15

Click here to load reader

ma401_exerITB

Embed Size (px)

DESCRIPTION

Linear Algebra Q and A

Citation preview

Page 1: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 1/15

EXERCISES IN LINEAR ALGEBRA

1.   Matrix operations

(1) Put  D  = diag(d1, d2, . . . , dn).  Let  A = (aij) be an  n × n   matrix. Find DA  and  AD.

When is  D   invertible ?(2) An n × n matrix A  = (aij) is called upper triangular if  aij  = 0 whenever  i > j. Prove

that product of upper triangular matrices is upper triangular.

(3) Let  A  be an  m × n  matrix and  B  be an  n × p   matrix. Let  Ai  denote the  ith row of 

A  and  A j denote the  jth column of  A.  Show that  AB   = (AB1, AB2, . . . , A B p) and

AB = (A1B, A2B , . . . , AmB)t.

(4) Prove that a matrix that has a zero row or a zero column is not invertible.

(5) A square matrix  A   is called nilpotent if  Ak = 0 for some positive integer  k.   Show

that if  A is nilpotent then  I  + A is invertible.

(6) Find infinitely many matrices  B  such that  BA  =  I 2  where

A =

2 3

1 2

2 5

.

Show that there is no matrix  C  such that  AC  = I 3.

(7) Let A  and  B  be square matrices. Let  tr(A) denote the trace of  A  which is the sum of 

its diagonal entries. Show that for two  n × n matrices A  and  B, tr(A + B) = tr(A) +

tr(B) and  tr(AB) = tr(BA). Show that if  B  is invertible then  tr(A) = tr(BAB−1).

(8) Show that the equation  AB − BA  =  I  has no solutions in  Rn×n

.(9) Show that for any matrix  A,  AAt is symmetric. Show that every square matrix is

uniquely a sum of a symmetric and skew-symmetric matrix.

(10) Show that every matrix inCn×n is uniquely a sum of a Hermitian and skew-Hermitian

matrix.

(11) Show that inverse of an invertible symmetric matrix is also symmetric.

(12) Consider a system of linear equations  Ax =  b  where  A ∈ Rm×n, x = (x1, x2, . . . , xn)t

and  b ∈ Rm.

(a) Show that if  Ax =  b  has more than one solution then it has infinitely many.

(b) Prove that if there is a complex solution then there is a real solution.(13) Find all 2 × 2 matrices  A such that  A2 = −I.

1

Page 2: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 2/15

2

(14) Find all 2 × 2 matrices  A such that  A2 = 0.

(15) Show that if  A3 − A + I  = 0 then  A  is invertible.

2.   Vector spaces, subspaces, basis and dimension

(16) Determine which of the following subsets of  Rn are subspaces ?

(a)   V 1 = {(x1, x2, . . . , xn) |  x1 = 1}.

(b)   V 2 = {(x1, x2, . . . , xn) |  x1 = 0}.

(c)   V 3   =   {(x1, x2, . . . , xn)   |

 n

i=1xiyi   = 0}.  Here (y1, y2, . . . , yn)   ∈  Rn}   is a fixed

vector.(17) Let  V   =  C (R) =  {f   :  R  →  R   |  f   is continuous}.  Determine which of the following

are subspaces of  C (R).

(a)   V 4 = {f  ∈ V   | f (1/2) is a rational number}.

(b)   V 5 = {f  ∈ V   | 1

0  f (t)dt = 0}.

(c)   V 5 = {f  ∈ V   | a d2f 

dt2  + bdf 

dt + cf  = 0}.  Here  a, b, c ∈ R  are fixed.

(18) Find a basis of the subspace of Rn of the solutions of the equation x1+x2+· · ·+xn  = 0.

(19) Show that the vector space   F [x] of all polynomials over a field   F   is not finitely

generated.

(20) Is the vector space  C (R) finite dimensional ?(21) Show that the set  {1, (x −  a), (x −  a)2, (x − a)3, . . . , (x − a)n}   for a fixed  a  ∈  F   is

a basis of the vector space  P n(F ) of all polynomials with coefficients in  F   of degree

atmost  n.

(22) Let  u1, u2, . . . un  be linearly independent vectors in a vector space  V.  Show that any

vector in  L(u1, u2, . . . , un) is unique linear combination of  u1, u2, . . . , un.

(23) Describe all the subspaces of  R3.

(24) Let   U   and   V   be subspaces of a vector space   W.  Suppose that   U   ∩ V    = (0) and

dim W   = dim U  + dim V.  Show that any  w   ∈  W   there exist unique vectors  u  ∈  U 

and  v ∈  V   such that  w =  u + v.(25) What is the dimension of the  Q-vector space R  ?

