5
1 MAE140 Win12 HW4 Solutions T R & T, 3.9, 3.10, 3.12, 3.15 a) and c), 3.20 a) and b), 3.22, 3.26, 4.2, 4.6, 4.13 39 (a) To write meshcurrent equations by inspection, we note that the total resistances in mesh A and B are 10 + 5, and 10 + 5, respectively. The resistance common to meshes A and B is 5. Using these observations, we write the mesh equations as, Mesh A: 10 + 5 ! βˆ’ 5 ! βˆ’ 12 = 0 Mesh B: 10 + 5 ! βˆ’ 5 ! + 4 = 0 (b) Solving the equations, we can get: ! = 0.8, ! = 0 (c) Using the results, ! = 10 ! = 8 ! = ! βˆ’ ! = 0.8 310 (a) Writing meshcurrent equations by inspection, we can get: β„Ž : 4 + 2 + 4 ! βˆ’ 4 ! βˆ’ 15 + 15 = 0 β„Ž : 4 + 2 + 4 ! βˆ’ 4 ! βˆ’ 15 = 0 (b) Solving the matrix, we can get ! = 0.7143 , ! = 1.7857 (c) Using the results, ! = 4 ! = 7.14 ! = ! βˆ’ ! = 1.07

MAE 140 Winter 12 HW4 Solutions - guitar.ucsd.edu

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

 

 

1  

 

MAE140  Win12  HW4  Solutions  T  R  &  T,  3.9,  3.10,  3.12,  3.15  a)  and  c),  3.20  a)  and  b),  3.22,  3.26,  4.2,  4.6,  4.13    3-­‐9  

 

 (a) To  write  mesh-­‐current  equations  by  inspection,  we  note  that  the  total  resistances  in  mesh  A  and  B  are  

10π‘˜π›Ί + 5π‘˜π›Ί,  and  10π‘˜π›Ί + 5π‘˜π›Ί,  respectively.  The  resistance  common  to  meshes  A  and  B  is  5π‘˜π›Ί.  Using  these  observations,  we  write  the  mesh  equations  as,    

Mesh  A: 10π‘˜π›Ί + 5π‘˜π›Ί 𝑖! βˆ’ 5π‘˜π›Ίπ‘–! βˆ’ 12𝑉 = 0  

Mesh  B:   10π‘˜π›Ί + 5π‘˜π›Ί 𝑖! βˆ’ 5π‘˜π›Ίπ‘–! + 4𝑉 = 0  

 

(b) Solving  the  equations,  we  can  get:    

𝑖! = 0.8π‘šπ΄, 𝑖! = 0π‘šπ΄  

(c) Using  the  results,    

𝑣! = 10π‘˜π›Ίπ‘–! = 8𝑉  

𝑖! = 𝑖! βˆ’ 𝑖! = 0.8π‘šπ΄  

3-­‐10  

 (a) Writing  mesh-­‐current  equations  by  inspection,  we  can  get:  

π‘€π‘’π‘ β„Ž  π΄: 4π‘˜π›Ί + 2π‘˜π›Ί + 4π‘˜π›Ί 𝑖! βˆ’ 4π‘˜π›Ίπ‘–! βˆ’ 15𝑉 + 15𝑉 = 0  

π‘€π‘’π‘ β„Ž  π΅:   4π‘˜π›Ί + 2π‘˜π›Ί + 4π‘˜π›Ί 𝑖! βˆ’ 4π‘˜π›Ίπ‘–! βˆ’ 15𝑉 = 0  

(b) Solving  the  matrix,  we  can  get  

𝑖! = 0.7143  π‘šπ΄, 𝑖! = 1.7857  π‘šπ΄  

(c) Using  the  results,    

𝑣! = 4π‘˜π›Ί  π‘–! = 7.14𝑉  

𝑖! = 𝑖! βˆ’ 𝑖! = 1.07  π‘šπ΄  

 

 

2  

 

3-­‐12  

 

 

 

 

 (a) Creating  a  supermesh  as  shown  in  the  figure,  we  can  get  

𝑖! = 𝑖! βˆ’ 𝑖!    

