Mae 331 Lecture 18

Embed Size (px)

Citation preview

  • 8/11/2019 Mae 331 Lecture 18

    1/16

    Advanced Problems ofLongitudinal Dynamics

    Robert Stengel, Aircraft Flight DynamicsMAE 331, 2012

    Angle-of-attack-rate aero effects

    Fourth-order dynamics

    Steady-state response to control

    Transfer functions

    Frequency response

    Root locus analysis of parametervariations

    Numerical solution for trimmedflight condition

    Nichols chart

    Pilot-aircraft interactions

    Copyright 2012 by Robert Stengel. A ll rights reserved. For education al use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    Distinction Between Angle-of-Attack Rate and Pitch Rate

    !! = q

    !! " 0 " q; q =0

    ! With no vertical motion of thec.m., pitch rate and angle-of-

    attack rate are the same

    ! With no pitching, vertical heaving(or plunging) motion of the c.m.,producesangle-of-attack rate butno pitch rate

    Vertical velocitydistribution induced

    by pitch rate

    Angle-of-Attack RateHas Two Effects! Pressure variations at wing

    convect downstream,

    arriving at tail tseclater!Lag of the downwash

    !Delayed tail-lift/pitch-moment effect

    ! Vertical force opposed by amass of air (apparentmass) as well as airplanemass

    ! Vertical accelerationproduces added lift andmoment

    Flight Dynamics, pp. 204-206, 284-285

    ! !q = Mq!q+M"!"+M#E!#E+M!"!!"

    !!"= 1$Lq

    VN

    %

    &'

    (

    )*!q$

    L"

    VN( )!"$ L

    #E

    VN( )!#E$ L

    !"

    VN( )!!"

    ! !q"M!#!!#= Mq!q+M#!#+M$E!$E

    !!#+ L !#VN( )!!#= 1"

    LqVN

    %

    &'

    (

    )*!q"

    L#

    VN( )!#" L

    $E

    VN( )!$E

    1 !M!"

    0 1+L

    !"

    VN( )#

    $%

    &

    '(

    #

    $

    %%

    %

    &

    '

    ((

    (

    ) !q

    )!"

    #

    $

    %

    %

    &

    '

    (

    (

    =

    Mq M"

    1

    !

    Lq

    VN

    *

    +,

    -

    ./ !

    L"

    VN( )

    #

    $

    %%

    %

    &

    '

    ((

    (

    )q

    )"

    #

    $

    %

    %

    &

    '

    (

    (

    +

    M0E

    !

    L0E

    VN( )

    #

    $

    %%

    %

    &

    '

    ((

    (

    )0E

    Angle-of-Attack-Rate Effects PrincipallyAffect the Short-Period Mode

    ! Lift and pitching moment proportional to angle-of-attack rate

    ! Bring effects to left side

    ! Vector-matrix form

  • 8/11/2019 Mae 331 Lecture 18

    2/16

    1 !M!"

    0 1+L

    !"

    VN

    ( )#$%&

    '(

    #

    $

    %%%

    &

    '

    (((

    !1

    =

    1+L

    !"

    VN

    ( )#$%&

    '( M

    !"

    0 1

    #

    $

    %%%

    &

    '

    (((

    1+L

    !"

    VN

    ( )#$%&

    '(

    ! !q

    !!"

    #

    $

    %

    %

    &

    '

    (

    (

    =

    1 )M!"

    0 1+L

    !"VN( )

    #$%

    &'(

    #

    $

    %%%

    &

    '

    (((

    )1M

    q M

    "

    1)L

    qVN

    *

    +, -

    ./ ) L"V

    N( )

    #

    $

    %%%

    &

    '

    (((

    !q

    !"

    #

    $

    %

    %

    &

    '

    (

    (

    +

    M0E

    ) L

    0EVN( )

    #

    $

    %%%

    &

    '

    (((

    !0E

    1

    233

    433

    5

    633

    733

    Angle-of-Attack-Rate Effects

    !Inverseof the apparent mass matrix

    !Pre-multiply both sides by inverse

    ! !q

    !!"

    #

    $

    %

    %

    &

    '

    (

    (

    =

    1+L

    !"

    VN

    ( )#$%&

    '( M

    !"