(26) Determine whether (1, 1, 1) ∈  L{(1, 3, 4), (4, 0, 1), (3, 1, 2)}.

(27) Prove that every subspace  W  of a finitely generated vector space  V   is finitely gener-

ated. Prove that dim W  ≤ dim V  with equality if and only if  V   = W.

(28) Let F  be a field with two elements. Let  V  be a two dimensional vector space over F.

Count the number of elements of  V,   the number of subspaces of  V   and the number

of different bases.

(29) Let  S  and  T  be two dimensional subspaces of  R3.  Show that dim(S  ∩ T ) ≥  1.

(30) Find bases of the following vector spaces: (a) the vector space of all  n × n real uppertriangular matrices, (b) the vector space of all real  n ×  n   symmetric matrices, (c)

Page 3: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 3/15

3

the vector space of all real  n × n  skew-symmetric matrices and (d) the vector space

of all homogeneous polynomials of degree   d   in   n  variables together with the zero

polynomial.

3.   Systems of linear equations, rank of a matrix

(31) Test for solvability of the following systems of equations, and if solvable, find all the

solutions.

(a)

x1 + x2 + x3   = 8

x1 + x2 + x4   = 1x1 + x3 + x4   = 14

x2 + x3 + x4   = 14

(b)

x1 + 2x2 + 4x3   = 1

2x1 + x2 + 5x3   = 0

3x1 − x2 + 5x3   = 0

(32) For what vaules of  a does the following system of equations have a solution ?

3x1 − x2 + ax3   = 1

3x1 − x2 + x3   = 5

(33) Prove that a system of  m homogeneous linear equations in  n > m unknowns always

has a nontrivial solution.

(34) Show that a system of homogeneous linear equations in  n  unknowns has a nontrivial

solution if and only if the coefficient matrix has rank less than  n.

(35) Find a basis of the solution space of the system

3x1 − x2 + x4   = 0

x1 + x2 + x3 + x4   = 0

(36) Find a point in  R3 where the line joining the points (1, −1, 0) and (−2, 1, 1) pierces

the plane 3x1 − x2 + x3 − 1 = 0.

(37) Using row and column operations find the rank of the matrix

1 2   −3

−1   −2 3

4 8   −121   −1 5

Page 4: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 4/15

4

(38) Find the rank of an upper triangular matrix in terms of the diagonal entries.

(39) Let  A  be an  m × n matrix and  B  be an  n × r  matrix.

(a) Show that the columns of  AB  are linear combinations of the columns  A. Hence

prove that rank(AB) ≤  rank(A).

(b) Using (a) and the fact that rank of a matrix and its transpose are equal, prove

that rank(AB) ≤  rank(B).

(40) Let  A be an  n × n matrix such that rank(A) = rank(A2). Find all the vectors in the

column space of  A which are solutions to  Ax  = 0.

4.  Linear Transformations

(41) Let   F   be a field and   F n denote the vector space   F n×1.   Let   T   :   F 2 →   F 2 be the

linear transformation T ((x, y)t) = (−3x + y, x − y)t.  Let  U   : F 2 → F 2 be the linear

transformation  U ((x, y)t) = (x + y, x)t.  Describe the linear transformations  U T , T U  

and  T 2 + U.  Is  T U  = U T   ?

(42) Test whether the linear transformations  T   : R2 → R2, T ((x1, x2)t) = (y1, y2)t defined

below are one-to-one.

(a)   y1 = 3x1 − x2, y2 =  x1 + x2.

(b)   y1 =  x1 + 2x2 + x3, y2 =  x1 + x2, y3 =  x2 + x3.

(43) Let  I   :  R[x]  →  R[x] be the linear map  I (f (x)) = x

0  f (x)dx.  Let  D   :  R[x]  →  R[x]

be the linear map   D(f (x)) =   f (x).   Show that   D I   =   I   but neither   D   nor   I   are

isomorphisms. Is D  (resp.   I ) one-to-one or onto ? Find the ranks and nullities of  D

and  I .

(44) Let  S, T   : R2 → R2 be the linear maps defined by the equations

S (u1) = u1 − u2, S (u2) = u1 and T (u1) = u2, T (u2) = u1,

where   B   =   {u1, u2}   is a basis of  R2.   Let   C   =   {w1   = 3u1  − u2, w2   =   u1  + u2}.

