32
Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées M206ICP : Introduction au calcul des probabilités Notes de cours par Clément Boulonne L2 Mathématiques 2007 - 2008

M206ICP : Introduction au calcul des probabilités

Embed Size (px)

Citation preview

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 1/32

Université des Sciences et Technologies de LilleU.F.R. de Mathématiques Pures et Appliquées

M206ICP : Introduction au calcul des

probabilités

Notes de cours par Clément Boulonne

L2 Mathématiques 2007 - 2008

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 2/32

Table des matières

1 Espaces probabilisés 41.1 Evenements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 La probabilité comme fonction d’ensembles . . . . . . . . . . . . . . . . . . . . . 51.3 Probabilités classiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 Propriétés générales des probabilités . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Conditionnement et indépendance 102.1 Probabilités conditionnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.1.2 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Indépendance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2.1 Indépendance de deux événements . . . . . . . . . . . . . . . . . . . . . . 132.2.2 Indépendance mutuelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Variables aléatoires 153.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.2 Variables aléatoires discrètes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Lois discrètes classiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.3.1 Loi de Bernouilli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.3.2 Loi uniforme sur un ensemble fini de réels . . . . . . . . . . . . . . . . . 183.3.3 Lois binomiales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.3.4 Lois hypergéométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.3.5 Lois géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.3.6 Lois de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Variables aléatoires continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.4.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.4.2 Loi pour les variables aléatoires continues . . . . . . . . . . . . . . . . . . 21

3.4.3 Analogie entre variable aléatoire continue et discrète . . . . . . . . . . . 213.5 Indépendance des variables aléatoires . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.5.2 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Epreuves de Bernouilli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Espérance mathématique 254.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Aspect discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.1.2 Aspect continu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.3 Retour à l’aspect discret . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 3/32

3

4.3 Inégalité de Markov et Tchebychev . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Loi des grands nombres 315.1 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 4/32

Références

Certaines parties du cours ont été recopiées du polycopié de cours suivant :

1) Ch. Suquet, Introduction au Calcul des Probabilités, 2007-2008

Les cours sont téléchargeables sur le site IPEIS (Intégration, Probabilités Elémentaires etInitiation à la Statistique) de l’Université Lille 1.

4

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 5/32

Chapitre 1

Espaces probabilisés

1.1 Evenements

Définition 1.1.1. On note Ω un ensemble non vide dont les éléments représentent tous les

résultats possibles ou événements élémentaire d’une expérience alétoire. Ω = ω, on dira queω, élément de Ω est un événement élémentaire.

Exemple 1.1.1. On lance une pièce symétrique et on regarde à sa tombée sur le sol, la piècetombe sur pile ou face. On aura alors :

Ω = P, F

On pioche sur un jeu de 52 cartes, une carte. On aura alors :

Ω = A♣, A♠, A♦, A♥,...,K ♣, K ♠, K ♦, K ♥Dans un intervalle [0, 1], on choisit un point au hasard sur le segment :

Ω = x ∈ [0, 1]

On peut aussi mesurer une température à n’importe quel point du globe :

Ω = −273C, ∞

Définition 1.1.2. F = A, A ⊂ Ω et est appelé événement et F est la famille des événementspossibles.

Exemple 1.1.2. Si on jette un dé, l’évément A peut être “obtention d’un chiffre paire” et doncA = 2, 4, 6 composé de trois événements élémentaires ω1 = 2, ω2 = 4, ω3 = 6.

Définition 1.1.3. On note AC , un événement qui se réalise si A ne se réalise pas. On l’appelleévénement contraie ou complémentaire de A.

Définition 1.1.4. A ∩ B est la réalisation de A et B en même temps.

Définition 1.1.5. A ∪ B est la réalisation de A ou la réalisation de B.

5

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 6/32

6 Chapitre 1. Espaces probabilisés

1.2 La probabilité comme fonction d’ensembles

Propriété 1.2.1. F a les propriétés suivantes :

1. Ω ∈ F 2. A ∈ F ⇒ AC ∈ F 3.