    0 1

    #

    $

    %%%

    &

    '

    (((

    1+L

    !"

    VN( )#

    $%&

    '(

    Mq

    M"

    1

    )

    Lq

    VN

    *

    +,

    -

    ./ )

    L"

    VN

    #

    $

    %%

    %

    &

    '

    ((

    (

    !q

    !"

    #

    $

    %

    %

    &

    '

    (

    (

    +"

    0

    122

    322

    4

    522

    622

    Angle-of-Attack-Rate Effects

    ! !q

    !!"

    #

    $%%

    &

    '((=

    1

    1+L

    !"

    VN

    ( )#$%&'(

    1+L

    !"

    VN

    ( )#$%&'(M

    q+ M

    !" 1)

    Lq

    VN

    *

    +,

    -

    ./

    012

    345

    1+L

    !"

    VN

    ( )#$%&'(M

    ") M

    !"

    L"

    VN

    ( )012345

    1)L

    q

    VN

    *

    +,

    -

    ./ )

    L"

    VN

    #

    $

    %%%%%

    &

    '

    (((((

    !q

    !"

    #

    $%%

    &

    '((

    +

    1+L

    !"

    VN

    ( )#$%&'(M

    6E) M

    !"

    L6E

    VN

    ( ))L

    6E

    VN

    #

    $

    %%%%

    &

    '

    ((((

    !6E

    0

    1

    77777

    2

    77777

    3

    4

    77777

    5

    77777

    !Multiply matrices

    !Substitute

    Simplification of Angle-of-Attack-Rate Effects

    ! !q

    ! !"

    #

    $%%

    &

    '(("

    Mq+ M

    !"{ } M") M !" L"VN

    ( ){ }1 )

    L"

    VN

    ( )

    #

    $

    %%%%%

    &

    '

    (((((

    !q

    !"

    #

    $%%

    &

    '((+

    M*E) M

    !"

    L*E

    VN

    ( )) L

    *E

    VN

    ( )

    #

    $

    %%%%

    &

    '

    ((((

    !*E

    ! Typically Lq and L !! have small effects for large aircraft*

    Mq and M!! are same order of magnitudeand have more significant effects

    !Neglecting Lqand L

    !!

    * but not for small aircraft, e.g.,R/C models and micro-UAVs

    2nd-Degree Characteristic Polynomial with

    !Short-period characteristic polynomial

    !Damping is increased

    !Natural frequency is unaffected

    ! s( ) =s " M

    q+ M

    !#( )$% &' " M#"M!# L#VN( )$%( &')

    "1 s+L

    #

    VN

    ( )$%(&

    ')

    = s" Mq+ M

    !#( )$% &' s +L

    #

    VN

    ( )$%(&')" M

    #" M

    !#

    L#

    VN

    ( )$%(&')

    ! s( ) = s2 + L"VN

    ( )# Mq + M!"( )$%&'()s+ M"#Mq

    L"

    VN

    ( )$%&'()

    *+,

    -./

    = s2

    + 201ns+1n2

    = 0

    Lq and L !! " 0

    = s2+

    L!

    VN

    ( )" Mq + M!!( )#$%&

    '(s+ M

    !" M

    q+ M

    !!( ) L

    !

    VN

    ( )#$%&

    '(+M

    !!

    L!

    VN

    ( ))*+,-.

  • 8/11/2019 Mae 331 Lecture 18

    3/16

    Linear, Time-Invariant Fourth-OrderLongitudinal Model

    (Neglecting angle-of-attack-rate aero)

    !!V(t)

    !!"(t)

    ! !q(t)

    !!#(t)

    $

    %

    &&&&&

    '

    (

    )))))

    =

    *DV

    *g 0 *D#

    LVVN

    0 0 L#

    VN

    MV

    0 Mq M#

    *LVVN

    0 1 *L#VN

    $

    %

    &&&&&&&

    '

    (

    )))))))

    !V(t)

    !"(t)

    !q(t)

    !#(t)

    $

    %

    &&&&&

    '

    (

    )))))

    +

    0 T+T 0

    0 0 L+F/ VN

    M+E 0 0

    0 0 *L+F/ VN

    $

    %

    &&&&&

    '

    (

    )))))