Show that   C   is a basis of  R2

.  Find the matrices   M B

B (S ), M B

B (T ), M C 

C (S ), M C 

C (S ).Find invertible matrices   X   in each case such that   X −1AX   =   A where   A   is the

matrix of the transformation with respect to the old basis and  A is the matrix of the

transformation with respect to the new basis.

(45) Let  B  =  {u1, u2}  be a basis of  R2.  Let  S   and  T  be the linear maps defined by the

equations

S (u1) = u1 + u2, S (u2) = −u1 − u2 and T (u1) = u1 − u2, T (u2) = 2u2.

Find the rank and nullity of  S  and  T.  Which of these linear maps are invertible ?

(46) Let  V  be a vector space of dimension  n  and  T   : V   → V   be a linear map. Let A  bethe matrix of  T  with respect to any basis of  V.  Show that rank(T ) = rank(A).

Page 5: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 5/15

5

(47) Let  V   be an  n-dimensional vector space. Let  T   : V   → V  be a linear transformation

such that the nullspace and the range of  T  are same. Show that n   is even. Give an

example of such a map for  n  = 2.

(48) Let  T  be the linear operator on  R3 defined by the equations:

T ((x1, x2, x3)t) = (3x1, x1 − x2, 2x1 + x2 + x3)t.

Is T   invertible ? If so, find a formula for  T −1.

(49) Let  V   = C2×2 be the vector space of 2 × 2 complex matrices. Let

B =

  1   −1

−4 4

.

Define  T   : V   → V   by T (A) = BA. Find rank of  T . Describe  T 2.

(50) Let  V  be vector space with dim V   =  n  and  T   :  V   →  V   be a linear map such that

rank T 2 = rank T.  Show that  N (T ) ∩ T (V ) = (0).  Give an example of such a map.

(51) Let  T  be a linear operator on a finite-dimensional vector space  V . Suppose that  U   is

a linear operator on  V   such that  T U  = I . Prove that  T  is invertible and  U  = T −1.

(52) Let  W  be the real vector space all 2 × 2 complex Hermitian matrices. Show that the

map

(x , y, z, t)t

→   t + x y + iz 

y − iz t − x

is an isomorphism of  R4 onto W.

(53) Let   V   and   W   be finite dimensional vector spaces over a field   F.  Show that   V   is

isomorphic to  W  if and only if dim V  = dim W.

(54) Show that every matrix A  ∈  F m×n of rank one has the form  A  =  uvt where u  ∈  F m×1

and  v ∈  F n×1.

(55) Let   V   be the infinite-dimensional real vector space of all real sequences. Let   R   :

V   →  V   be the   right shift operator  R((a1, a2, . . .)) = (0, a1, a2, . . .) and  L   :  V   →  V 

denote the  left shift operator  defined by L((a1, a2, . . .)) = (a2, a3, . . .). Show that  R  isone-to-one but not onto and  L  is onto but not one-to-one.

(56) Let   V   be an   n-dimensional vector space over a field   F.   Let   B   =   {u1, u2, . . . , un}

be a basis of   V.   Define the linear transformation  T   :   V   →   V   by  T (ui) =   ui+1   for

i = 1, 2, . . . , n − 1 and  T (un) = 0.

(a) Find the matrix  A =  M BB (T ).

(b) Show that  T n−1 = 0 but  T n = 0.

(c) Let  S  be any linear operator on  V   such that  S n = 0 but  S n−1 = 0.  Prove that

there is a basis  C  of  V   such that  M C C (S ) = A.

(d) Let  M, N   ∈ F n×n and  M n = N n = 0 but  M n

−1 = 0 and  N n

−1 = 0.  Show that

M   and  N  are similar matrices.

Page 6: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 6/15

6

(57) Let  V   be a two-dimensional vector space over a field  F.  Let  T  be a linear operator

on  V  so that the matrix of  T  with respect to a basis  B  of  V   is a b

c d

.

Show that  T 2 − (a + d)T  + (ad − bc)I  = 0.

(58) Let  T   : V   → W  be a linear map of vector spaces. Suppose  V   is infinite-dimensional.

Prove that at least one of  N (T ) or  T (V ) is infinite-dimensional.

(59) Let V  be the vector space of all real functions continuous on [a, b]. Define T   : V   → V 

by the equation

T (f (x)) =   ba

f (t)sin(x − t)dt   for   a ≤  x  ≤  b.

Find the rank and nullity of  T.

(60) Let V   denote the vector space of all real functions continuous on the interval [−π, π].

Let  S  denote the subspace of  V   consisting of all f   satisfying   π−π

f (t)dt = 0,

   π−π

f (t)cos tdt = 0,

   π−π

f (t)sin tdt = 0   .