F est stable par opérations de réunion et d’intersection sur les suites d’événements. C’est-

à-dire, si (Ak) est un ensemble d’évenement fini et dénombrable alors :k

Ak ∈ F et k

Ak ∈ F

Démonstration. On démontre la propriété 3 sur les opérations d’intersection.k

Ak

C

=K

AC k ∈ F

Définition 1.2.1. La famille qui vérifie les trois propriétés s’appelle une tribu (ou σ-algébre).

Exemple 1.2.1 (Plus grande et plus petite tribu possible). Soit Ω fixé. F = ∅, Ω est la pluspetite tribu possible. F = P (Ω) = A|A ⊂ Ω est la plus grande tribu possible.

Définition 1.2.2 (Parties de Ω). On appelle parties de Ω et on note P (Ω) :

P (Ω) = A|A ⊂ ΩExemple 1.2.2. Si Ω = P, F alors P (Ω) = Ω, ∅, P , F .

Définition 1.2.3. Si card(Ω) = n alors card(

P (Ω)) = 2n.

Définition 1.2.4. Soit Ω un ensemble et F une famille d’événement observables sur Ω. Onappelle P (A) la probabilité d’un événement, c’est-à-dire : P : F → R tel que nA

n→ P (A) la

fréquence où l’événement est réalisé. Concrétement, P doit vérifié :

1. P (Ω) = 1

2. 0 ≤ P (Ω) ≤ 1, ∀A ∈ F 3. (Ak), (Ak ∈ F ), si Ak ∩ A j = ∅ (avec k = j) alors :

P

k

Ak

=k

P (Ak)

La troisième propriété s’appelle σ-additivité.

Définition 1.2.5. Soit Ω = 0, F tribu et P une probabilité alors (Ω, F , P ) est un espaceprobabilisé.

Exemple 1.2.3. Ω = P, F , F = P (Ω) = ∅, Ω, F , P 1. cas symétrique :

P (∅) = 0, P (Ω) = 1, P (P ) =1

2, P (F ) =

1

2

2. cas non-symétrique :

P (∅) = 0, P (Ω) = 1, P (P ) = p, P (F ) = 1 − p

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 7/32

Chapitre 1. Espaces probabilisés 7

1.3 Probabilités classiques

Proposition 1.3.1. Soit card(Ω) < ∞, P (ωi) = P (ω j), ∀ωi, ω j ∈ Ω et F = P (Ω). Alors :

P (A) =card A

cardΩ(Définition classique des probabilités)

Démonstration. ∃ p tel que p = P (ωi = P (ω j). On a : A = ω∈A

ω. D’après la σ-additivité.

P (A) =ω∈A

P (ω) = p(card A)

et si A = Ω alors P (Ω) = 1 = p(card(Ω)).

Exemple 1.3.1. Les probabilités classiques peuvent être considéré par le lancer d’une piècedans le cas symétrique.

Exemple 1.3.2. On effectue une partie de pile ou face en trois coups. Quelle est la probabilitéd’obtenir pile aux premier et troisième lancers ? On peut modéliser cette expérience en prenantΩ = P, F 3 et pour famille d’événement observables F = P (Ω) l’ensemble de toutes les partiesde Ω. La pièce étant supposée symétrique, nous n’avous a priori pas de raison de supposer quel’un des 8 triplets de résultats possibles soit favorisé ou dévaforisé par rapport aux autres. Onchoisit donc P de sorte que tous les événements élémentaires aient même probabilité (hypothèsed’équiprobabilité ou probabilité classique) soit :

∀ω ∈ Ω, P (ω) =1

cardΩ=

1

23

L’événement B dnt on veut calculer la probabilité s’écrit :

B = (P, F , P ), (P, P, P )

D’où :

P (B) =1

8+

1

8=

1

4

Exemple 1.3.3. Dans une urne, on a mls n boules blanches et n boules noirs indiscernable autoucher. On a donc n + m boules. On choisit k boules et on veut calculer P (Al) tel que :

Al =

on a pioché l boules blanches

Donc :

P (Al) =card(Al)

cardΩ

On a alors :

card(Ω) = C kn+m

et :

card(Al) = C lm × C k−ln

Donc :

P (Al) = C lm × C

k−

ln

C kn+m

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 8/32

8 Chapitre 1. Espaces probabilisés

Pour un exemple concret, on peut prendre celui du Loto. n = 6, n + m = 49, l = 6 et k = 6.