    !+E(t)

    !+T(t)

    !+F(t)

    $

    %

    &&&

    '

    (

    )))

    Stability and control derivatives are defined at atrimmed (equilibrium) flight condition

    Perturbations to the Trimmed Condition

    Initial pitch rate [q(0)] = 0.1 rad/s Elevator step input [ E(0)] = 1 deg

    Small linear and nonlinearperturbations are virtually identical

    Steady-State Response

    Steady-State Response of the 4th-OrderLTI Longitudinal Model

    !VSS!"SS!qSS!#SS

    $

    %

    &&&&&

    '

    (

    )))))

    =*

    *DV *g 0 *D#LV

    VN0 0

    L#VN

    MV 0 Mq M#

    *LVVN

    0 1 *L#VN

    $

    %

    &&&&&&&

    '

    (

    )))))))

    *1

    0 T+T 0

    0 0 L+F/VN

    M+E 0 0

    0 0 *L+F/VN

    $

    %

    &&&&&

    '

    (

    )))))

    !+ESS

    !+TSS

    !+FSS

    $

    %

    &&&

    '

    (

    )))

    !xSS

    = "F"1G!u

    SS

    How do we calculate the equilibrium response to control?

    !!x(t) = F!x(t)+G!u(t)

    For the longitudinal model

  • 8/11/2019 Mae 331 Lecture 18

    4/16

    Algebraic Equation forEquilibrium Response

    !VSS

    !"SS

    !qSS

    !#SS

    $

    %

    &&&&&

    '

    (

    )))))

    =

    *gM+EL#

    VN

    $%&

    '()

    0 gM#L+F/ VN[ ]

    DV

    L#

    VN*D

    #

    LV

    VN( )M

    +E

    $

    %&

    '

    () M

    V

    L#

    VN*M

    #

    LV

    VN( )T+T

    $

    %&

    '

    () D

    #M

    V

    *DV

    M#( )

    L+F

    / VN

    $%

    '(

    0 0 0

    *gM+EL

    V

    VN

    $%&

    '()

    0 L+F/ VN[ ]

    $

    %

    &&&

    &&&&&

    '

    (

    )))

    )))))

    g MVL#

    VN*M#

    LV

    VN( )

    !+ESS

    !+TSS

    !+FSS

    $

    %

    &&&

    '

    (

    )))

    !VSS

    !"SS

    !qSS

    !#SS

    $

    %

    &&&&&

    '

    (

    )))))

    =

    a 0 b

    c d e

    0 0 0

    f 0 g

    $

    %

    &&&&

    '

    (

    ))))

    !*ESS

    !*TSS

    !*FSS

    $

    %

    &&&

    '

    (

    )))

    Roles of stability and controlderivatives identified

    Result is a simple equation relatinginput and output

    4th-Order Steady-State Response MayBe Counterintuitive!VSS =a!"ESS + 0( )!"TSS + b!"FSS!#SS =c!"ESS +d!"TSS+ e!"FSS

    !qSS = 0( )!ESS + 0( )!"TSS + 0( )!"FSS!$SS = f!"ESS+ 0( )!"TSS+ g!"FSS

    Observations Thrust command

    Elevator and flap commands

    Steady-state pitch rate is zero

    4th-order model neglects air density gradient effects

    !"SS = !#SS + !$SS = c + f( )!%ESS +d!%TSS + e +g( )!%FSS

    Steady-state pitch angle

    Effects of Stability DerivativeVariations on 4th-Order

    Longitudinal Modes

    Primary and Coupling Blocks of theFourth-Order Longitudinal Model

    FLon =

    !DV !g 0 !D"

    LVVN 0 0 L"

    VN

    MV 0 Mq M"

    !LVVN

    0 1 !L"VN

    #

    $

    %

    %%%%%%

    &

    '

    (

    ((((((

    =

    FPh FSPPh

    FPhSP

    FSP

    #

    $

    %%

    &

    '

    ((

    Some stability derivatives appear only in primaryblocks (DV, Mq, M) Effects are well-described by 2nd-order models

    Some stability derivatives appear only in couplingblocks (MV, D) Effects are ignored by 2nd-order models

    Some stability derivatives appear in both (LV, L)

