusler alloys Ni2MnZ, Z = Sn, In, Ga, etc. (e.g. Ni2MnSn, F, TC = 350 K)

    Step II Ni50Mn25+yZ25-y:Tunable magnetic interactions (F vs. AF)*MPT for y > 52 1.

    Step III Ni50-xCoxMn40Sn10: Enhanced TC, MSConvenient TM2 1 (1.0051 @ x = 6)

    *Krenke, Acet, Wasserman, Moya, Manosa, Planes, PRB (2005, 2006)

    ?

  • Application to Magnetic Alloys: The Route to Ni50-xCoxMn40Sn10

    Step I Full Heusler alloys Ni2MnZ, Z = Sn, In, Ga, etc. (e.g. Ni2MnSn, F, TC = 350 K)

    Step II Ni50Mn25+yZ25-y:Tunable magnetic interactions (F vs. AF)*MPT for y > 52 1.

    Step III Ni50-xCoxMn40Sn10: Enhanced TC, MSConvenient TM2 1 (1.0051 @ x = 6)

    Ni46Co6Mn40Sn10: TC 440 K TM 380 K M 1000 emu/cm3

    T < 10 K

    *Krenke, Acet, Wasserman, Moya, Manosa, Planes, PRB (2005, 2006)

    ?

  • Magnetism in Ni50-xCoxMn40Sn10 (and Related Systems)

    High TC, high M, convenient TM, low T

    F austenite, non-F martensite (AF or P?)

    Nominally non-F martensite reveals some significant surprises:

    > Superparamagnetic-like behavior at low T (in a bulk solid!)> Exchange bias in blocked low T state (in a single phase)> Collective freezing. Super-spin-glass?> ZFC exchange bias

    Acute sensitivity of magnetism to composition

    Nanoscale MagneticInhomogeneity?

  • Experimental Details

    0

    100

    200

    300

    400

    Data

    Model

    Residual

    (a) T = 410K

    cubic, Fm-3m

    Inte

    nsity [

    arb

    . u

    nits]

    Ni44Co6Mn40Sn10

    20 30 40 50 60 70 80 90 100

    0

    200

    400

    (b) T = 300K

    5M monoclinic, P21

    2[deg]

    Arc-melted polycrystalline bulk ingots [Srivastava et al APL (2010);Bhatti et al PRB (2012)]

    Characterized by:

    > DSC

    > T-dependent XRD

    > T-dependent Neutron PowderDiffraction (NPD)

    > Magnetometry

    > Small-Angle Neutron Scattering (SANS)

    > 55Mn zero-field NMR

  • Ni50-xCoxMn40Sn10 Phase Diagram

    0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    ?

  • Ni50-xCoxMn40Sn10 Phase Diagram

    0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    ?

  • Ni50-xCoxMn40Sn10 Phase Diagram

    0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    ?

  • Ni50-xCoxMn40Sn10 Phase Diagram

    0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    ?

  • Ni50-xCoxMn40Sn10 Phase Diagram

    0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    ?

  • 0 100 200 300 400 5000

    10

    20

    30

    0 100 200 300 400 5000.00

    0.02

    0.04

    0.06

    0.08

    M

    [e

    mu

    /cm

    3]

    T [K]

    Ni48

    Co2Mn

    40Sn

    10

    H = 5000 Oe

    M [em

    u/c

    m3]

    FCW

    FCC

    ZFCW

    T [K]

    H = 10 Oe

    M vs. T (x = 2)

  • 0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    M vs. T (x = 6)

    ?

  • 0 100 200 300 400 500 6000

    2

    4

    6

    8

    10

    0 100 200 3000.00

    0.05

    0.10

    0.15

    0.20

    FCC

    ZFCW

    M [

    em

    u/c

    m3]

    T [K]

    H = 10 Oe

    Ni44

    Co6Mn

    40Sn

    10

    M [

    em

    u/c

    m3]

    T [K]

    M vs. T (x = 6)

  • 0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    M vs. T (x = 14)

    ?

  • -75 -50 -25 0 25 50 75

    -900

    -600

    -300

    0

    300

    600

    900

    0 100 200 300 400 500 6000

    2

    4

    6

    8

    10

    5 K

    300 K

    550 K

    H [kOe]

    M [

    em

    u/c

    m3]

    FCC

    FCW

    ZFCW

    T [K]

    Ni36

    Co14

    Mn40

    Sn10

    M [

    em

    u/c

    m3] H = 10 Oe

    M vs. T (x = 14)

  • 0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    M vs. H (x = 2)

    ?

