35
Machine learning action parameters for lattice QCD Emmy Trewartha

Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Machine learning action parameters for lattice QCD

Emmy Trewartha

Page 2: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Hybrid Monte-Carlo

Page 3: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Critical Slowing down

S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93 (2011), 1009.5228

Page 4: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Multiscale Lattice Generation

From Endres et al, PRD 92 no. 11 114516 (2015)

Page 5: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Multiscale Lattice Generation - Parameter Matching

From Endres et al, PRD 94 no. 11 114502 (2016)

Page 6: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Can neural networks help?

?

Page 7: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Previous work: NNs able to learn SU(2) deconfinement transition using Polyakov loop

SJ Wetzel and M Scherzer, PRB96 no. 18 184410 (2017)

Page 8: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Neural Networks

Page 9: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93
Page 10: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93
Page 11: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93
Page 12: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Training set:

123 × 36 SU(2) ensembles of 1000 configurations each

Two grids in β, m space:

β ∈ {1.785, 1.835, 1.885, 1.935, 1.985} and m ∈ {−0.7, −0.8, −0.9, −1.0}, excluding the pair {β, m} = {1.985, −1.0}

β ∈ {1.76, 1.81, 1.86, 1.91} and m ∈ { −0.75, −0.85, −0.95, −1.05}, excluding the pair {β, m} = {1.91, −1.05}

850 randomly selected configurations used for training, 150 for validation

Page 13: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

First Attempt: Configurations as input directly

Page 14: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93
Page 15: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Measure independence of configs using autocorrelation;

At large τ behaves as;

Then define

Page 16: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93
Page 17: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Define;

Generate ten independent streams of 10,000 trajectories denoted F1, . . . , F10, saved every trajectory, generated with the same values of β = 1.76 and m0 = −0.75.

Page 18: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Autocorrelation from classifier network

Page 19: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Interpretability - custom network design?

SJ Wetzel and M Scherzer, PRB96 no. 18 184410 (2017)

Page 20: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Interpretability - interpretable mid-layers?

Page 21: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Interpretability - Partial Derivatives?

K. Simonyan, A. Vedaldi, and A. Zisserman. ICLR Workshop, 2014

Page 22: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Interpretability - Pixelwise Relevance?

Bach S, Binder A, Montavon G, Klauschen F, Müller KR, et al. (2015) PLOS ONE 10(7): e0130140

Page 23: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Interpretability -Pixelwise Relevance?

Page 24: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Sitewise Classifier Derivatives

Page 25: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Incorporating Symmetries in Network Design

Page 26: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Incorporating Symmetries in Network Design

Page 27: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Second attempt: Incorporate symmetries directly

Page 28: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93
Page 29: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Symmetrized Loops Correlated Products

Page 30: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

Correlated Products on Test Ensembles

Page 31: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93
Page 32: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93
Page 33: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93
Page 34: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93
Page 35: Machine learning action parameters for lattice QCD · Emmy Trewartha. Hybrid Monte-Carlo. Critical Slowing down S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Nucl. Phys. B845, 93

SummarySymmetry respecting neural networks are able to solve the lattice parameter regression problem well

Fully connected networks reveal an unknown feature of longer correlation length than any observable studied

Neural networks are able to learn non-trivial features of lattice gauge field theories