    Require 4th

    -order modeling

  • 8/11/2019 Mae 331 Lecture 18

    5/16

    M

    Effect on 4th-Order Roots

    ShortPeriod

    ShortPeriod

    Phugoid

    Phugoid

    !Lon

    (s)= s4+ D V+

    L"

    VN#M

    q( ) s3

    + g#D"

    ( )LV VN+D

    V

    L"

    VN#M

    q( )#Mq L" VN #M"o$%&

    '()

    s2

    + Mq

    D"# g( )LV

    VN#D

    V

    L"

    VN

    $

    %&

    '

    ()+D"MV# DVM"o

    { }s

    + g MVL

    "

    VN

    #M"o

    LV

    VN

    ( )#!M" s2 +DVs+ gLV VN

    ( )* d(s)+ kn(s)

    Group all terms multiplied by M

    to form numerator for M #

    M

    Effect on 4th-Order RootsPrimary effect: The same as in the approximate short-

    period model

    Numerator zeros The same as the approximate phugoid mode characteristic

    polynomial

    Effect of M

    variation on phugoid mode is small#

    ShortPeriod

    ShortPeriod

    Phugoid

    Phugoid

    Direct Thrust Effect on SpeedStability, TV

    In steady, level flight, nominal thrust balances nominal drag

    !T

    !V=

    0

    TN! D

    N = C

    TN

    1

    2

    "VN

    2S! C

    DN

    1

    2

    "VN

    2S = 0

    Effect of velocity change

    Small velocity perturbation grows if Therefore

    propelleris stabilizing for velocity change

    turbojethas neutral effect

    ramjetis destabilizing

    Pitching Moment Due to Thrust, MV Thrust line above or below center of mass induces a pitching moment

    Aerodynamic and thrust pitching moments sensitive to velocityperturbation

    Couples phugoid and short-period modes

    Martin XB-51

    McDonnell Douglas MD-11

    Consolidated PBY

    Fairchild-Republic A-10

  • 8/11/2019 Mae 331 Lecture 18

    6/16

    Negative "M/"V(Pitch-down effect) tends to increase velocity

    Positive "M/"V(Pitch-up effect) tends to decrease velocity

    With propeller thrust line above the c.m., increased velocitydecreases thrust, producing a pitch-up moment

    Tilting the thrust line can have benefits

    Up: Lake Amphibian, MD-11

    Down: F6F, F8F, AD-1!M

    thrust

    !V"

    !T

    !V# Moment Arm

    Douglas AD-1

    Lake Amphibian

    Grumman F8F

    McDonnell DouglasMD-11

    Pitching Moment Due to Thrust, MVMVEffect on 4

    th-OrderRoots

    Large positive value producesoscillatory phugoid instability

    Large negative value producesreal phugoid divergence

    !Lon

    (s)= s4+ D

    V+L

    "

    VN#M

    q

    ( )s3

    + g#D"

    ( )L

    V

    VN

    +DV

    L"

    VN

    #Mq( )#Mq L"V

    N

    #M"

    $

    %&'

    ()s2

    + Mq D

    "# g( )

    LV

    VN

    #DV

    L"

    VN

    $%&

    '()+D

    "M

    V#D

    VM

    "{ }sgM

    "

    LV

    VN

    +MV D

    "s+g

    L"

    VN

    ( ) = 0

    D"=0

    ShortPeriod

    Phugoid

    L

    /VNand LV/VNEffects onFourth-Order Roots

    LV/VN: Damped naturalfrequency of the phugoid

    Negligible effect on the short-period

    L

    /VN: Increased dampingof the short-period

    Small effect on the phugoidmode

    ShortPeriod

    Phugoid

    Pitch and ThrustControl Effects

  • 8/11/2019 Mae 331 Lecture 18

    7/16

  • 8/11/2019 Mae 331 Lecture 18

    8/16

    Elevator-to-Normal-VelocityTransfer Function

    !w(s)

    !"E(s)=

    n"Ew

    (s)

    !Lon(s)=

    M"E s2 +2#$ns +$n2( )Approx Ph s %z3( )s2 +2#$ns +$n

    2( )Ph

    s2 +2#$ns +$n2( )