Prove that   S   contains the functions   f (x) = sin nx   and   f (x) = cos nx   for all   n   =

2, 3, . . . . Show that  S   is infinite-dimensional.

5.   Inner product spaces

(61) Let V  be the subspace spanned by the vectors u1 = (−1, 1, 1, 1), u2 = (1, −1, 1, 1), u3 =

(1, 1, −1, 1) in  R4. Find an orthonormal basis of  V  by Gram-Schmidt process.

(62) Find an orthonormal basis of the vector space  V   = P 3(R) of all real polynomials of 

degree atmost 3 with the inner product  < f, g >= 1

0  f (t)g(t)dt.  Take  {1, x , x2, x3}

as a basis of  V.

(63) Let  V   = C [−π, π] be the vector space of all continuous real valued functions definedon the interval [−π, π].   Then   V   is an inner product space with the inner product

< f, g >= π−π

 f (t)g(t)dt. Show that the functions 1, sin nx, cos nx, n = 1, 2, . . . form

an orthogonal set.

(64) Two vector spaces   V   and   W   with inner products   < v1, v2   >   and [w1, w2] respec-

tively, are said to be isometric if there is an isomorphism   T   :   V   →   W   such that

[T (v1), T (v2)] =< v1, v2 >  for all v1, v2 ∈  V. Such a  T  is called an isometry. Let  V   be

a finite-dimensional inner product space over a field  F  with inner product  < u, v > .

Let  B  = {v1, v2, . . . , vn} be an orthonormal basis of  V . Let T   : V   → F n be the linear

map  T (v) =  M B(v).  Consider  F n with standard inner product. Show that T   is anisometry.

Page 7: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 7/15

7

(65) Let   V   be a finite-dimensional inner product space. Let   W   be a subspace. Show

that the set  W ⊥ =  {v   ∈  V   |  < v, w >= 0 for all  w   ∈  W }   is a subspace of  V   and

dim W  + dim W ⊥ = dim V.

(66) Show that every subspace of  Cn with standard inner product is the subspace of all

solutions to a system of homogeneous linear equations.

(67) Let  A  = (aij) ∈ R2×2. For u, v ∈ R2 define  f A(u, v) = vtAu. Show that  f A  is an inner

product on  R2 if and only if  A =  At, a11 >  0, a22 >  0 and det A > 0.

(68) Let  V   =  Cn×n with the inner product  < A, B >=  tr(AB∗).  Let  D  be the subspace

of diagonal matrices. Find  D⊥.

(69) Let  W  be a finite-dimensional subspace of an inner product space  V.  Let  E  be the

orthogonal projection of  V   onto W. Prove that < Eu, v >=< u, Eu > for all u, v ∈  V .

(70) Let  V  be a finite-dimensional inner product space and let  B   =  {u1, u2, . . . , un}  be

a basis of   V.   Let   T   :   V   →   V   be a linear map. Put   M BB (T ) = (aij).   Show that

aij  =< T u j, ui > .

(71) Let  A  be a symmetric  n × n   real matrix. Let u, v  ∈  V   =  Rn×1 \ {0}  and  λ, µ  ∈  R

such that  Au =  λu  and  Av = µv. Show that  u ⊥  v.  In other words, eigenvectors for

distinct eigenvalues of symmetric real matrices are orthogonal.

(72) Let  B  = {u1, u2, . . . , un}  be an orthonormal set of vectors in an inner product space

V.  Show that for any  v  ∈ V ,

 n

i=1|v, ui|2 ≤ ||v||2 and equality holds if and only if 

v ∈ L(B).(73) Let  p,q,r  ∈  Z.  Show that the vectors ( p, q, r)t, (q,r,p)t, (r,p,q )t ∈  R3 are mutually

orthogonal if and only if  pq  + qr + rp  = 0. Show that in this case, the length of each

of these vectors in  | p + q  + r|.

(74) Let  U, V  be subspaces of an inner product space  W. Let dim U <  dim V.  Show that

there is a nonzero vector in  V   lying in  U ⊥.

(75) Without using Gram-Schmidt orthogonalization process, find the orthogonal projec-

tion of (1, 2, 2, 9)t ∈ R4 in the column space of the matrix

A =

2 1

1 2

−1 0

2 1

.

Page 8: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 8/15

8

6.   Determinants

(76) Find the inverses of the following matrices by Gauss-Jordan method and the adjoint

formula:   a b

c d

, ad − bc = 0

3 1 0

1 2 1

0   −1 2

.