  • M vs. H (x = 2)

    -30 -15 0 15 30-80

    -40

    0

    40

    80-60 -40 -20 0 20 40 60

    -50

    0

    50

    -30

    0

    30

    (c)

    5 K

    50 K

    H [kOe]

    Langevin fit

    M [

    em

    u/c

    m3]

    (b)

    200 K

    175 K

    150 K

    125 K

    M [

    em

    u/c

    m3]

    500 K

    400 K

    Ni48

    Co2Mn

    40Sn

    10

    (a)

  • M vs. H (x = 2)

    -30 -15 0 15 30-80

    -40

    0

    40

    80-60 -40 -20 0 20 40 60

    -50

    0

    50

    -30

    0

    30

    (c)

    5 K

    50 K

    H [kOe]

    Langevin fit

    M [

    em

    u/c

    m3]

    (b)

    200 K

    175 K

    150 K

    125 K

    M [

    em

    u/c

    m3]

    500 K

    400 K

    Ni48

    Co2Mn

    40Sn

    10

    (a)

    T > TM: P

    T < TM: AF/P

  • M vs. H (x = 2)

    -30 -15 0 15 30-80

    -40

    0

    40

    80-60 -40 -20 0 20 40 60

    -50

    0

    50

    -30

    0

    30

    (c)

    5 K

    50 K

    H [kOe]

    Langevin fit

    M [

    em

    u/c

    m3]

    (b)

    200 K

    175 K

    150 K

    125 K

    M [

    em

    u/c

    m3]

    500 K

    400 K

    Ni48

    Co2Mn

    40Sn

    10

    (a)

    T > TM: P

    T < TM: AF/P

    300 - 100 K: Langevin-like M(H)

    HTHT

    Tk

    Tk

    HTTTnTHM BG

    C

    B

    B

    C

    CC )()(

    )(coth)()(),(

  • M vs. H (x = 2)

    -30 -15 0 15 30-80

    -40

    0

    40

    80-60 -40 -20 0 20 40 60

    -50

    0

    50

    -30

    0

    30

    (c)

    5 K

    50 K

    H [kOe]

    Langevin fit

    M [

    em

    u/c

    m3]

    (b)

    200 K

    175 K

    150 K

    125 K

    M [

    em

    u/c

    m3]

    500 K

    400 K

    Ni48

    Co2Mn

    40Sn

    10

    (a)

    T > TM: P

    T < TM: AF/P

    300 - 100 K: Langevin-like M(H)

    T < 100 K: M(H) gradually opens“Static” FZFC exchange bias*

    HTHT

    Tk

    Tk

    HTTTnTHM BG

    C

    B

    B

    C

    CC )()(

    )(coth)()(),(

    *Wang et al PRL (2011)

  • 0 2 4 6 8 10 12 14

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    0

    100

    200

    300

    400

    500

    600

    700

    (b)

    F (Aust.)

    TB

    TC

    TM

    P (Aust.)

    x

    AF/SP (Mart.)

    EB Clustered

    (Mart.)

    Clustered

    (Mart.)

    e/a

    T [K

    ]

    e/a

    Ni50-x

    CoxMn

    40Sn

    10

    TC

    TM

    P (Aust.)

    T [K

    ]

    y

    F (Aust.)

    AF (Mart.)

    Ni50

    Mn25+y

    Sn25-y

    (a)

    8.20 8.15 8.10 8.067.8 8.0 8.2 8.4

    M vs. H (x = 6)

    ?

  • M vs. H (x = 6)

    -75 -50 -25 0 25 50 75

    -100

    0

    100

    -0.6

    0.0

    0.6

    -100

    0

    100

    -0.6

    0.0

    0.6

    -1000

    -500

    0

    500

    1000

    -5.6

    -2.8

    0.0

    2.8

    5.6

    -500

    0

    500

    -2.8

    0.0

    2.8

    -0.1 0.0 0.1-100

    -50

    0

    50

    100

    (d)

    H [kOe]

    5K

    30K

    (c)M

    [

    B/f

    .u.]