    SP

    Normal velocity transfer function is analogousto angle of attack transfer function(! #!w/VN)

    z3often neglected due to high frequency

    Elevator-to-Normal-VelocityFrequency

    Response

    !w(s)

    !"E(s)=

    n"Ew

    (s)

    !Lon(s)#

    M"E s2+2$%ns +%n

    2( )Approx Ph

    s &z3( )

    s2+2$%ns +%n

    2( )Ph

    s2+2$%ns +%n

    2( )SP

    0 dB/dec+40 dB/dec

    0 dB/dec

    40 dB/dec

    20 dB/dec

    (n q) = 1

    Complex zeroalmost (but notquite) cancelsphugoidresponse

    Elevator-to-Pitch-RateNumerator and Transfer Function

    HxAdj sI ! FLon( )G = 0 0 1 0"# $%

    nVV

    (s) n&V

    (s) nqV

    (s) n'V

    (s)

    nV&

    (s) n&&

    (s) nq&

    (s) n'&

    (s)

    nVq

    (s) n&q

    (s) nqq

    (s) n'q

    (s)

    nV'

    (s) nV'

    (s) nV'

    (s) nV'

    (s)

    "

    #

    ((((((

    $

    %

    ))))))

    00

    M*E

    0

    "

    #

    ((((

    $

    %

    ))))

    =n*Eq

    (s)

    !q(s)

    !"E(s)=

    n"Eq

    (s)

    !Lon

    (s)#

    M"Es s $z1( ) s $z2( )s2+2%&ns +&n

    2( )Ph

    s2+2%&ns +&n

    2( )SP

    Free s

    in numerator differentiatespitch angle transfer function

    Elevator-to-Pitch-Rate FrequencyResponse

    +20 dB/dec

    +20 dB/dec+40 dB/dec

    0 dB/dec20 dB/dec

    !qSS= 0

    ( )!"E

    SS+ 0

    ( )!"T

    SS+ 0

    ( )!"F

    SS

    (n q) = 1Negligible low-

    frequency response,except at phugoidnatural frequency

    High-frequencyresponse wellpredicted by 2nd-order model

    !q(s)

    !"E(s)=

    n"E

    q(s)

    !Lon

    (s)#

    M"E

    s s $z1( ) s $z2( )s

    2+2%&ns +&n

    2( )Ph

    s2+2%&n s +&n

    2( )SP

  • 8/11/2019 Mae 331 Lecture 18

    9/16

    Transfer Functions of Elevator Inputto Angle Output*

    !"(s)

    !#E(s)=

    n#E

    "(s)

    !Lon

    (s); n

    #E

    "(s)= M

    #E s+ 1

    T"1

    $

    %&

    '

    () s+ 1

    T"2

    $

    %&

    '

    ()

    !"(s)

    !#E(s)=

    n#E"

    (s)

    !Lon(s); n#E

    "(s)=M#E s

    2+2$%ns+%n

    2( )Approx Ph

    !"(s)

    !#E

    (s)

    =

    n#E"

    (s)

    !Lon(s)

    ; n#E"

    (s)= M#EL$

    VN

    s+ 1T"

    1

    %

    &

    '(

    )

    *

    Elevator-to-Flight Path Angle transfer function

    Elevator-to-Angle of Attack transfer function

    Elevator-to-Pitch Angle transfer function

    * Flying qualities notation for zero time constants

    Frequency Response ofAngles to Elevator Input

    Pitch angle frequencyresponse (!%= !$+ !)

    Similar to flight pathangle near phugoidnatural frequency

    Similar to angle ofattack near short-period naturalfrequency

    !"SS =c!#ESS

    !$SS = f!#ESS

    !%SS = c & f( )!#ESS

    Transfer Functions of ThrustInput to Angle Output

    !"(s)

    !#T(s)=

    n#T

    " (s)

    !Lon

    (s); n

    #T

    " (s) = T#T

    s + 1T

    "T

    $%&

    '()

    !"(s)

    !#T(s)=

    n#T

    "(s)

    !Lon

    (s); n

    #T

    "(s) =T

    #Ts s + 1

    T"T

    $%&

    '()

    !"(s)

    !#T(s)=

    n#T" (s)