(77) Find the ranks of the following matrices by using determinants:

  1 2 3 4−1 2 1 0

, −1 0 1 2

1 1 3 0

−1 2 4 1

.

(78) Show that the equation of line through the distinct points (a, b) and (c, d) in  R2 is

given by

x y   1

a b   1

c d   1

= 0.

(79) Show that the equation of the plane in  R3

passing through three non-collinear points(a,b,c); (d,e,f ); (g,h,k) is given by

x y z    1

a b c   1

d e f    1

g h k   1

= 0.

(80) Show that the area of the triangle with vertices (a, b); (c, d); (e, f ) in the plane is given

by the absolute value of 

1

6

a b   1

c d   1

e f    1

.

(81) Show that the volume of the tetrahedron with vertices (a1, a2, a3), (b1, b2, b3), (c1, c2, c3),

(d1, d2, d3) is given by the absolute value of 

1

6

a1   a2   a3   1

b1   b2   b3   1

c1   c2   c3   1d1   d2   d3   1

.

Page 9: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 9/15

9

(82) Prove the following formula for the van der Monde determinant:

V n =

1   a1   a

2

1   . . . an−1

1

1   a2   a22

  . . . an−12

...  ...

  ...  ...

  ...

1   an   a2n   . . . an−1n

=i<j

(a j − ai).

[Hint:   Use induction on   n.   Multiply each column by   a1   and subtract it from the

next column on the right, starting from the right hand side. Prove that  V n  = (an −

a1)(an−1 − a1) . . . (a2 − a1)V n−1. ]

(83) If  A ∈ Cn×n is a skew-symmetric matrix where  n  is odd, then show that det A = 0.

(84) Let   A   be an orthogonal matrix, that is,   AAt =   I.   Show that for such a matrix,

det A =  ±1.  Give an example of an orthogonal matrix with determinant  −1.

(85) A complex n × n matrix is called unitary if  AA∗ = I . Here  A∗ denotes the conjugate

transpose of  A. If  A  is unitary, show that  | det A| = 1.

(86) Let  V   =  F n×n.  Let  B   ∈  V.  Define  T B   :  V   →  V   by T B(A) =  AB − BA.  Show that

det T B  = 0.

(87) Let   A, B   ∈   F n×n where   A   is invertible. Show that there are atmost   n   scalars for

which  cA + B  is not invertible.

(88) Let V   = F n×n and B  ∈ V. Define LB, RB   : V   → V   by LB(A) = BA and RB(A) = AB

for all A ∈  V. Show that det RB  = det LB  = (det B)

n

.(89) Let  V   =  F 1×n and let  T   :  V   →  V   be a linear operator. Define  f (u1, u2, . . . , un) =

det(T u1, T u2, . . . , T un). (1) Show that  f  is multilinear and alternating. (2) Let B  be

any ordered basis of  V   and  A = [T ]B. Show that det A = det T   = f (e1, e2, . . . , en).

(90) Let  B   ∈  V   =  Cn×n.  Define the linear operator  M B   :  V   →  V   by  M B(A) =  BAB∗.

Show that det M B  = | det B|2n.

7.  Diagonalization of matrices and operators

Let  V  be an  n-dimensional vector space over a field  F   and  T  be a linear operator on

V  in the following problems unless stated otherwise.

Eigenvalues and eigenvectors

(91) Show that similar matrices have same characteristic polynomials and hence have same

eigenvalues and traces.

(92) Find the eigenvalues and eigenspaces of the following matrices and determine if they

are diagonalizable:

  4 5−1   −2

,

  1 01   −2

.

Page 10: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 10/15

10

(93) Let f (x) ∈  F [x]. Show that α  is an eigenvalue of  T  if and only if  f (α) is an eigenvalue

of  f (T ).

(94) Let  A, B  ∈  F n×n.  Prove that if  I  − AB   is invertible then  I  − BA   is invertible and

(I  − BA)−1 = I  + B(I  − AB)−1A.

(95) Use the result of the above exercise to show that AB  and  B A have the same charac-

teristic polynomials.

(96) Let T  be an invertible linear operator on a vector space V. Show that λ is an eigenvalue

of  T  if and only if  λ = 0 and  λ−1 is an eigenvalue of  T −1.

(97) Let  N  ∈ C2×2 and  N 2 = 0. Prove that either  N  = 0 or  N  is similar over  C  to

  0 0

1 0 .

(98) Let  A  ∈ C2×2. Show that  A is similar over  C  to a matrix of one of the two types: a   0

0   b

,

  a   0

1   a

.