P (A6) =1

C 649= 7.15112384202e − 08

Pour n = m et k = n, on a :

P (Al) =C lnC k−l

n

C 2nn= C ln

2

C n2n

On a : l = 0,...,n. Soit A0,...,An alors :

Ak ∩ Al = ∅, k = lk

Ak Ω

On a aussi :

1 = P (Ω) = P

l

Al

=

n

l=0

P (Al)

Donc :n

l=0

C ln

2C n2n

= 1 ⇒ C n2n =n

l=0

C ln

2

Définition 1.3.1. On dit que Ω est un espace discret si card(Ω) < ∞.

Proposition 1.3.2. Soit F = P (Ω) et soit P une probabilité sur F . Il existe une famille( pk)k≥0 tel que :

1. pk ≥ 0

2. k pk = 1

3. ∀A, P (A) =

k|ωk∈A

pk

Démonstration. On a P (wk) = pk. La propriété 1 est évidente. On démontre la propriété 3avant la 2.

A =

k|ωk∈A

ωk

P (A) =

k|ωk∈A

P (ωk) =

k|ωk∈A

pk

Exemple 1.3.4. Soit Ω = N, pk = λke−λ

k!pour λ > 0, k = 0... On appelle loi de Poisson P (λ)

la probabilité qui vérifie pk = λke−λ

k!.

1.4 Propriétés générales des probabilités

Soit P une probabilité :

Propriété 1.4.1. P (AC ) = 1 − P (A), P (A) = 1 − P (AC ).

Propriété 1.4.2. A ⊂ B ⇒ P (A) ≤ P (B)

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 9/32

Chapitre 1. Espaces probabilisés 9

Démonstration. On a : B = A ∪ (B\A). Or A et B\A sont disjoints alors :

P (B) = P (A) + P (B\B) ≥ P (A)

Propriété 1.4.3. Soit A et B deux ensembles alors :

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

Démonstration. A∪

B = A∪

(B\

A) alors :

P (A ∪ B) = P (A) + P (B\A)

et B = (A ∩ B) ∪ B\AP (B) = P (A ∩ B) + P (B\A)

Propriété 1.4.4. P (A ∪ B) ≤ P (A) + P (B)

Démonstration. Conséquence de la Propriété 1.4.3.

Propriété 1.4.5. Soient (A1,...,An) alors :

P

n

k=1

Ak

nk=1

P (Ak)

Démonstration. Par réccurence. Initialisation évidente car c’est la Propriété 1.4.3.

P

n+1k=1

Ak

= P

n

k+1

Ak ∪ Ak+1

≤ P

n

k=1

Ak

+ P (An+1)

Remarque. Si (Ak) infini alors la Propriété 1.4.5. est vérifiée.

Propriété 1.4.6 (Propriété de continuité de P ). a) (An) croissante ( ∀n, An ⊂ An+1) alorsP (An) est croissante. On a alors :

limn→+∞ P (An) = P

k

Ak

b) (An) décroissate ( ∀n, An+1 ⊂ An) alors P (An) converge vars P k

Ak.

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 10/32

10 Chapitre 1. Espaces probabilisés

Démonstration. a) ⇒ b) : soit (An) décroissante. Si on prend Bn = AC n , on a (Bn) croissante.

Alors P (Bn) −−−→n→∞ P

k

Bk

. Mais P (Bn) = 1 − P (An). Donc : P (An) → 1 − P

k

Bk

Or :

1 − P

k

Bk

C = P

k

(Bk)C

= P

k

(AK )

.

Propriété 1.4.7. La Remarque précédente peut constitué une propriété. On rappelle : soit (Ak)infini alors :

P

∞k=0

Ak

∞k=1

P (Ak)

Démonstration. Bn =n

k=1

Ak avec (Bn) croissante. On a :

P (Bn) −−−→n→∞ P

∞k=1

Bn

et : ∞k=1

Bk =∞

k=1

Ak

alors :

P (Bn)

→ P

∞k=1

Ak

= P

n

k=1

Ak

nk=1

P (Ak) ≤ P (An)

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 11/32

Chapitre 2

Conditionnement et indépendance

2.1 Probabilités conditionnelles

2.1.1 Introduction

Comment doit-on modifier la probabilité que l’on attribue à un évenement lorsque l’ondispose d’une information supplémentaire ? Le concept de probabilité conditionnelle permet derépondre à cette question.