    M [

    em

    u/c

    m3]

    80K

    100K

    150K

    200K

    300K

    370K

    (b)

    400K

    395K

    390K

    415K

    550K

    (a)

    415K

  • M vs. H (x = 6)

    -75 -50 -25 0 25 50 75

    -100

    0

    100

    -0.6

    0.0

    0.6

    -100

    0

    100

    -0.6

    0.0

    0.6

    -1000

    -500

    0

    500

    1000

    -5.6

    -2.8

    0.0

    2.8

    5.6

    -500

    0

    500

    -2.8

    0.0

    2.8

    -0.1 0.0 0.1-100

    -50

    0

    50

    100

    (d)

    H [kOe]

    5K

    30K

    (c)M

    [

    B/f

    .u.]

    M [

    em

    u/c

    m3]

    80K

    100K

    150K

    200K

    300K

    370K

    (b)

    400K

    395K

    390K

    415K

    550K

    (a)

    415K

    T > TC: P

    T < TC: Soft F

  • M vs. H (x = 6)

    -75 -50 -25 0 25 50 75

    -100

    0

    100

    -0.6

    0.0

    0.6

    -100

    0

    100

    -0.6

    0.0

    0.6

    -1000

    -500

    0

    500

    1000

    -5.6

    -2.8

    0.0

    2.8

    5.6

    -500

    0

    500

    -2.8

    0.0

    2.8

    -0.1 0.0 0.1-100

    -50

    0

    50

    100

    (d)

    H [kOe]

    5K

    30K

    (c)M

    [

    B/f

    .u.]

    M [

    em

    u/c

    m3]

    80K

    100K

    150K

    200K

    300K

    370K

    (b)

    400K

    395K

    390K

    415K

    550K

    (a)

    415K

    T > TC: P

    T < TC: Soft F

    400 - 380 K: Hysteresis region(H-induced MPT)

  • M vs. H (x = 6)

    -75 -50 -25 0 25 50 75

    -100

    0

    100

    -0.6

    0.0

    0.6

    -100

    0

    100

    -0.6

    0.0

    0.6

    -1000

    -500

    0

    500

    1000

    -5.6

    -2.8

    0.0

    2.8

    5.6

    -500

    0

    500

    -2.8

    0.0

    2.8

    -0.1 0.0 0.1-100

    -50

    0

    50

    100

    (d)

    H [kOe]

    5K

    30K

    (c)M

    [

    B/f

    .u.]

    M [

    em

    u/c

    m3]

    80K

    100K

    150K

    200K

    300K

    370K

    (b)

    400K

    395K

    390K

    415K

    550K

    (a)

    415K

    T > TC: P

    T < TC: Soft F

    400 - 380 K: Hysteresis region(H-induced MPT)

    380 - 60 K: Langevin-like M(H)

  • M vs. H (x = 6)

    -75 -50 -25 0 25 50 75

    -100

    0

    100

    -0.6

    0.0

    0.6

    -100

    0

    100

    -0.6

    0.0

    0.6

    -1000

    -500

    0

    500

    1000

    -5.6

    -2.8

    0.0

    2.8

    5.6

    -500

    0

    500

    -2.8

    0.0

    2.8

    -0.1 0.0 0.1-100

    -50

    0

    50

    100

    (d)

    H [kOe]

    5K

    30K

    (c)M

    [

    B/f

    .u.]

    M [

    em

    u/c

    m3]

    80K

    100K

    150K

    200K

    300K

    370K

    (b)

    400K

    395K

    390K

    415K

    550K

    (a)

    415K

    T > TC: P

    T < TC: Soft F

    400 - 380 K: Hysteresis region(H-induced MPT)

    380 - 60 K: Langevin-like M(H)

    T < 60 K: M(H) gradually opens“Static” F

  • Superparamagnetic-like Behavior

    102

    103

    104

    50 100 150 200 250 300

    1017

    1018

    1019

    x = 2

    x = 3

    x = 4

    x = 6

    c [

    B]

    (a)

    Ni50-x

    CoxMn

    40Sn

    10

    (b)

    nc [

    cm

    -3]

    T [K]

    c 200-250 B

    nc 2-3 x 1019 cm-3

    dc 2-6 nm

    Implication: Dense ensemble ofnm-scale spin clusters

    HTHT

    Tk

    Tk

    HTTTnTHM BG

    C

    B

    B

    CCC )(

    )(

    )(coth)()(),(

  • Exchange Bias

    0

    1000

    2000

    0 50 100 150 2000

    200

    400

    600

    800 Ni48

    Co2Mn

    40Sn

    10

    Ni44

    Co6Mn

    40Sn

    10

    Hc

    [Oe]

