25
Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP), M. Delva (IWF) February 2005

Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

Embed Size (px)

Citation preview

Page 1: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

Magnetic Field Instrument for the

BepiColombo Planetary Orbiter

Magnetic Cleanliness and Data Processing Methods

Chris Carr & André Balogh

U. Auster (IGeP), M. Delva (IWF)

February 2005

Page 2: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 2

The Problem

1. Short boom– Minimum 1.5m– Maximum 3m– Due to mass and thermal/mechanical stability considerations

2. Magnetically ‘dirty’ spacecraft– Magnetics shall not be a design or cost driver for the spacecraft

3. Planetary magnetic field determination requires high accuracy magnetometer measurements

Q: How do we meet the science goals?

Page 3: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 3

1. Magnetometer Performance Requirements vs. Spacecraft Magnetic Cleanliness Targets

2. MERMAG Consortium – Previous Experience

3. Dual Magnetometer MethodsExamples: The Double Star Mission

The Venus Express Mission

4. MERMAG Support to the BepiColombo Project & Outline Magnetic Control Plan

Page 4: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 4

1. Magnetometer Performance Requirements vs. Spacecraft Magnetic Cleanliness Targets

2. MERMAG Consortium – Previous Experience

3. Dual Magnetometer MethodsExamples: The Double Star Mission

The Venus Express Mission

4. MERMAG Support to the BepiColombo Project & Outline Magnetic Control Plan

Page 5: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 5

Instrument Performance

• The DC part of the spacecraft field shall be low enough to allow operation of the magnetometer in its most sensitive operating range

• The stability of the spacecraft magnetic field is the most critical parameter

Meeting the science goals: The magnetometer shall have an accuracy of 1nT

Page 6: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 6

Magnetic Cleanliness• Magnetic cleanliness objective:

To provide an acceptable magnetic environment without major cost / schedule / mass impact at system level

Parameter Performance Goal

Residual DC Magnetic Field measured at MAG OB sensor

< 100nT (TBC)

Stability of Residual DC Magnetic Field measured at MAG OB sensor

< 2nT variation (TBC)

Determination of the variable part of the spacecraft field by in-flight (dual-magnetometer) measurements

5%

MERMAG Proposed Accuracy(including all instrument & spacecraft error sources)

0.5 nT

• MERMAG accuracy includes ALL error sources:– Sensor calibration (knowledge), including stability w.r.t. temperature

– Determination of spacecraft contributions, both DC and AC

– Sensor position / attitude knowledge, and timing accuracy

Page 7: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 7

1. Magnetometer Performance Requirements vs. Spacecraft Magnetic Cleanliness Targets

2. MERMAG Consortium – Previous Experience

3. Dual Magnetometer MethodExamples: The Double Star Mission

The Venus Express Mission

4. MERMAG Support to the BepiColombo Project & Outline Magnetic Control Plan

Page 8: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 8

Team Experience

InstituteImperial

College

London

IGEP

TU-Braunschweig

IWF

Graz

ISAS

JAXA

ExpertiseSpecification

Coordination

DC & AC Magnetic Analysis

‘MAGNET’ Software

DC & AC Magnetic Analysis

DC & AC Magnetic Analysis

Missions

(PI)

Ulysses, Cassini,

Cluster, Double Star

Cassini, Cluster, Double Star,

Rosetta, Venus Express, Themis

Cassini, Cluster, Double Star,

Rosetta, Venus Express, Themis

Nozomi, Selene

Page 9: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 9

Magnetically ‘Clean’ Spacecraft

• Ulysses

• Cassini

• Cluster

Page 10: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 10

Magnetically ‘Dirty’ Spacecraft

• Rosetta– No magnetic control– Units measured (DC)– System model performed– Result: BAD

• Double Star– Supposed to be clean– Solar Panels not tested before launch– Result: BAD

• Venus Express– NO magnetic control– NO measurement– NO System model– Result: ???

Page 11: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 11

1. Magnetometer Performance Requirements vs. Spacecraft Magnetic Cleanliness Targets

2. MERMAG Consortium – Previous Experience

3. Dual Magnetometer MethodsExamples: The Double Star Mission

The Venus Express Mission

4. MERMAG Support to the BepiColombo Project & Outline Magnetic Control Plan

Page 12: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 12

The Dual Magnetometer Method

…for determination of spacecraft fields

Principle

• Two radially separated magnetometers

plus

• Knowledge of location on the spacecraft of the disturbing source

allows

• Estimate strength of the disturbing field

• Original technique Ness et al. (1971)

• Successful application to Double Star

Page 13: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 13

Dual Magnetometer:Application to Double Star

• Magnetic disturbances:– Signals at the spin frequency and harmonics

• Source: solar panels

– Sudden shifts in the DC ‘background’ field from the spacecraft• Source: current loops – power distribution

U. Auster, K.-H. Fornacon, E. Georgescu

IGeP TU-BS

Page 14: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 14

Eclipse

Field generated by current loop

Field generated by solar arrays

Dual Magnetometer:Application to Double Star

• Approach

1. De-spin the data2. Average data over spin-period

– Result: interference signals are reduced to ‘offsets’

