2
Given an event A of a sample space S , denote P(A) as its probability. Axiom 1. 0 P(A) 1 Axiom 2. P(S ) = 1 Axiom 3. If A 1 , A 2 , ··· are mutually exclusive ( A i A j = ), then P i=1 A i = i=1 P(A i ) Theorem 1 (Inclusion-Exclusion Principle). P(A 1 A 2 ··· An ) = n r=1 (1) r+1 1i 1 ···ir n P(A i 1 A i 2 ··· A ir ) Denition 1 (Conditional Probability) . Probability of B given A is P(B|A) = P(AB) P(A) 1. P(AB) = P(A)P(B|A) = P(B)P(A|B) 2. P(A 1 A 2 ··· An) = P(A 1 )P(A 2 |A 1 )P(A 3 |A 1 A 2 ) ··· P(An|A 1 ··· A n1 ) Theorem 2 (Law of Total Probability). P(B) = n i=1 P(A i )P(B|A i ) Theorem 3 (Bayes’ Rule). P(A k |B) = P(A k )P(B|A k ) n i=1 P(A i )P(B|A k ) For two events, 1. P(B) = P(A)P(B|A) + P(A C )P(B|A C ) 2. P(A|B) = P(A)P(B|A) P(A)P(B|A) + P(A C )P(B|A C ) Denition 2 (Independence). Two events are independent if P(AB) = P(A)P(B). Also, P(A|B) = P(A) and P(B|A) = P(B). Denition 3 (Cumulative Distribution Function). F X (x) = P{X x} Denition 4 (Probability Density Function). f X (x) = P{X = x} Denition 5 (Continuous Random Variable). P{X = x} for all x R. F X is a continuous function, with f X (x) = F  X (x) Denition 6. E(X ) = x xf x (x) for Discrete RV  −∞ xf X (x) dx for Continuous RV E(aX + b) = aE(X ) + b Denition 7 (Moment Generating Function). M X (t) = E[e tX ] If there is a δ > 0 such that M (t) < for every |t| < , then E(X k ) = M (k) (0) Denition 8 (Variance) . σ 2 X = E[(X EX ) 2 ] = EX 2 (EX ) 2 Var (aX + b) = a 2 Var (X ), V ar(X +Y  ) = V ar(X )+ V ar(Y  ) if X, Y  are independent. Theorem 4 (Tail Sum Formula). For non-ne gative integer-valued r.v. X, E[X ] = k=1 P(X k) = k=0 P(X > k) Denition 9 (Binomial Distribution) . X is the number of success that occur in n independent Bernoulli trials, denoted as X B(n, p). b(i; n, p) = n i  p i (1  p) ni EX = np, Var (X ) = npq Denition 10 (Poisson Distribution). X is the number of occur enc es oc curing in a specic interv al such that the oc cur enc es are independ ent bet ween interv als, denote as X P (λ)  p(i; λ) = e λ λ i i! EX = λ, Var (X ) = λ Suppose X B(n, p), n is large and p is small (< 0.1), then X P (λ) with λ = np. Denition 11 (Geometric Distribution). X is the number of trials re- quir ed until a suc cess is obtained for a re pe ated Bernoulli Trial. Denote X Geom (  p). f X (n) = (1  p) n1  p EX = 1 p , Var (X ) = 1p p 2 Denition 12 (Negati ve Binomia l Distribution) . X is the number of Bernoulli trials performed until r successes are obtained. Denote as X NB(r, p). f X (n) = n 1 r 1  p r (1  p) nr EX = r p , Var (X ) = r(1p) p 2 Denition 13 (Hyper Geometric Distribution). X is the number of white balls drawn without replacement when n balls are drawn in an urn with N balls, out of which m are white . Denote X H (n,N,m). f X (n) = m x N m nx N n EX = nm N , Var (X ) = N n N 1 · n · m N (1 m N ) Denition 14 (Exponential Distribution). A good model for waiting time scenarios, X Exp(λ) if f X (n) = λe λx , x > 0 0 elsewhere EX = 1 λ , Var (X ) = 1 λ 2 Exponential and geometric distribution are memoryless i.e. P{X > s + t|X > t} = P{X > s} Denition 15 (Gamma Distribution). X Γ(α, λ) if f X (n) = λ α Γ(α) x α1 e λx , x > 0 0 elsewhere The Gamma function is dened by Γ(α) =  0 x α1 e x dx EX = α λ , Var (X ) = α λ 2 Note that  0 x α1 e λx dx = Γ(α) λ α Denition 16 (Normal Distribution) . X N (µ, σ 2 ) if n(x; µ, σ) = 1 √ 2πσ e (xµ) 2 2σ 2 The Gamma function is dened by Γ(α) =  0 x α1 e x dx EX = µ, Var (X ) = σ 2 The standard normal r.v. is denoted by Z N (0, 1). For any X N (µ, σ 2 ), we have X µ σ N (0, 1) Given X B(n, p) such that np(1  p) 10, we have X N (np,npq). Remark 1 (Continuity Correction) . If X B(n, p), then {X = k} = {k 0.5 < X < k + 0.5} {X k} = {X k 0.5} {X k} = {X k + 0.5}

MA2216 Summary

Embed Size (px)

Citation preview

7/29/2019 MA2216 Summary

http://slidepdf.com/reader/full/ma2216-summary 1/1

Given an event A of a sample space S , denote P(A) as its probability.