𝑅! + 𝑅! 𝑖! + 𝑅! + 𝑅! + 𝑅! 𝑖! βˆ’ 𝑣! = 0  

(b) Using  the  given  values,  we  can  get  

𝑖! = βˆ’25π‘šπ΄, 𝑖! = 75π‘šπ΄  

                                         So  we  obtain,    

𝑣! = 𝑖!𝑅! = 18.75𝑉  π‘–! = βˆ’π‘–! = 0.025  π΄  

(c) The  total  power  π‘ƒ = 𝑖!! 𝑅! + 𝑅! + 𝑖!! 𝑅! + 𝑅! + 𝑅! βˆ’ 𝑖!𝑣! = 3.75π‘Š.    Please  pay  attention  to  the  direction  of  the  current  and  voltage.    

 

3-­‐15      

 

 

(a) Writing  mesh-­‐current  equations  by  inspection,  we  can  get:    π‘€π‘’π‘ β„Ž  π΄: 𝑖! 2π‘˜π›Ί + 4π‘˜π›Ί βˆ’ 𝑖! βˆ™ 4π‘˜π›Ί βˆ’ 𝑖! βˆ™ 2π‘˜π›Ί = 40𝑉    π‘€π‘’π‘ β„Ž  π΅:   βˆ’ 𝑖! βˆ™ 4π‘˜π›Ί + 𝑖! 4π‘˜π›Ί + 8π‘˜π›Ί = 25𝑉    π‘€π‘’π‘ β„Ž  πΆ: 𝑖! = 5π‘šπ΄      

(c) Node  voltage;  there  is  only  one  equation  to  solve.  

   

𝑖!   𝑖!  

supermesh  

 

 

3  

 

 

3-­‐20  

 

 

 

 

 

(a) Writing  the  mesh-­‐current  equations  by  inspection,  we  can  get:  π‘€π‘’π‘ β„Ž  π΄: 4π‘˜π›Ί + 10π‘˜π›Ί 𝑖! βˆ’ 10π‘˜π›Ί βˆ™ 𝑖! + 10 = 0    π‘€π‘’π‘ β„Ž  π΅:   βˆ’ 10π‘˜π›Ίπ‘–! + 1π‘˜π›Ί + 10π‘˜π›Ί + 2π‘˜π›Ί 𝑖! βˆ’ 2π‘˜π›Ίπ‘–! = 0    π‘€π‘’π‘ β„Ž  πΆ:   βˆ’ 2π‘˜π›Ίπ‘–! + 2π‘˜π›Ί + 8π‘˜π›Ί + 6π‘˜π›Ί 𝑖! βˆ’ 6π‘˜π›Ίπ‘–! = 0    π‘€π‘’π‘ β„Ž  π·: 6π‘˜π›Ίπ‘–! βˆ’ 6π‘˜π›Ίπ‘–! βˆ’ 10 βˆ’ 5 = 0    Write  in  matrix  form:  4π‘˜π›Ί + 10π‘˜π›Ί βˆ’10π‘˜π›Ί 0 0βˆ’10π‘˜π›Ί 1π‘˜π›Ί + 10π‘˜π›Ί + 2π‘˜π›Ί βˆ’2π‘˜π›Ί 00 βˆ’2π‘˜π›Ί 2π‘˜π›Ί + 8π‘˜π›Ί + 6π‘˜π›Ί βˆ’6π‘˜π›Ί0 0 βˆ’6π‘˜π›Ί 6π‘˜π›Ί

𝑖!𝑖!𝑖!𝑖!