(99) Let  V  denote the vector space of all continuous real valued functions defined on  R.

Let  T  be the linear operator  T (f (x)) = x0

  f (t)dt.  Show that  T   has no eigenvalues.

(100) Let  A  be an  n × n  diagonal matrix with characteristic polynomial

C A(x) = (x − c1)d1(x − c2)d2 . . . (x − ck)dk .

where  c1, c2, . . . , ck   are distinct. Let V   be the vector space of all  n × n  matrices  B

such that  AB = BA. Prove that dim V   = d21 + d22 + · · · + d2k.

Minimal polynomials

(101) Find the minimal polynomials of   2 0

3   −1

,

0 1 0

0 0 1

1 0 0

,

0 1 3

0 0 2

0 0 0

.

(102) Find an n × n  nilpotent matrix with minimal polynomial  x2.

(103) Show that the following matrices have the same minimal polynomials:

−1 0 0 0

0   −1 0 0

0 0 2 0

0 0 0   −1

,

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0   −1

.

(104) Prove that a linear operator   T   defined on a finite dimensional vector space   V   is

invertible if and only if its minimal polynomial has a nonzero constant term. Describe

how to find  T −1 from its minimal polynomial.

(105) Let  T  be a nilpotent operator on  V.  Show that  T n = 0.

Page 11: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 11/15

11

(106) Let  V   =  F n×n.  Let  A  ∈  V   be a fixed matrix. Let T   be the linear operator on  V 

defined by T (B) = AB. Show that  T   and  A have same minimal polynomial.

(107) Let  m(x) be the minimal polynomial of  T   and  f (x) ∈  F [x]. Let  d(x) be the greatest

common divisor of  m(x) and  f (x).   Show that the nullspaces of  f (T ) and  d(T ) are

equal.

Diagonalization

(108) Show that the matrix

0 0 1

1 0 0

0 1 0

is similar to a diagonal matrix in  C3×3 but not in  R3×3.

(109) Let  T   have  n distinct eigenvalues. Show that  T  is diagonalizable.

(110) Show that every matrix  A such that  A2 = A   is diagonalizable.

(111) Show that the orthogonal projection operators are diagonalizable.

(112) When is a nilpotent operator diagonalizable ?

(113) Show that the differentiation operator defined on the space of real polynomials of 

degree atmost  n ≥  1 is not diagonalizable.

(114) Let  T   : R4 → R4 be the linear operator induced by the matrix

0 0 0 0a   0 0 0

0   b   0 0

0 0   c   0

.

Find necessary and sufficient conditions on  a, b, c  so that  T   is diagonalizable.

(115) Show that a 2 × 2 real symmetric matrix is diagonalizable.

8.  Projections and invariant direct sums

Projections

(116) Find a projection  E   :  R2 →  R2 so that  E (R2) is the subspace spanned by (1, −1)t

and  N (E ) is spanned by (1, 2)t.

(117) Let   E 1   and   E 2   be projections onto independent subspaces of a vector space   V.   Is

E 1 + E 2  a projection ?

(118) Is it true that a diagonalizable operator with only eigenvalues 0 and 1 is a projection

?

(119) Let  E   :  V   →  V   be a projection. Show that I  − E   is a projection along  E (V ) ontoN (E ).

Page 12: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 12/15

12

(120) Let  V  be a real vector space and let  E   : V   → V   be a projection. Prove that  I  + E 

is invertible and find its inverse.

(121) Let  F   be a subfield of  C.  Let  E 1, E 2, . . . , E  k  be projections of an  n-dimensional  F -

vector space  V   such that  E 1 +  E 2 +  · · · +  E k   =  I.  Prove that  E iE  j  = 0 for   i  =  j.

[Hint:  Use the fact that the trace of projection is its rank.]

Invariant subspaces and direct sums

(122) Let  E  be a projection of  V   and  T   ∈ L(V, V ).  Prove that  E (V ) is invariant under  T 

if and only if  ET E  = T E.  Prove that  E (V ) and  N (E ) are invariant under  T   if and

only if  T E  = ET.

(123) Let  T   : R2 → R2 be the linear operator induced by the matrix  2 1

0 2

.

Let  W 1 = L(e1). Prove that  W 1  is invariant under  T . Show that there is no subspace

W 2  of  R2 that is invariant under  T   and  R2 = W 1 ⊕ W 2.

(124) Let  T  be a linear operator on  V.  Suppose  V   = W 1 ⊕ W 2 ⊕ · · · ⊕ W k  where each  W iis invariant under  T.  Let  T i  be the restriction of  T   on  W i.