Axiom 1. 0 ≤ P(A) ≤ 1

Axiom 2. P(S ) = 1

Axiom 3. If  A1, A2, · · · are mutually exclusive ( AiAj = ∅), then 

P

∞i=1

Ai

=

∞i=1

P(Ai)

Theorem 1 (Inclusion-Exclusion Principle).

P(A1 ∪ A2 ∪ · · · ∪ An) =nr=1

(−1)r+1

1≤i1≤···≤ir≤n

P(Ai1Ai2 · · ·Air )

Definition 1 (Conditional Probability). Probability of  B given  A is

P(B|A) =P(AB)

P(A)

1. P(AB) = P(A)P(B|A) = P(B)P(A|B)

2. P(A1A2 · · ·An) = P(A1)P(A2|A1)P(A3|A1A2) · · ·P(An|A1 · · ·An−1)

Theorem 2 (Law of Total Probability).

P(B) =

ni=1

P(Ai)P(B|Ai)

Theorem 3 (Bayes’ Rule).

P(Ak|B) =P(Ak)P(B|Ak)ni=1 P(Ai)P(B|Ak)

For two events,

1. P(B) = P(A)P(B|A) + P(AC )P(B|AC )

2. P(A|B) =P(A)P(B|A)

P(A)P(B|A) + P(AC )P(B|AC )

Definition 2 (Independence). Two events are independent if  P(AB) =P(A)P(B). Also, P(A

|B) = P(A) and P(B

|A) = P(B).

Definition 3 (Cumulative Distribution Function). F X(x) = P{X ≤ x}Definition 4 (Probability Density Function). f X(x) = P{X  = x}Definition 5 (Continuous Random Variable). P{X  = x} for all  x ∈ R.F X is a continuous function, with  f X(x) = F X (x)

Definition 6.

E(X ) =

x xf x(x) for Discrete RV  ∞

−∞xf X(x) dx for Continuous RV 

E(aX  + b) = aE(X ) + b

Definition 7 (Moment Generating Function). M X (t) = E[etX ]If there is a  δ > 0 such that  M (t) <

∞for every 

|t

|<

∞, then  E(X k) =

M (k)(0)

Definition 8 (Variance). σ2X = E[(X −EX )2] = EX 2−(EX )2 Var (aX +b) = a2Var (X ), V ar(X +Y  ) = V ar(X )+ V ar(Y  ) if  X, Y   are independent.

Theorem 4 (Tail Sum Formula). For non-negative integer-valued r.v. X,

E[X ] =∞k=1

P(X ≥ k) =∞k=0

P(X > k)

Definition 9 (Binomial Distribution). X  is the number of success that occur in  n independent Bernoulli trials, denoted as X ∼ B(n, p).

b(i; n, p) =n

i

 pi(1 − p)n−i

EX  = np, Var (X ) = npq

Definition 10 (Poisson Distribution). X  is the number of occurenoccuring in a specific interval such that the occurences are independbetween intervals, denote as X ∼ P (λ)

 p(i; λ) = e−λλi

i!

EX  = λ, Var (X ) = λ

Suppose X  ∼ B(n, p), n is large and p is small (< 0.1), then X  ≈ P with λ = np.

Definition 11 (Geometric Distribution). X  is the number of trials rquired until a success is obtained for a repeated Bernoulli Trial. Den

X ∼ Geom ( p). f X(n) = (1 − p)n−1 p

EX  = 1p

, Var (X ) = 1−pp2

Definition 12 (Negative Binomial Distribution). X  is the numberBernoulli trials performed until  r successes are obtained. Denote as X

N B(r, p).

f X (n) =n − 1

r − 1

 pr(1 −  p)n−r

EX  = rp

, Var (X ) = r(1−p)p2

Definition 13 (Hyper Geometric Distribution). X  is the number of whballs drawn without replacement when  n balls are drawn in an urn withballs, out of which  m are white. Denote X ∼ H (n,N,m).

f X (n) = mx

N −mn−x N n

EX  = nmN 

, Var (X ) = N −nN −1

· n · mN 

(1 − mN 

)

Definition 14 (Exponential Distribution). A good model for waiting tiscenarios, X ∼ Exp(λ) if 

f X(n) =

λe−λx, x > 0

0 elsewhere 

EX  = 1λ

, Var (X ) = 1λ2

Exponential and geometric distribution are memoryless i.e. P{X > st|X > t} = P{X > s}Definition 15 (Gamma Distribution). X ∼ Γ(α, λ) if 

f X(n) = λα

Γ(α)xα−1e−λx, x > 0

0 elsewhere 

The Gamma function is defined by 

Γ(α) =

 ∞0

xα−1e−x dx

EX  = αλ

, Var (X ) = αλ2

Note that  ∞0

xα−1eλx dx =Γ(α)

λα

Definition 16 (Normal Distribution). X ∼ N (µ, σ2) if 

n(x; µ, σ) =1√ 

2πσe−

(x−µ)2

2σ2

The Gamma function is defined by 

Γ(α) =

 ∞0

xα−1e−x dx

EX  = µ, Var (X ) = σ2

The standard normal r.v. is denoted by Z  ∼ N (0, 1). For any X 

N (µ, σ2), we haveX − µ

σ∼ N (0, 1)

Given X ∼ B(n, p) such that np(1 − p) ≥ 10, we have X ≈ N (np,npq)

Remark 1 (Continuity Correction). If  X ∼ B(n, p), then 

{X  = k} = {k − 0.5 < X < k + 0.5}{X ≥ k} = {X ≥ k − 0.5}{X ≤ k} = {X ≤ k + 0.5}