15
Magnetic Analysis Jin-Young Jung 1

Magnetic Analysis

  • Upload
    sari

  • View
    24

  • Download
    0

Embed Size (px)

DESCRIPTION

Magnetic Analysis. Jin-Young Jung. Quarter period model for HXU. Pole width : 4.2 cm Pole height : 2.74 cm Pole thickness: 0.53 cm PM width : 5.5 cm PM height : 3.39 cm PM thickness : 1.07 cm . Quarter period model for SXU. Pole width : 4.2 cm Pole height : 5.04 cm - PowerPoint PPT Presentation

Citation preview

Page 1: Magnetic Analysis

Magnetic Analysis

Jin-Young Jung

1

Page 2: Magnetic Analysis

Quarter period model for HXU

Slide 2

•Pole width : 4.2 cm•Pole height : 2.74 cm•Pole thickness: 0.53 cm•PM width : 5.5 cm•PM height : 3.39 cm•PM thickness : 1.07 cm

Page 3: Magnetic Analysis

Quarter period model for SXU

Slide 3

•Pole width : 4.2 cm•Pole height : 5.04 cm•Pole thickness: 1.01 cm•PM width : 6.6 cm•PM height : 6.24 cm•PM thickness : 1.74 cm

Page 4: Magnetic Analysis

Magnetic field and field roll off

Slide 4

HXU requirement

gap (mm) Beff (T) ∆B/B at x=0.4 mm ∆B/B7.2 1.28 *1.0E-05±1.9x10-6 5.4E-0520 0.29 6.7E-06±5.1x10-6 5.4E-05

* uses finer meshSXU requirement

gap (mm) Beff (T) ∆B/B at x=0.4 mm ∆B/B7.2 1.91 2.3E-05±2.6x10-6 1.5E-0436 0.25 3.2E-05±2.3x10-6 1.5E-04

• For calculation accuracy, results using finer mesh (mesh size: 0.05 mm in air gap region) are compared with the current model using less finer mesh (mesh size: 0.1 mm in air gap region) . • It shows there is not much difference in Beff (~0.1%) between the two models. • For better accuracy, it may need much finer mesh but it will take lots of computation time. (The finer mesh model took two days for computation.)

Page 5: Magnetic Analysis

B effective

Slide 5

Page 6: Magnetic Analysis

End design

Slide 6

• HXU end design is performed.

• HXU end for 10 mm gap is optimized and then applied for 7.2 mm gap and 20 mm gap.

• Scalar potential is normalized for the poles.

• SXU end using the HXU end design configuration is calculated for preliminary dimensions of the quote.

Page 7: Magnetic Analysis

End design geometry for 10 mm gap HXU

Slide 7

• 2d results are compared with 3d and it has close match. • For optimization purpose and reducing computation time, 2d calculation is used.• 3d calculation for confirmation and full SXU design are not completed yet.

PM #1 PM #7PM #6PM #5PM #4PM #3PM #2

pole #1 pole #7pole #6pole #5pole #4pole #3pole #2

Page 8: Magnetic Analysis

Scalar potential for poles (10 mm gap HXU)

Slide 8

pole #1 pole #2 pole #3 pole #4 pole #5 pole #6 pole #7entrance kick

(mTm)

Ideal scalar potential 1 -1 1 -1 0.75 -0.25 0 0

model scalar potential 1 -1.000 0.999 -1.018 0.758 -0.243 0.003 0.529

Page 9: Magnetic Analysis

Second integral for 10 mm gap (HXU)

Slide 9

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-4.00E-05

-3.00E-05

-2.00E-05

-1.00E-05

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

2nd integral (HXU, 10 mm gap)

z (m)

2nd

inte

gral

(Tm

2)

internal kick: 0.528 mTm

internal shift: 15.6 mTm2

(requirement: ± 50 mTm2)displacement: 6.9 mTm2

Page 10: Magnetic Analysis

Second integral for 7.2 mm gap (HXU)

Slide 10

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-1.00E-04

-8.00E-05

-6.00E-05

-4.00E-05

-2.00E-05

0.00E+00

2.00E-05

4.00E-05

6.00E-05

2nd integral (HXU, 7.2 mm gap)

z (m)

2nd

inte

gral

(Tm

2)

internal kick: -11 mTm

internal shift: -23.8 mTm2

(requirement: ± 50 mTm2)

displacement: 6.8 mTm2

Page 11: Magnetic Analysis

Second integral for 20 mm gap (HXU)

Slide 11

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-2.00E-05

-1.00E-05

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

2nd integral (HXU, 20 mm gap)

z (m)

2nd

inte

gral

(Tm

2)

internal shift: 72.6 mTm2

(requirement: ± 50 mTm2)

internal kick: 18 mTm

displacement: 5.7 mTm2

Page 12: Magnetic Analysis

End design performance vs. gap

Slide 12

• Due to the variations of Br values in end blocks, tuning is required for end poles.

7.2 mm gap

pole #1 pole #2 pole #3 pole #4 pole #5 pole #6 pole #7entrance kick

(mTm)

scalar potential 1 -1.000 0.999 -1.015 0.754 -0.249 0.006 -11

10 mm gap

pole #1 pole #2 pole #3 pole #4 pole #5 pole #6 pole #7entrance kick

(mTm)

scalar potential 1 -1.000 0.999 -1.018 0.758 -0.243 0.003 0.529

20 mm gap

pole #1 pole #2 pole #3 pole #4 pole #5 pole #6 pole #7entrance kick

(mTm)

scalar potential 1 -1.002 0.996 -1.024 0.769 -0.232 -0.001 18

Page 13: Magnetic Analysis

Cost related to block size

Slide 13

• Peak field vs. pole block size: For higher magnetic field, much larger block volume is needed. Primary cost differential will be due to increased block volume Cost will approximately scale with pole height

HXUPole height Beff

125% +2.4%100% 100%75% -6.7%50% -19.0%

SXUPole height Beff

125% +1.4%100% 100%75% -2.9%50% -12.2%

50% 75% 100% 125%0.800

0.850

0.900

0.950

1.000

1.050

HXU SXU

Pole Height

B/B1

00

Page 14: Magnetic Analysis

Appendix

Slide 14

Page 15: Magnetic Analysis

Sensitivity matrix for perturbations in 1% Br change (HXU)

Slide 15

PM #5 Br -1% 10 mm gap

pole #1 pole #2 pole #3 pole #4 pole #5 pole #6 pole #7entrance kick

(mTm)

scalar potential 1 -0.999 1.001 -1.012 0.752 -0.245 0.002 -13.5

PM #6 Br -1% 10 mm gap

pole #1 pole #2 pole #3 pole #4 pole #5 pole #6 pole #7entrance kick

(mTm)

scalar potential 1 -1.000 0.998 -1.019 0.755 -0.24 0.005 0.6

PM #7 Br -1% 10 mm gap

pole #1 pole #2 pole #3 pole #4 pole #5 pole #6 pole #7entrance kick

(mTm)

scalar potential 1 -1.000 0.999 -1.018 0.758 -0.242 0.002 0.24