Exemple 2.1.1. Soit card(Ω) < ∞ alors :

P (A) =card(A)

card(Ω)

et B une partie de Ω avec B ∩ A = ∅. Alors :

P A(B) =card(A ∩ B)

card(A)=

P (A ∩ B)

P (A)

Définition 2.1.1. P A : F → R+ alors :

P A(B) =P (A ∩ B)

P (A), B ∈ F , P (A) > 0

P A(B) s’appelle la probabilité conditionelle sachant A.

Démonstration. On vérifie que la Définition 2.1.1. est une relation de probabilité.

1) P A(Ω) =P (A ∩ Ω)

P (A)=

P (A)

P (A)= 1

2) 0 ≤ P A(B) ≤ 1 car P (A ∩ B) ≤ P (A).

3) (Bk), Bk ∩ Bl = ∅, k = l :

P A

k

(Bk)

=

P

A ∩

k

Bk

P (A)=

P

k

A ∩ Bk

P (A)=

k

P (A ∩ Bk)

P (A)=k

P A(Bk)

11

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 12/32

12 Chapitre 2. Conditionnement et indépendance

Exemple 2.1.2. Supposons qu’on a deux urnes. Dans l’urne 1, on a : m boules blanches et nnoires et dans l’urne 2, m boules blanches et n boules noires. On transpose une boule au hasard(sans regarder sa couleur) de la urne 1 vers la urne 2. Ensuite, on tire au hasard une boule dansl’urne 2 et on regarde sa couleur.

Soit B = la deuxième boule tirée est blanche. On simplifie l’expérience en utilisant :• A1 = Première blanche• A2 = Première noirealors on a :

P A1(B) =

m + 1

m + n + 1P A2

(B) =m

m + n + 1

2.1.2 Propriétés

Proposition 2.1.1 (Conditionnement successifs). Soit B = A1 ∩ A2 ∩ ... ∩ An avec P (Ai) > 0alors :

P (B) = P (A1)P A1(A2)P A1∩A2

(A3)...P A1∩A2∩...∩An−1(An)

Démonstration.

P (A1)P (A1 ∩ A2

P (A1)

P (A3 ∩ (A2 ∩ A1))

P (A1 ∩ A2)× ... × P (An ∩ (An−1 ∩ ... ∩ A1)

P (An−1 ∩ ... ∩ A1)

= P (A1 ∩ A2)P (A3 ∩ (A2 ∩ A1))

P (A1 ∩ A2)× ... × P (An ∩ (An−1 ∩ ... ∩ A1)

P (An−1 ∩ ... ∩ A1)

= ... = P (A1 ∩ A2 ∩ ... ∩ An) = P (B)

Exemple 2.1.3. Soit une urne avec 2n boule avec 2 boules identiques (même couleur) 2 à 2.On choisit 2 boules à la fois et on répete l’expérience jusqu’à tant qu’il n’y a plus de boules.

Soit B = chaque sorte de boules donne une paire de même couleur. On introduite desévénements :

• A1 = les 2 premières sont de même couleurs• A2 = les 2 boules suivant A1 sont de même couleurs• · · ·• An = les 2 boules suivant An−1 sont de même couleurs

On a alors : B = A1 ∩ ... ∩ An.

P (A1) =n

C 22nP A1

(A2) = n−1C 22n−2

...

etP (B) = n

C 22nn − 1C 22n−1

... 1C 22

= n!×2n2n(2n−1)(2n−2)...1 = n!2n

(2n)!= 1

2k+1

Proposition 2.1.2 (Probabilité totale). Soit (Ak) qui forme une partition de Ω.