    !Lon

    (s); n#T

    "(s) =T#T

    LV

    VNs

    2+2$%

    ns +%

    n

    2( )Approx SP

    Thrust-to-Flight Path Angle transfer function

    Thrust-to-Angle of Attack transfer function

    Thrust-to-Pitch Angle transfer function

    Frequency Response of Anglesto Thrust Input

    Primarily effects flight path angle and low-frequency pitch angle

  • 8/11/2019 Mae 331 Lecture 18

    10/16

    Gain and Phase Margins:The Nichols Chart

    Nichols Chart:Gain vs. Phase Angle

    Bode Plot

    Two plots

    Open-Loop Gain (dB) vs. log10&

    Open-Loop Phase Angle vs. log10

    Nichols Chart

    Single crossplot; inputfrequency not shown

    Open-Loop Gain (dB) vs. Open-

    Loop Phase Angle

    Gain and Phase Margins

    Gain Margin At the input frequency, &, for which '(j&) = 180

    Difference between 0 dBand transfer function magnitude,

    20 log10AR(j&)

    Phase Margin At the input frequency, &, for which 20 log10AR(j&) = 0 dB

    Difference between the phase angle '(j&), and180

    Axis intercepts on the Nichols Chart identify GMand PM

    Examples of Gain and Phase Margins

    Bode Plot# Nichols Chart

    Hblue(j!) =

    10

    j!+ 10( )

    "

    #$

    %

    &'

    1002

    j!( )2+2 0.1( ) 100( ) j!( ) +1002

    "

    #$$

    %

    &''

    Hgreen

    (j!) =10

    2

    j!

    ( )

    2+2 0.1

    ( )10

    ( ) j!

    ( )+10

    2

    "

    #

    $

    $

    %

    &

    '

    '

    100

    j!+ 100

    ( )

    "

    #

    $%

    &

    '

  • 8/11/2019 Mae 331 Lecture 18

    11/16

    Gain and Phase Margins inPitch-Tracking Task

    Elevator-to-Pitch-AngleBode Plot

    Elevator-to-Pitch-AngleNichols Chart

    Amplitude Ratio vs. Phase Angle

    Gain Margin:Amplitude ratio below 0 dBwhen phase angle = 180

    Phase Margin:Phase angle above 180when amplitude ratio = 0 dB

    Pilot-Vehicle Interactions

    Pilot Inputs to Control

    * p. 421-425, Flight Dynamics

    Effect of Pilot Dynamics onPitch-Angle Control Task

    Pilot Transfer Function =!u s( )!"

    s( )

    = KP1/TP

    s+1/

    TP

    = KP1/ 0.25

    s+1/ 0.25

    Pilot introduces neuromuscular lag while closing the control loop

    Example

    Model the lag by a 1st-order time constant, TP, of 0.25 s

    Pilots gain, KP, is either 1 or 2

  • 8/11/2019 Mae 331 Lecture 18

    12/16

    Open-Loop Pilot-AircraftTransfer Function

    H(s) = KP

    1 /TP

    s +1 /TP( )

    !

    "#

    $

    %&

    M'E s +

    1T(1

    )*+

    ,-. s + 1

    T(2

    )*+

    ,-.

    s2+2/0

    ns +0

    n

    2( )Ph

    s2+2/0

    ns +0

    n

    2( )SP

    !

    "

    ####

    $

    %

    &&&&

    Effect of PilotDynamics onPitch-Angle

    Control Task

    Gain and phasemargins becomenegative for pilotgain between 1and 2

    Then, pilotdestabilizes thesystem (PIO)

    Effect of Pilot Dynamics on Elevator/Pitch-Angle Control Root Locus

    Pilot transfer function changes asymptotes of the root locus

    Configuration Effects

  • 8/11/2019 Mae 331 Lecture 18

    13/16

    Pitch Up Crossplot CLvs. Cm

    Positive break in Cmdue to forward movementof center of pressure, decreasing static margin

    F-100 crash due to tip stallhttp://www.youtube.com/watch?v=NyJkKcXYqSU&feature=related

    North American F-100

    Sweep Effect on Pitch MomentCoefficient, CLvs. Cm

    c/4= 0

    Low center of pressure(c.p.) in front of the quarterchord

    Stable break at stall (c.p.moves aft)

    c/4= 15

    Low c.p. aft of the quarter-chord

    Stable break at stall (c.p.moves aft)

    c/4= 30

    Low c.p. aft of the quarter-chord

    Unstable break at stall (c.p.moves forward)

    Outboard wing stalls beforeinboard wing (tip stall)

    Cm()

    CL()

    Stall

    NACA TR-1339

    StableBreak

    Stall UnstableBreak

    Pitch Up and Deep Stall, Cmvs.