(a) Prove that det T  = det T 1 det T 2 . . . det T k.

(b) Show that  C T (x) = C T 1(x)C T 2(x) . . . C  T k(x).(c) Show that the minimal polynomial of   T   is the least common multiple of the

minimal polynomials of  T 1, T 2, . . . , T  k.

(125) Let  T  be the linear operator on  V   = R3 induced by the matrix

A =

5   −6   −6

−1 4 2

3   −6   −4

.

Use Lagrange polynomials to find matrices E 1, E 2 ∈ R3×3 so that A  =  E 1+2E 2, E 1+

E 2 =  I  and  E 1E 2 = 0.(126) Let  T  be a linear operator on  V  which commutes with every projection operator on

V.  What can you say about  T   ?

9.  Primary decomposition, cyclic subspaces and Jordan form

(127) Let   T   be a linear operator on the finite-dimensional vector space   V    with char-

acteristic polynomial   cT (x) = k

i=1(x  −  ci)

di and minimal polynomial   mT (x) =k

i=1(x − ci)ri .   Let   W i   = Null(T   − ciI )ri .   Show   W i   =   {u   ∈   V   |   (T   − ciI )mu   =0 for some m  depending on   u}.  and dim W i =  di.

Page 13: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 13/15

13

(128) Let T  be a rank one linear operator on a finite dimensional vector space  V. Show that

either  T  is diagonalizable or  T   is nilpotent but not both.

(129) Show that two 3 × 3 nilpotent matrices over a field  F  are similar if and only if they

have same minimal poynomials.

(130) Give an example of two 4×4 nilpotent matrices which have same minimal polynomials

but which are not similar.

(131) Let  T   be the linear map induced on  R3 by the matrix diag(2, 2, −1).  Show that  T 

has no cyclic vector.

(132) Let  T  be a diagonalizable linear operator on an  n-dimensional vector space V.

(a) If  T   has a cyclic vector, show that the characteristic polynomial has  n  distinct

roots.

(b) If  T   has n  distinct eigenvalues and {u1, u2, . . . , un} is a basis of eigenvectors then

u =  u1 + u2 + · · · + un   is a cyclic vector for  T.

(133) Let A be a complex 5×5 matrix with characteristic polynomial f (x) = (x−2)3(x+7)2

and minimal polynomial  p(x) = (x − 2)2(x + 7). What is the Jordan form of  A ?

(134) Let V   be the complex vector space of polynomials of degree atmost 3. Let  D  :  V   → V 

be the differentiation operator. Find the Jordan form of the matrix of   D   in the

standard basis B = {1, x , x2, x3}  of  V.

(135) Let  N   be a  k × k  nilpotent matrix whose degree of nilpotency is  k.  Show that  N t is

similar to  N.  Show that every complex  n × n  matrix is similar to its transpose.(136) Let  N  ∈ V   = F n×n be a nonzero nilpotent matrix with  N n = 0 but  N n−1 = 0. Show

that there is no matrix  A ∈  V   such that  A2 = N.

(137) Let  N  be a 3 × 3 complex nilpotent matrix. Prove that  A =  I  +   1

2N  −   1

8N 2 satisfies

A2 = I  +  N.  We say that  A is a square root of  I  +  N.  Let  N  be any  n × n  complex

nilpotent matrix. Find a formula for square root of  I  + N.

(138) Use Jordan form to prove that every invertible  n × n  complex matrix has a square

root.

(139) Find the Jordan canonical form over  C  of the matrices:

  2   −1

1   −1

0 0 1

1 0 0

0 1 0

.

(140) Let  A  ∈  Rn×n such that  A2 + I   = 0.  Prove that  n  = 2k   for some  k   ∈  N  and  A   is

similar over  R  to the matrix in block form:  0   −I 

I    0

where  I   is the  k  × k   identity matrix.

Page 14: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 14/15

14

10.   Spectral Theory and its applications

Linear functionals and adjoints

(141) Let V   be a finite dimensional inner product space and T  a linear operator on V. Show

that  T ∗(V ) = Null(T )⊥.

(142) Let   V   be an inner product space and   v, w   ∈   V   be fixed vectors. Define   T (u) =

u, vw.  Show that  T  has an adjoint and find  T ∗.  Now let  V   = Cn. Find the rank of 

T  and the matrix of  T   in standard basis of  Cn.

(143) Let   V   be the vector space of real polynomials of degree atmost 3,   with the inner

product   f (t), g(t)   = 1

0 f (t)g(t)dt.   Let   r   ∈  R  and let   T (f (t)) =  f (r).   Show that

T   is a linear functional and find   g(t)   ∈   V   such that   T (f (t)) =   f (t), g(t)   for all

f (t) ∈  V.