1. disjoints

2.k

Ak = Ω

Soit B un événement. Alors :

P (B) = k

P (Ak)P Ak(B)

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 13/32

Chapitre 2. Conditionnement et indépendance 13

Démonstration. On a : B = B ∩ Ω = B ∩

k

Ak

=k

(B ∩ Ak). Alors :

P (B) = P

k

(B ∩ Ak)

=k

P (B ∩ Ak)

Exemple 2.1.4 (Retour sur l’Exemple 2.1.2). On a alors :

P (B) = P (A1)P A1(B) + P (A2)P A2

(B)

et :

P (A1) =m

m + net P (A2) =

n

m + n

Donc :

P (B) =m

m + n ×m + 1

m + n + 1

+n

m + n ×m

m + n + 1Exemple 2.1.5. On considère un echequier de 64 cases. On choisit deux cases de l’échequieret on y place deux fois. On dit que deux fois sont en position d’attaque si ils sont sur la mêmediagonale. Soit B = les deux fous sont en position d’attaque. On introduit des événements.

• A1 = le premier fou est à l’extrémité de l’échequier• A2 = le premier fou est à une case de l’extrémité de l’échequier• A3 = le premier fou est à deux cases de l’extrémité de l’échequier• A4 = le premier fou est à trois cases de l’extrémité de l’échequier

En A1, le premier fou a 7 possibilités d’être en position d’attaque avec le deuxième fou. En A2,il en a 9. En A3, il en a 11 et en A4, 13. On a alors :

P (A1) =28

64, P (A2) =

20

64, P (A3) =

12

64, P (A4) =

4

64

P A1(B) =

7

63, P A2

(B) =9

63, P A3

(B) =11

63, P A4

(B) =13

63

Alors :

P (B) =28

64× 7

63+

20

64× 9

63=

12

64 × 63+

4 × 13

64 × 63

Proposition 2.1.3 (Formule de Bayes). Soit A un événement de proabilité non nulle. Si les

événements H i (1 ≤ i ≤ n) forment une partition de Ω et aucun P (H i) n’est nul, on a pour tout j = 1,...,n :

P A(H j) =P H j (A)P (H j)n

i=1

P H i(A)P (H i)

Démonstration. Par définition des probabilités conditionnelles on a :

P A(H j) =P (A ∩ H j)

P (A)=

P H j (A)P (H j)

P (A)

Et il ne reste plus qu’à dévelpper P (A) en conditionnant par la partition (H i, 1 ≤ i ≤ n).

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 14/32

14 Chapitre 2. Conditionnement et indépendance

2.2 Indépendance

2.2.1 Indépendance de deux événements

Soit A, B ∈ Ω. On suppose que A est réalisé alors P (B) = P A(B) et P (A) = P B(A). Onaura donc :

P (A

∩B) = P (A)

×P (B)

si P (A) > 0 et P (B) > 0.

Définition 2.2.1. Deux événements A et B sont indépendants si :

P (A ∩ B) = P (A) × P (B)

Exemple 2.2.1. Soit un jeu de 36 cartes. On considère :

A = ♣

B =

D

Alors :

P (A) =9

36P (B) =

4

36

et :A ∩ B = D♣

P (A ∩ B) =9 × 4

36 × 36=

36

362=

1

36

Proposition 2.2.1. Si A et B sont indépendants alors AC et B sont indépendants.

Démonstration.

P (AC )P (B) = (1 − P (A))P (B) = P (A) − P (A)P (B)= P (A) − P (A ∩ B) = P (A ∩ BC )

Conséquence. 1. Si A et B sont indépendants alors A et BC sont indépendants et AC et BC

sont indépendants.

2. On a aussi Ω et A sont indépendants et ∅ et A sont indépendants.

2.2.2 Indépendance mutuelle

Définition 2.2.2 (Fausse définition pour l’indépendance de plusieurs éléments). Soit A1,...,An

un ensemble d’événements. On dit que A1,...,An sont tous indépendants si Ai, A j sont indé-pendants pour i = j.

Mais on va voir quette définition n’est pas vraie.

Exemple 2.2.2. Soit Ω = ω1, ω2, ω3, ω4, pωi = 14

A1 = ω1, ω2

A2 = ω1, ω3

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 15/32

Chapitre 2. Conditionnement et indépendance 15

A3 = ω1, ω3On a :

P (Ai) =1

2

Mais pour i = j, Ai, A j sont indépendants car :

P (Ai ∩ A j) = P ω=1 = 14 = 12 × 12

Mais B = A2 ∩ A3 et A1. On vérifie si oui ou non on a P (B ∩ A1) = P (B) ∩ P (A1).