    Possibility of 2stable equilibrium(trim) points with

    same controlsetting

    Low

    High #

    High-angle trim iscalled deep stall Low lift

    High drag

    Large controlmoment required toregain low-angletrim

    Shortal-MagginLongitudinal

    Stability Boundaryfor Swept Wings

    Stable or unstable pitchbreak at the stall

    Stability boundary isexpressed as a function of

    Aspect ratio

    Sweep angle of thequarter chord

    Taper ratio

    AR

    c/4NACA TR-1339

  • 8/11/2019 Mae 331 Lecture 18

    14/16

  • 8/11/2019 Mae 331 Lecture 18

    15/16

    Numerical Solution to Estimate theTrimmed Condition for Level Flight

    Specify desired altitude and airspeed, hNand VN

    Guess starting values for the trim parameters, T0, E0, and %0#

    Calculate starting values of f1, f2, and f3

    f1, f2, and f3= 0 in equilibrium, but not for arbitrary T0, E0, and %0

    Define a scalar, positive-definite trim error cost function, e.g.,

    f1=

    1

    mT !T,!E,",h,V( )cos #+ i( )$D !T,!E,",h,V( )%& '(

    f2 =

    1

    mVNT !T,!E,",h,V( )sin #+ i( )+L !T,!E,",h,V( )$mg%& '(

    f3= M !T,!E,",h,V( ) /Iyy

    J !T,!E,"( ) = a f12( )+b f22( )+ c f32( )

    Minimize the Cost Function withRespect to the Trim Parameters

    Cost is minimized at bottom of bowl, i.e., when

    !J

    !"T

    !J

    !"E

    !J

    !#

    $

    %&

    '

    ()= 0

    Error cost is bowl-shaped

    Search to find the minimum value of J

    J !T,!E,"( ) = a f12( )+b f22( )+ c f32( )

    Example of Search for TrimmedCondition (Fig. 3.6-9, Flight Dynamics)

    In MATLAB, usefminsearch[Nelder-Mead Downhill Simplex Method]to find trim settings

    !T*,!E*,"*( ) = fminsearch J, !T,!E,"( )#$ %&

    Airspeed Frequency Response toElevator and Thrust Inputs

    Response is primarily through the lightly dampedphugoid mode

  • 8/11/2019 Mae 331 Lecture 18

    16/16

    Altitude Frequency Responseto Elevator and Thrust Inputs

    Altitude perturbation:Integral of the flight path angle perturbation

    !z(t) ="VN

    !#($)d$0

    t

    %

    !z(s)

    !"E(s)

    =# V

    N

    s

    $

    %&

    '

    ()

    !*(s)

    !"E(s)

    !z(s)

    !"T(s)

    =# V

    N

    s

    $

    %&

    '

    ()

    !*(s)

    !"T(s)

    High- and Low-Frequency Limits ofFrequency Response Function

    Hij(j"# 0)#kij j"( )

    q+ b

    q$1 j"( )q$1

    + ...+ b1 j"( )+ b0[ ]j"( )

    n+a

    n$1 j"( )n$1

    + ...+a1 j"( )+a0[ ]

    #

    kijb0

    a0

    , b0%0

    kijj(0)b

    1

    a0

    , b0= 0,b

    1%0,etc.

    &

    '((

    )((

    Hij(j") =AR(")ej#(")

    Hij(j"#$)#

    kij j"( )q+bq%1 j"( )

    q%1+...+b

    1 j"( ) +b0[ ]

    j"( )n+an%1 j"( )

    n%1+...+a1 j"( ) +a0[ ]

    #kij

    j"( )n%q

    Feedback Control: Angles to Elevator

    Variations incontrol gain

    Principal effect ison short-periodroots