28
Magnetic ordering Ferromagnetism Ferrimagnetism Antiferromagnetism Helimagnetism All ordered magnetic states have excitations called magnons

Magnetic orderinghadley/ss2/lectures16/jun10.pdf · 2016. 6. 13. · Magnetic ordering Ferromagnetism Ferrimagnetism Antiferromagnetism Helimagnetism All ordered magnetic states have

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Magnetic ordering

    Ferromagnetism

    Ferrimagnetism

    Antiferromagnetism

    Helimagnetism

    All ordered magnetic states have excitations called magnons

  • Ferrimagnets

    Magnetite Fe3O4(Magnetstein)

    Ferrites MO.Fe2O3

    M = Fe, Zn, Cd, Ni, Cu, Co, Mg

    Spinel crystal structure XY2O4

    8 tetrahedral sites A (surrounded by 4 O) 5B

    16 octahedral sites B (surrounded by 6 O) 9B

    per unit cell

    MgAl2O4Two sublattices A and B.

  • Ferrimagnets

    Magnetite Fe3O4

    Ferrites MO.Fe2O3

    M = Fe, Zn, Cd, Ni, Cu, Co, Mg

    Exchange integrals JAA, JAB, and JBBare all negative (antiparallel preferred)

    |JAB| > |JAA|,|JBB|

  • Mean field theory (Ferrimagnetism and Antiferromagnetism)

    A B ANM g SV

    , , ,1 1

    MF A i AB B i AA AB B

    B J S J Sg g

    ,,

    i j i j B ii j i

    H J S S g B S

    Mean field approximation

    Heisenberg Hamiltonian

    Exchange energy

    , , ,1 1

    MF B i AB A i BB BB B

    B J S J Sg g

    B B BNM g SV

  • Mean field theory

    ,1 ( )2A B MF A a

    E g B B

    The spins can take on two energies. These energies are different on the A sites and B because the A spins see a different environment as the B spins.

    ,1 ( )2B B MF B a

    E g B B

    ,tanh MF A aAB

    B BM N

    k T

    ,tanh MF B aBB

    B BM N

    k T

    Calculate the average magnetization with Boltzmann factors:

    0 0, tanh AB B AA A aA s A

    B

    M M BM Mk T

    0 0, tanh AB A BB B aB s B

    B

    M M BM Mk T

  • Ferrimagnetism gauss = 10-4 T

    oersted = 10-4/4x10-7 A/m

    Kittel

    D. Gignoux, magnetic properties of Metallic systems

  • At low temperatures, below the Neel temperature TN, the spins are aligned antiparallel and the macroscopic magnetization is zero.

    Spin ordering can be observed by neutron scattering.

    At high temperature antiferromagnets become paramagnetic. The macroscopic magnetization is zero and the spins are disordered in zero field.

    Antiferromagnetism

    Negative exchange energy JAB < 0.

    CT

    Curie-Weiss temperature

  • Antiferromagnetism

    Average spontaneous magnetization is zero at all temperatures.

  • from Kittel

  • Magnons

    Magnons are excitations of the ordered ferromagnetic state

  • Magnons

    1 12 p p pJS S S

    Energy of the Heisenberg term involving spin p

    The magnetic moment of spin p is

    p B pg S

    1 12p p pB

    J S Sg

    This has the form -p.Bp where Bp is

    1 12p p pB

    JB S Sg

  • Magnons

    The rate of change of angular momentum is the torque

    1 12p p pB

    JB S Sg

    p B pg S

    1 12p p p p p p pdS B J S S S Sdt

    If the amplitude of the deviations from perfect alignment along the z-axis are small:

    1 1

    1 1

    2 2

    2 2

    0

    xp y y y

    p p p

    yp x x x

    p p p

    zp

    dSJ S S S S

    dtdS

    J S S S Sdt

    dSdt

  • Magnons

    1 1

    1 1

    2 2

    2 2

    0

    xp y y y

    p p p

    yp x x x

    p p p

    zp

    dSJ S S S S

    dtdS

    J S S S Sdt

    dSdt

    These are coupled linear differential equations. The solutions have the form:

    expx xp ky yp k

    S ui kpa t

    S u

    ( 1) ( 1)

    ( 1) ( 1)

    2 2

    2 2

    x ikpa ik p a ikpa ik p a yk k

    y ikpa ik p a ikpa ik p a xk k

    i u e J S e e e u

    i u e J S e e e u

    Cancel a factor of eikpa.

  • Magnons

    4 1 cos( )0

    4 1 cos( )i J S ka

    J S ka i

    These equations will have solutions when,

    The dispersion relation is:

    4 1 cos( )J S ka

    2 2

    2 2

    x ika ika yk k

    y ika ika xk k

    i u J S e e u

    i u J S e e u

  • Magnon dispersion relation

    4 1 cos( )JS ka

    A phonon dispersion relationwould be linear at the origin

  • Magnon density of states

    4 1 cos( )JS ka

    Mathematically this is the same problem as the tight binding model for electrons on a one-dimensional chain.

  • Ferromagnetic magnons - simple cubic

    The dispersion relation in one dimension:

    4 1 cos( )J S ka

    The dispersion relation for a cubic lattice in three dimensions:

    2 cos( )J S z k

    The magnon contribution to thermodynamic properties can be calculated similar to the phonon contribution to the thermodynamic properties.

  • 2 cos( )J S z k

    Magnons

    Dispersion relation is mathematically equivalent to tight binding model for electrons.

  • Long wavelength / low temperature limit

    Dispersion relation: 2 22JSk a

    The density of states: ( )D

    Magnons are bosons:1

    exp 1k

    k

    B

    n

    k T

    5 / 2

    0

    ( )

    exp 1kB

    D du T

    k T

    3 / 2vc T

  • Magnons

  • Neutron magnetic scattering

    Neutrons can scatter inelastically from magnetic material and create or annihilate magnons

    n n magnonk k k G

    2 2 2 2 2 2

    2 2 2magnonn n crystal

    k k Gm m m

    0

    k

    k

    G

  • Antiferromagnet magnons

    1

    1

    1

    1

    2 2

    2 2

    2 2

    2 2

    0 0

    Axp By Ay By

    p p p

    Ayp Bx Ax Bx

    p p p

    Bxp Ay By Ay

    p p p

    Byp Ax Bx Ax

    p p p

    Az Bzp p

    dSJ S S S S

    dtdS

    J S S S Sdt

    dSJ S S S S

    dtdS

    J S S S Sdt

    dS dSdt dt

    exp 2

    Ax Axp kAy Ayp kBx Bxp kBy Byp k

    S uS u

    i kpa tS uS u

    a

  • Antiferromagnet magnons

    4 sin( )J S ka

    RbMnF3

    Brillouin zone boundary is at k = /2a

  • Antiferromagnet magnons

    4 sin( )J S ka

    Mathematically equivalent to phonons in 1-d

  • From: Solid State Theory, Harrison

  • Student project

    Make a table of magnon properties like the table of phonon properties

    1 student / column

    Fe bccNi fccCo hcp