P (B) =1

4P (A1) =

1

2

P (B ∩ A1) = P ω1 =1

4= 1

4× 1

2

Définition 2.2.3. Soient A1,...,An des événements. Ils sont indépendants si :

P (Ai ∩ A j) = P (Ai)P (A j) i = j

P (Ai ∩ A j ∩ Ak) = P (Ai)P (A j)P (Ak) i = j = k

· · · · · · · · ·P

n

i=1

Ai

=

ni=1

P (Ai)

Proposition 2.2.2. Soient A1,...,An des événements indépendants et T 1,...,T k tel que :

T i

∩T j =

∅T 1 ∪ ... ∪ T k = 1,...,n

Supposons que B1 soit une combinaison de Ai avec i ∈ T 1, B2 soit une combinaison de Ai aveci ∈ T 2,...,Bk soit une combinaison de Ai, i ∈ T k alors B1, B2,...,Bk sont indépendants.

Corollaire. On suppose B j = A j ou B j = AC j . Si A1,...,An sont indépendants alors B1,...,Bn

sont indépendants.

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 16/32

Chapitre 3

Variables aléatoires

3.1 Généralités

Définition 3.1.1. Soit (Ω, F , P ) est une espace probabilisée. On appelle variable aléatoirediscrète sur (Ω,

F , P ) toute application X :

X : Ω → R

ω → X (ω)

vérifiant :

1. ω | X (ω) ∈ Ω est une partie au plus dénombrable de R.

2. Pour tout x ∈ X (Ω), A = ω ∈ Ω, X (ω) = x fait partie de la famille F d’événementsauxquels on peut attribuer une probabilité sur P .

Un cas simple est que Ω soit fini et dénombrable alors F = P (Ω).

Exemple 3.1.1. On suppose qu’on lance 2 dés en même temps :

Ω = (i, j), i , j = 1...6F = P (Ω)

X (i, j) = i + j. Les valeurs possibles sont 2,..., 12. Quelle est la valeur de P X = k ?

P X = 2 = 136

P X = 10 = 336

P X = 3 = 236

P X = 11 = 236

P X = 4 = 336

P X = 12 = 136

Définition 3.1.2 (Répartition ou loi). Soit F une fonction :

F (x) = P X ≤ x, x ∈ ROn l’appelle fonction de répartition de X avec X =]a, b]

P X ∈]a, b] = F (b) − F (a)

Démonstration. Soit A = X ≤ a, B = X ≤ b et C = X ∈]a, b[ alors :

A ∩ C = ∅A ∪ C = B

P

X ≤

b

= P (A∪

C ) = P (A) + P (C ) = P

X ≤

a

+ P

X ∈

]a, b]

16

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 17/32

Chapitre 3. Variables aléatoires 17

Propriétés de la fonction de répartition

Propriété 3.1.1. On a : 0 ≤ F (x) ≤ 1.

Propriété 3.1.2. Si x < y alors F (x) ≤ F (y).

Propriété 3.1.3. F est continue à droite.

Propriété 3.1.4. limx→−∞F (x) = 0 et limx→+∞F (x) = 1

Propriété 3.1.5. P X ∈]a, b] = F (b) − F (a)

Démonstration. On vérifie d’abord la croissance de F sur R. Soient s et t deux réels quelconquestel que s ≤ t. Tout ω vérifiant X (ω) ≤ s vérifie a fortiori X (ω) ≤ t. Cette implication se traduitpar l’inclusion d’événements X ≤ s ⊂ X ≤ t d’où P (X ≤ s) ≤ P (X ≤ t), autrement ditF (s) ≤ F (t). Ainsi F est croisate. Il en résulte qu’elle possède une limite à gauche et une limiteà droite en tout point de x de R.

Le reste de la preuve repose sur la propriété de continuité monotone séquentielle de laprobabilité qu’on rappelle :

Rappel. Soit P une probabilité sur l’espace (Ω, F ).

(i) Si (An)n≥N∗ est une suite croissante d’événements (c’est-à-dire ∀n ∈ N∗, An ⊂ An+1) alors :

limn→+∞P (An) = P (A) où A =

n∈N∗

An

.

