24
1 Spring 2003 Prof. Tim Warburton [email protected] MA557/MA578/CS557 Lecture 8

MA557/MA578/CS557 Lecture 8

  • Upload
    dayton

  • View
    51

  • Download
    5

Embed Size (px)

DESCRIPTION

MA557/MA578/CS557 Lecture 8. Spring 2003 Prof. Tim Warburton [email protected]. Discontinuous Galerkin Scheme. Recall that under sufficient conditions (i.e. smoothness) on an interval we obtained the density advection PDE We again divide the pipe into sections divided by x 1 ,x 2 ,…,x N . - PowerPoint PPT Presentation

Citation preview

Page 1: MA557/MA578/CS557 Lecture 8

1

Spring 2003Prof. Tim [email protected]

MA557/MA578/CS557Lecture 8

Page 2: MA557/MA578/CS557 Lecture 8

2

Discontinuous Galerkin Scheme

• Recall that under sufficient conditions (i.e. smoothness) on an interval we obtained the density advection PDE

• We again divide the pipe into sections divided by x1,x2,…,xN .

• On each section we are going to solve a weak version of the advection equation.

0q qut x

1

1 1

1

Find , such that ,i

i

p pi i i i i

xi i

i i i i ix

P x x v P x x

v u dx v x u x xt x

Page 3: MA557/MA578/CS557 Lecture 8

3

1

1 1

1

Find , such that ,i

i

p pi i i i i

xi i

i i i i ix

P x x v P x x

v u dx v x u x xt x

In the i’th cell we will calculate an approximation of q, denoted by . Typically, this will be a p’th order polynomial on the i’th interval. We will solve the following weak equation for i=1,..,N-1

i

x1 x2 x3 xNxN-1

12

31N

i

Page 4: MA557/MA578/CS557 Lecture 8

4

Discretization of Pp

• In order to work with the DG scheme we need to choose a basis for Pp and formulate the scheme as a finite dimensional problem

• We expand the density in terms of the Legendre polynomials

1

1 1

1

Find , such that ,i

i

p pi i i i i

xi i

i i i i ix

P x x v P x x

v u dx v x u x xt x

,0

,

1

1

where: is the m'th coefficient of the Legendre

expansion of the density in the i'th cell.2

m p

i i m mm

i m

i i

i i

L x

x x xxx x

Page 5: MA557/MA578/CS557 Lecture 8

5

Discretization of Pp

• The scheme:

• Becomes:

1

1 1

1

Find , such that ,i

i

p pi i i i i

xi i

i i i i ix

P x x v P x x

v u dx v x u x xt x

,

1,

0 1

1

, 1, ,0 0 01

Find 0,..., such that

1 1 1 1

i m

m pi m

n mm

m p m p m pm

n i m n i m m n i m mm m m

m p

ddx L L dxdx dt

dLdxu L dx uL L uL Ldx dx

Page 6: MA557/MA578/CS557 Lecture 8

6

Simplify, simplify• Starting with:

• We define two matrices:

1

1

1

1

1

1

1

1

nm n m

nm n m

n m

n m

dxM L x L x dxdx

dx dD L x L x dxdx dx

dx dx dL x L x dxdx dx dx

dL x L x dxdx

,

1,

0 1

1

, 1, ,0 0 01

Find 0,..., such that

1 1 1 1

i m

m pi m

n mm

m p m p m pm

n i m n i m m n i m mm m m

m p

ddx L L dxdx dt

dLdxu L dx uL L uL Ldx dx

Page 7: MA557/MA578/CS557 Lecture 8

7

Then:

,

1,

0 1

1

, 1, ,0 0 01

Find 0,..., such that

1 1 1 1

i m

m pi m

n mm

m p m p m pm

n i m n i m m n i m mm m m

m p

ddx L L dxdx dt

dLdxu L dx uL L uL Ldx dx

,

,, 1, ,

0 0 0 0

Find 0,..., such that

1 1 1 1

i m

m p m p m p m pi m

nm nm i m n i m m n i m mm m m m

m p

dM u D uL L uL L

dt

Becomes:

Page 8: MA557/MA578/CS557 Lecture 8

8

Questions• This raises the following questions how can

we compute Mnm and Dnm

• We will need some of the following results.

Page 9: MA557/MA578/CS557 Lecture 8

9

The Legendre Polynomials(used to discretize Pp)

• Let’s introduce the Legendre polynomials.

• The Legendre polynomials are defined as eigenfunctions of the singular Sturm-Liouville problem:

, 0,1,...mL x m

1 1 ( 1) 0mm

d dLx x x m m L xdx dx

Page 10: MA557/MA578/CS557 Lecture 8

10

Closed Form Formula for Lm

• If we choose Lm(1) =1 then:

• Examples:

• Warning: this is not a stable way to compute the value of a Legendre polynomial (unstable as m increases)

( / 2)

2

0

2 21 12

l floor ml m l

m ml

m m lL x x

l m

0

0 11

20 12 0

2 2

1

1 21 10 12

2 4 2 21 3 11 10 2 1 22 2

L x

L x x x

xL x x x

Page 11: MA557/MA578/CS557 Lecture 8

11

Stable Formula for Computing Lm • We can also use the following recurrence

relation to compute Lm

• Starting with L0=1 L1=x we obtain:

• This is a more stable way to compute the Legendre polynomials at some x.