(144) Let  D  be the differentiation operator on  V  as defined in the problem 143. Find  D∗.

(145) Let  V   = Cn×n with inner product A, B = tr(AB∗). Let  P   ∈ V  be a fixed invertible

matrix and define  T (A) = P −1AP   for all A ∈  V . Find the adjoint of  T.

(146) Let  T  be a linear operator on a finite dimensional inner product space  V.  Show that

T   is self-adjoint if and only if  Tu , u ∈ R  for all  u ∈  V.

Unitary operators

(147) Let  V  be as in problem 145. For a fixed  M  ∈ V, Define T (A) = M A. Show that  T   is

unitary if and only if  M   is a unitary matrix.

(148) Let  V   =  R2 with standard inner product. Let  U  be a unitary operator on  V.  Let  E 

be the standard basis of  V.  Show that

[U ]E  = U θ  =

  cos θ   − sin θ

sin θ   cos θ

  or

  cos θ   sin θ

sin θ   − cos θ

  .

Find the adjoint of  U θ.

(149) Let   V   =   R2 with standard inner product. Let   W   be the plane spanned by   u   =

(1, 1, 1)t and  v   = (1, 1, −2)t.  Let  U  be the anticlockwise rotation through an angle

θ  about the line perpendicular to  W  when seen from a high point above the plane.

Find the matrix of  U   in the standard basis of  R2.

(150) Let   V   be a finite dimensional inner product space and   W   a subspace of   V.   Then

V   =  W  ⊕ W ⊥.  Let  u  =  v +  w   where  u  ∈  V, v  ∈  W,   and  w   ∈  W ⊥.  Define  U (u) =

v − w.  Prove that U  is self-adjoint and unitary. Prove that every self-adjoint unitary

operator on  V  arises this way from a subspace  W   of  V.  Let  W  be the linear span of (1, 0, 1)t. Find the matrix of  U   in the standard basis.

Page 15: ma401_exerITB

7/21/2019 ma401_exerITB

http://slidepdf.com/reader/full/ma401exeritb 15/15

15

(151) Let  V   be an inner product space. A function T   : V   → V   is called a rigid motion if 

||T (u) − T (v)|| =  ||u − v||  for all  u, v ∈  V.

(a) Show that unitary operators are rigid motions.

(b) Let w  ∈  V  be fixed. Define T w, translation by w, by  T w(u) = u + w for all u  ∈  V .

Show that translations are rigid motions.

(c) Let  V   =  R2.  Let  T  be a rigid motion of  V   with  T (0) = 0.  Show that  T   is linear

and unitary.

(d) Show that every rigid motion of  R2 is translation followed by a rotation or a

reflection and a rotation.

Normal operators

(152) For

A =

1 2 3

2 3 4

3 4 5

find an orthogonal matrix  P  such that  P tAP   is a diagonal matrix.

(153) Find an orthonormal basis of  C2 with standard inner product consisting of eigenvec-

tors of the normal matrix

A =   1   i

i   1 .

(154) A linear operator  T  on an inner product space  V  is called positive if  T   is self-adjoint

and   Tu , u   is a positive real number. Show that a normal linear operator  T   on a

finite-dimensional inner product space V   is self-adjoint, positive or unitary according

as every eigenvalue of  T   is real, or positive or has absolute value 1. Find all positive

and unitary operators on  V.

(155) Show that a linear operator   T   defined on an inner product space   V   is normal if 

and only if  T   = T 1 + iT 2  where  T 1  and  T 2  are self-adjoint operators on  V   such that

T 1T 2 =  T 2T 1.

(156) Show that a real symmetric matrix has a real symmetric cube root.(157) Let  T  be a normal operator on a finite dimensional inner product space. Show that

there is a complex polynomial f (x) such that  T ∗ = f (T ).

(158) Let  A  ∈ Rn×n be a symmetric matrix with  Ak = I   for some  k.  Show that  A2 = I .

(159) Show that if a normal linear operator  T  has spectral decomposition  T   = k

i=1aiE i

then for any polynomial  f (x) ∈ C[x], the spectral decomposition of  f (T ) is given by

f (T ) = k

i=1f (ai)E i.

(160) Using spectral theorem for symmetric matrices draw the conic section 9 x2 + 24xy +

16y2−20x+15y = 0 and the quadric surface 7x2+7y2−2z 2+20yz −20zx −2xy = 36.