    HFC

    = 70 kOe

    (a)

    (b)

    HE [O

    e]

    T [K]

    x = 2:

    > SP blocking at 100-150 K> EB blocking at 60 K> Large HC peak

    x = 6:

    > SP blocking at 60 K> EB blocking at 60 K> No HC peak

  • Phase Diagram

  • SANS (NIST)

    Detectorchamber

    ReactorNeutronguide

    Cryostat/magnet

  • 0.01 0.1

    0.1

    1

    10

    100

    q [Å-1]

    (a) 500 K

    d/d

    [cm

    -1]

    n

    P

    q

    Td

    d

    Tqd

    d)(

    ,

    2

    2

    )(

    1

    )(

    ,

    Tq

    Td

    d

    Tqd

    d L

    Low q (large length-scale)Porod Scattering

    High q (short length-scale)Lorentzian Scattering

    SANS (x = 6)

  • 0.01 0.10.01

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    (e) 30 K

    q [Å-1]

    (d) 380 K

    Ni44

    Co6Mn

    40Sn

    10

    (c) 390 K

    (b) 425 K

    (a) 500 K

    d/d

    [cm

    -1]

    SANS: q Dependence

  • 0.01 0.10.01

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    0.1

    1

    10

    100

    (e) 30 K

    q [Å-1]

    (d) 380 K

    Ni44

    Co6Mn

    40Sn

    10

    (c) 390 K

    (b) 425 K

    (a) 500 K

    d/d

    [cm

    -1]

    SANS: q Dependence

    Low q Porod scattering:

    > Increases below TC> Magnetic domain scattering > Proof of long-range F order (>> 100 nm)

    High q Lorentzian scattering:

    > Peaks at TC> F spin correlations

    Intermediate q scattering:

    > A peak develops! 2/q 120-200 Å> Structure factor peak. Liquid-like spatial

    distribution of magnetic clusters.

    2

    2

    )(2

    ))((exp)(

    )(

    ),(T

    TqqT

    d

    d

    q

    Td

    d

    Tqd

    d G

    G

    n

    P

    Tot

    2

    2

    )(

    1

    )(

    Tq

    Td

    d

    L

  • SANS: T Dependence

    100 200 300

    0.02

    0.03

    0.03

    0 100 200 300 400 500

    0.0

    0.1

    0.2

    0.3

    0

    50

    100

    150

    d/d

    [cm

    -1]

    T [K]

    (b) q = 0.1 Å-1

    d/d

    [cm

    -1]

    T [K]

    Ni44

    Co6Mn

    40Sn

    10

    d/d

    [cm

    -1]

    Heating

    Cooling

    (a) q = 0.005 Å-1 q = 0.005 Å

    -1 (1200 Å):

    > Sharp onset of domainscattering at TC

    > Hysteretic loss at TM

    q = 0.1 Å-1 (60 Å):

    > Critical scattering peak at TC

  • SANS: T Dependence

    100 200 300

    0.02

    0.03

    0.03

    0 100 200 300 400 500

    0.0

    0.1

    0.2

    0.3

    0

    50

    100

    150

    d/d

    [cm

    -1]

    T [K]

    (b) q = 0.1 Å-1

    d/d

    [cm

    -1]

    T [K]

    Ni44

    Co6Mn

    40Sn

    10

    d/d

    [cm

    -1]

    Heating

    Cooling

    (a) q = 0.005 Å-1 q = 0.005 Å

    -1 (1200 Å):

    > Sharp onset of domainscattering at TC

    > Hysteretic loss at TM

    q = 0.1 Å-1 (60 Å):

    > Critical scattering peak at TC

    > 130 K transition (!), clearly associated with clusters

    > Blocking at 10-12 s time-scales!

  • SANS T Dependence: Porod

    0 100 200 300 400 500

    2

    3

    410

    -9

    10-6

    10-3

    T [K]

    n (d/d

    ) P

    [cm

    -1]

    Scattering in martensite strong, T-dependent

    Paramagnetic, n = 4 (grains); Ferromagnetic, n = 2 (pinned domains); Martensitic, n = 3 (AF domains?)