1 12 1

1 1m m mm mL x xL x L xm m

22 1 0

3 1 1 3 12 2 2

L x xL x L x x

Page 12: MA557/MA578/CS557 Lecture 8

12

The Rodriguez Formula• We can also obtain the m’th order Legendre

polynomial using the Rodriguez formula:

21 12 !

m m

m m m

dL x xm dx

Page 13: MA557/MA578/CS557 Lecture 8

13

Orthogonality of the Legendre Polynomials

• The Legendre polynomials are orthogonal to each other:

• Since 2m < m+p

11 2 2

11

1 2 2

1

1 11 2 21 11

1 2 2

1

1 11 12 ! 2 !

1 1 1 12 ! 2 !

1 1 1 12 ! 2 !

1 11 1 12 ! 2 !

0

p mp m

p m p p m m

p mp m

p m p m

p mp m

p m p m

m pp mp

p m m p

d dL x L x dx x x dxp dx m dx

d dx x dxp m dx dx

d dx x dxp m dx dx

dx x dxp m dx

Page 14: MA557/MA578/CS557 Lecture 8

14

Miscellaneous Relations

m

12

1

1, -1 x 1

L 1 1

1, -1 x 1

21

1 12

22 1

m

m

m

mm

m

L x

m mdL xdx

m mdLdx

L x dxm

Page 15: MA557/MA578/CS557 Lecture 8

15

Differentiation• Suppose we have a Legendre expansion for

the density in a cell:

• We can find the coefficients of the Legendre expansion for the derivative of the function as:

where:

,0

m p

i i m mm

L x

(1),

0

m pi

i m mm

d x L xdx

(1), ,

1 odd

2 1j p

i m i jj mj m

m

Page 16: MA557/MA578/CS557 Lecture 8

16

Coefficient Differentiation Matrix

(1), ,

11 odd

(1), ,

01

(1)

1

2 2 1

(2 1) if j>m and j+m oddˆ 0 otherwise

2 ˆ

2 ˆor in matrix-vector notation

j p

i m i jj mi ij m

mj

j p

i m mj i jji i

i ii i

mx x

mD

Dx x

x x

ρ Dρ

i.e. if we create a vector of the Legendre coefficients for rho in the I’th cell then we can compute the Legendre coefficients of the derivative of rho in the I’th cell by pre-multiplying the vector of coefficients with the matrix:

1

2 ˆi ix x

D

Page 17: MA557/MA578/CS557 Lecture 8

17

The D Matrix• We can use a simple trick to compute D

• Recall:

• We use:

1

1

1

1

nm n m

nm n m

dxM L x L x dxdx

dx dD L x L x dxdx dx

1

1

1

1

1

1

0

simple change of variables

ˆ

2 ˆ2 1

nm n m

n m

n m

j p

nj jmj

nm

dx dD L x L x dxdx dx

dx dx dL x L x dxdx dx dx

dL x L x dxdx

M D

Dn

Page 18: MA557/MA578/CS557 Lecture 8

18

The Vandermonde Matrix• It will be convenient for future applications to be able

to transform between data at a set of nodes and the Legendre coefficients of the p’th order polynomial which interpolates the data at these nodes.

• Consider the I’th cell again, but imagine that there are p+1 nodes in that cell then we have:

• Notice that the Vandermonde matrix defined by is square and we can obtain the coefficients by multiplying both sides by the inverse of V

,0

n=0,...,pm p

i n i m m nm

x L x

nm m nV L x

1, ,

0 0

m p n p

i n nm i m i m i nmnm n

x V V x

Page 19: MA557/MA578/CS557 Lecture 8

19

Vandermonde• Reiterate:

– that the inverse of the Vandermonde matrix is very useful for transforming nodal data to Legendre coefficients

– that the Vandermonde matrix is very useful for transforming Legendre coefficients to nodal data

Page 20: MA557/MA578/CS557 Lecture 8

20

Results So Far• 0<=n,j,m<=p

11

1

1

1

1

0 (n )2

2 n=m = 2 2 1

0 (n m)

(2 1) if j>m and j+m oddˆ 0 otherwise

2 ˆ2 1

i inm n m

i i

mj

mnm n

nm

nm m n

x xM L x L x dx m

x xn

mD

dLD L x x dxdx

Dn

V L x

Mass matrix:

Coeff. Differentiation

Stiffness matrix

Vandermonde matrix

Page 21: MA557/MA578/CS557 Lecture 8

21

Homework 3Q1) Code up a function (LEGENDRE) which

takes a vector x and m as arguments and computes the m’th order Legendre polynomial at x using the stable recurrence relation.

Q2) Create a function (LEGdiff) which takes p as argument and returns the coefficient differentiation matrix D

Q3) Create a function (LEGmass) which takes p as argument and returns the mass matrix M

Page 22: MA557/MA578/CS557 Lecture 8

22

Homework 3 contQ4) Create a function LEGvdm which returns the following matrix:

Q5) Test them with the following matlab routine:

0 i,j pij j iV L x

3) Compute the Chebychev nodes

4) Build the Vandermonde matrix using theChebychev nodes and Legendre polynomials

7) Build the coefficient differentiation matrix

9) Build the Legendre mass matrix

12) Evaluate x^m at the Chebychev nodes

14) Compute the Legendre coefficients

16) Multiply by Dhat (i.e. differentiate in coeff space)

18) Evaluate at the nodes

20) Compute the error in the derivative

Page 23: MA557/MA578/CS557 Lecture 8

23

Homework 3 contQ5cont) Explain the output from this test case

Page 24: MA557/MA578/CS557 Lecture 8

24

Next Lecture (9)• We will put everything together to build a 1D

DG scheme for advection…