– These offsets are unknown, and change with the spacecraft power modes

3. Remove remaining offsets using weighted differences between sensors– Modified dual-magnetometer method

4. Evaluate any residual offsets using traditional calibration techniques

– Result: Accuracy of this spin-averaged data is comparable to the equivalent Cluster magnetometer data

Page 15: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 15

Application to Venus Express

– NO magnetic control– NO measurement– NO System model

• Highly applicable to BepiColombo

– 3-axis stabilised– Short (1m) boom

M. Delva et al. IWF GrazIGeP TU-BSUniv Kosice

Page 16: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 16

VEX MC – MeasurementsExample at Alenia – Aug. 2004

S1S2

S3

S4

Solar Array Dynamic Motor (on SC +y side) switched on resp. modes

Idea: learn to know the SC magnetically

Page 17: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 17

Automatic Correction with Neural Network

Cooperation with Univ. of Kosice (Slovakia)• Basic idea: Event-pattern recognition & correction by neural network• Two sensors are needed -> use difference of change as indicator for event of SC-origin

Neural network “learns” characteristic pattern of event from measurements at two sensors

e.g. from MC - measurements on Earth from magnetometer measurements during commissioning

phase

bscx1, bobsx2- bobsx1

bscz1, bobsz2- bobsz1

bscy1, bobsy2- bobsy1

bscx1, bobsx2- bobsx1

bscz1, bobsz2- bobsz1

bscy1, bobsy2- bobsy1

time t1 time t2

Page 18: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 18

Test of method with real in-flight data: Double Star data (TC-1)

Difference in Btotal at 2 sensors

Recognize jumps > 1 nTCorrect data -> difference

disappears

before correction

after correction: diff < 1 nT

Neural Network Tested with Double Star data

Page 19: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 19

Double Star / Venus Express: Lessons for BepiColombo

• Magnetic cleanliness programme should give equal effort to– DC magnetic– Stray fields from current loops (Double Star experience)– Moving parts (Venus Express)

• Characterise the spacecraft before launch– Sufficient mode information in the housekeeping

• Magnetometer Instrument Design– Optimised dual-sensor modes of operation– Programmable anti-aliasing filters

Page 20: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 20

Venus Express / Mars Express Experience:Problem sub-systems

SC subsystem Mean dipole mom. [mA m2]

Expected field at VEX-MAG IS

[nT]

Expected field at VEX-MAG OS( 1m) [nT]

GYROS 74 +/- 39 35 - 152 2 - 9

SADM 708 +/- 234 54 - 213 8 - 39

Reaction Wheels 1,2,3 908 +/- 552 19 – 34 6 - 9

Reaction Wheel 4

963 +/- 459 21 – 32 / - 11

Thrusters, different modes

602 +/- 161 16 - 30 5-10

• Similar for Rosetta

• Can identify problem sub-systems early for Bepi

Page 21: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 21

1. Magnetometer Performance Requirements vs. Spacecraft Magnetic Cleanliness Targets

2. MERMAG Consortium – Previous Experience

3. Dual Magnetometer MethodsExamples: The Double Star Mission

The Venus Express Mission

4. MERMAG Support to the BepiColombo Project & Outline Magnetic Control Plan

Page 22: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 22

MERMAG Support• Expertise, Experience & Modelling s/w

– Available to the BepiColombo mission

InstituteImperial

College

London

IGEP

TU-Braunschweig

IWF

Graz

ISAS

JAXA

ExpertiseSpecification

Coordination

DC & AC Magnetic Analysis

‘MAGNET’ Software

DC & AC Magnetic Analysis

DC & AC Magnetic Analysis

Missions

(PI)

Ulysses, Cassini, Cluster,

Double Star

Cassini, Cluster,

Double Star, Rosetta, Venus

Express, Themis

Cassini, Cluster,

Double Star, Rosetta, Venus

Express, Themis

Nozomi, Selene

Page 23: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 23

Magnetic Control for BepiColombo

• Specification for each unit: DC and AC at 1m– Gradiometer– MCF– Extend EMC test specification to LF Magnetic– Critical Unit Identification

• Gyros, SADM, Reaction Wheels etc.

• First Steps– Spacecraft design, boom length– Knowledge of magnetic contamination sources– Establish a ‘Magnetic Control Group’ – ESA, MERMAG and industry– Design Guidelines

• For payload

• For industry / system

Page 24: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 24

Concluding Remarks

Page 25: Magnetic Field Instrument for the BepiColombo Planetary Orbiter Magnetic Cleanliness and Data Processing Methods Chris Carr & André Balogh U. Auster (IGeP),

BepiColombo MPO Magnetic Cleanliness C. Carr & A. Balogh. February 2005 25

Outline for ESTEC Magnetometer Workshop

• Team experience– ‘Clean’ spacecraft such as Ulysses, Cassini, Cluster– ‘Dirty’ spacecraft such as Rosetta, Double Star, Venus Express

• The Double Star Experience– Why it is magnetic– Basic principles of the dual-magnetometer technique (Ness et al.)– Application to Double Star (using input from Uli, Edita and Karl-Heinz and others)

• Venus Express (using inputs from Magda)– Background– Techniques– Applicability to BepiColombo– Re-use of techniques

• Selene (using inputs from Masaki)– Applicability of the Selene magnetic cleanliness programme to BepiColombo