=

βˆ’100015

 

Solving  the  equations,  we  can  get        π‘–! = βˆ’1.2565  π‘šπ΄        π‘–! = βˆ’0.7592  π‘šπ΄        π‘–! =  1.3482  π‘šπ΄          π‘–! = 3.8482  π‘šπ΄  

 (b) By  looking  at  the  figure,  we  can  find  v! = 5V,  v! = 15V.  Then  we  can  write  the  node-­‐voltage  equations.    

Node  B:  βˆ’ !!𝑣! +

!!+ !

!"+ 1 𝑣! βˆ’ 𝑣! βˆ’

!!"𝑣! = 0  

Node  C:  βˆ’𝑣! + 1 + !!+ !

!𝑣! βˆ’

!!𝑣! = 0  

Solving  the  equations,  we  can  get      π‘£! =  10.0262  V      π‘£! =  10.7853  V    It’s  obvious  that  node-­‐voltage  needs  less  effort.        

3-­‐22  

Using  current  division,  we  can  get  

𝑖! =

1𝑅! + 𝑅!

1𝑅!+ 1𝑅!

+ 1𝑅! + 𝑅!

𝑖!    β‡’      πΎ =𝑖!𝑖!=

1𝑅! + 𝑅!

1𝑅!+ 1𝑅!

+ 1𝑅! + 𝑅!

 

 

A  

B  

C  

D  

 

 

4  

 

_+

12V

200

200

100

6V

200

200

100

_+

 3-­‐26            

   

                                                                                                                                                           π‘£!! = 12𝑉 βˆ™ !""||!""!""!!""||!""

  = 3𝑉          π‘£!! = 6𝑉 βˆ™ !""||!""!""!!""||!""

  = 3𝑉  

𝑣! = 𝑣!! + 𝑣!! = 6𝑉        4-­‐2  

 Using  the  current  division  in  the  input  circuit,  we  can  get  

𝑖! =100

100 + 100𝑖! =

12𝑖!  

Similarly,  the  output  current  π‘–!  can  be  found  in  the  output  circuit  by  current  division.    

𝑖! =2

2 + 2𝑖! =

12𝑖!  

At  node  A,  KCL  requires  that  π‘–! = βˆ’100𝑖! = βˆ’50𝑖!.  So  we  can  get  

𝑖! =12𝑖! = βˆ’25𝑖!    β‡’    

𝑖!𝑖!= βˆ’25  

Using  Ohm’s  law,  we  can  get  π‘£! = 2000𝑖! = βˆ’5Γ—10!𝑖!  

𝑣! = 100𝑖! = 50𝑖!  π‘£!𝑣!

=βˆ’5Γ—10!𝑖!20𝑖!

= βˆ’1000  

The  power  supplied  by  the  independent  current  source  is    π‘ƒ! = 100||100 𝑖!! = 0.2  π‘šπ‘Š  

The  power  delivered  to  the  2π‘˜Ξ©  load  is    π‘ƒ! = 2000𝑖!! = 5π‘Š  

 

A        π‘–!  

 

 

5  

 

   Applying  KCL  at  node  A,  we  can  get:  

𝑖! + 𝛽𝑖! βˆ’ 𝑖! = 0   β‡’     𝑖! =1

1 βˆ’ 𝛽𝑖!  

𝑖! = βˆ’π›½π‘–! =𝛽

𝛽 βˆ’ 1𝑖!    β‡’    

𝑖!𝑖!=

𝛽𝛽 βˆ’ 1

 

 

 Using  Ohm’s  law,  we  can  get  

𝑅!" =𝑣!"𝑖!

=𝑖!𝑅𝑖!

 

 At  node  A,  applying  KCL,    

𝑖! βˆ’ 𝑖! + 𝛽𝑖! = 0     β‡’       𝑖! =1

1 βˆ’ 𝛽𝑖!

 So  the  result  is    

𝑅!" =1

1 βˆ’ 𝛽𝑅  

+  

𝑣!"  

-­‐  

A