    Additional (indirect) evidence for AF order in the martensite

  • 0

    1

    0 100 200 300 400 500

    0.03

    0.04

    0.05

    (d/d

    ) G

    [cm

    -1]

    [cm

    -1]

    qG[c

    m-1]

    T [K]

    0.02

    0.04

    SANS T Dependence: Gaussian

    Gaussian peak intensity actually emerges at high T (even above TC?)

    Peak position weakly T-dependent. Peak width decreases on cooling

    Correlation length > 5 inter-particle spacings! Collective response*?

    *Cong et al APL (2010); APL (2010) and Wang et al PRL (2011)

    Å Å

  • 0

    1

    2

    3

    0 100 200 300 400 5000

    20

    40

    (d

    /d

    ) L

    [cm

    -1]

    T [K]

    -1]

    SANS T Dependence: Lorentzian

    Only present in significant intensities in paramagnetic phase

    Magnetic correlation length diverges as T TC+

  • Qualitative Model

  • Qualitative Model

    P

  • Qualitative Model

    P

    F

  • Qualitative Model

    P

    F

    AF?

  • Qualitative Model

    P

    F

    AF?

    AF?

  • AF in the Martensite: Neutron Diffraction Problems

    AF known at Ni50Mn50, suspected in someform in Ni50Mn25+ySn25-y

    Indirect evidence:

    > (T)> Exchange bias> SANS (Porod scattering)

    Why not just do neutron diffraction?

    > Texture an issue> Looking for the onset of AF order

    simultaneous with MPT to lowsymmetry state (very challenging refinement)

  • AF in the Martensite: Neutron Diffraction Problems

    AF known at Ni50Mn50, suspected in someform in Ni50Mn25+ySn25-y

    Indirect evidence:

    > (T)> Exchange bias> SANS (Porod scattering)

    Why not just do neutron diffraction?

    > Texture an issue> Looking for the onset of AF order

    simultaneous with MPT to lowsymmetry state (very challenging refinement)

  • AF in the Martensite: Neutron Diffraction Problems

    AF known at Ni50Mn50, suspected in someform in Ni50Mn25+ySn25-y

    Indirect evidence:

    > (T)> Exchange bias> SANS (Porod scattering)

    Why not just do neutron diffraction?

    > Texture an issue> Looking for the onset of AF order

    simultaneous with MPT to lowsymmetry state (very challenging refinement)

    Weak evidence for an AF order parameter?

    Polarized neutrons…….

  • AF in the Martensite: 55Mn Zero Field NMR (/2 = 10.5 MHz/T)

    150 200 250 300 350 400 450 500

    Frequency f (MHz)

    Ni50-xCoxMn40Sn10

    x=14

    x=7

    x=0

    AF F

    AF x 0.1 F

    F

    T = 1.6 K

    48 T14 T

    NMR signal enhancement factor, , measured by calibration to 19F

    Typically: High in Fs, low in AFs

    225 10

  • AF in the Martensite: 55Mn Zero Field NMR (/2 = 10.5 MHz/T)

    Unambiguous F/AF assignment

    The martensite indeed has ordered AF, decreasing with Co substitution

    -10.5 MHz / TNi50Mn40Sn10 (x = 0)

  • AF in the Martensite: 55Mn Zero Field NMR

    AF/F phase coexistence at low T

    Volume fractions

  • Conclusions

    Bhatti, El-Khatib, Srivastava, James, Leighton, Phys. Rev. B. 85, 134450 (2012)

    Bhatti, Srivastava, Phelan, James, Leighton, Heusler Alloys, Eds. Hirohata and Felser, Springer (2015)

    Yuan, Kuhns, Reyes, Brooks, Hoch, Srivastava, James, El-Khatib, Leighton, Phys. Rev. B. 91, 214421 (2015)

    Yuan, Kuhns, Reyes, Brooks, Hoch, Srivastava, James and Leighton, Phys. Rev. B., submitted (2015)

    Ni50-xCoxMn25+ySn25-y: Physically very interesting, potentially useful set of alloys

    High TC, convenient TM, exceptionally low T, high M

    Nanoscale magneto-electronic inhomogeneity:

    > SP-like freezing of nm-scale spin clusters> Exchange bias in a nominally single-phase system> First direct observation by SANS

    (liquid-like distribution, dc 2-6 nm, dc-c = 12 nm, strong interactions)> First observation by zero-field 55Mn NMR

    (proof of short-range AF order, dc 8.5 4.0 nm)

    New magnetic phase diagram

    Qualitative model based on (unavoidable) compositional fluctuations