(ii) Si (Bn)n∈N∗ est une suite décroissante d’événements (c’est-à-dire ∀n ∈ N∗Bn+1 ⊂ Bn)alors :

limn→+∞ P (Bn) = P (B) où B =

n∈N∗Bn

Soit x ∈ R fixé. Comme on est assuré de l’existence de la limite à droite de F en ce point,pour montrer que cette limite vaut F (x) et établir la continuité à droite F en x, il suffit de

vérifier que : F (x) = limn→+∞F

x +

1

n

. Comme F (x + 1

n) = P (X ≤ x + 1

n), ceci résulte de la

propriété (ii) ci dessus appliquée aux événements Bn = X ≤ x + 1n, en remarquant que :

n∈N∗

X ≤ x +

1

n

= X ≤ x (3.1)

En effet, pour tout ω ∈ X ≤ x, on a X (ω) ≤ x ≤ x + 1n

pour tout n ∈ N∗ et donc ω ∈n∈N∗

Bn

d’où X ≤ x est inclus dans l’intersection des Bn (n ∈ N∗). Réciproquement, tout ω de cetteintersection vérifie : ∀n ∈ N

∗, X (ω) ≤ x + 1n

. Le passage à la limite quand n tend vers l’infiniconservant l’intersection des Bn (n ∈ N∗) est incluse dans X ∈ x, ce qui achève la vérificationde (3.1).

Comme F est croissante, elle admet des limites en −∞ et +∞. Si X (Ω) est borné inférieu-rement 1, il est clair que F (x) = 0 pour tout x assz petit et donc lim

n→−∞F (x) = 0. Dans le cas

général, on identifie la limite en −∞ (dont on connait l’existence) grâce à une suite particulière :

limx→−∞F (n) = lim

n→+∞F (−n) = limn→+∞P (X ≤ −n)

1

Attention, dans le cas général x0 n’est pas nécessairement le plus petit élément de X (Ω), on peut très bienavoir par exemple X (Ω) = Z.

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 18/32

18 Chapitre 3. Variables aléatoires

On utilise à nouveau la propriété (ii) avec Bn = X ≤ −n en montrant que :

n∈N∗

X ≤ −n = ∅ (3.2)

En effet, soit ω un élément de cette intersection. Alors X (ω) ≤ −n pour tout n ∈ N∗ donc

en passant à la limite, X (ω) = −∞ ce qui est impossible puisque X ne prend que des valeursfinies2. Donc cette intersection est vide et par (ii), lim

n→+∞ P (X ≤ −n) = P (∅) = 0. La preuve

de limx→+∞ F (x) = 1 est analogue.

3.2 Variables aléatoires discrètes

Définition 3.2.1. X est une variable aléatoire discrète si ∃V = x1, x2,...,xn, V ⊂ R tel queP X ∈ V = 1. On a :

1) X = xk ∩ X = xn = ∅, k = n

2)k

X = xk = X ∈ V

Proposition 3.2.1. Soit pk = P X = xk, ∀A ⊂ R

P X ∈ A =

k|xk∈A

pk

Démonstration. On a que :

P X ∈ A = X ∈ A ∩ X ∈ V = P

X ∈ A ∩

k

X = xk

= P

k

X ∈ A ∩ X = xk

= P

k|xk∈A

X = xk =

k|xk∈A

pk

Exemple 3.2.1. A = R, X ∈ A = Ω. On a alors :

1 =k

pk

Exemple 3.2.2. Soit xkk=1,...,n, x1 < x2 < ... < xn, pk = X = xk, F (x) = P X ∈ A =k|xk∈]−∞,x]

pk

2Ce qui signifie que X (Ω) soit borné...

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 19/32

Chapitre 3. Variables aléatoires 19

3.3 Lois discrètes classiques

3.3.1 Loi de Bernouilli

Définition 3.3.1. La variable aléatoire X suit la loit de Bernoulli de paramètre p ( p ∈ [0, 1])si elle ne prend que deux valeurs 0 et 1 avec :

P (X = 1) = p P (X = 0) = 1 − p = q

On notera X ∼ B ( p).

Si A est un événements de probabilité p, son indicatrice définie par :

1A(ω) =1 si ω ∈ A

0 si ω ∈ A=1 si A est réalisé

0 si A n’est pas réalisé

est une variable aléatoire suivant la loi de Bernouilli de paramètre p. Réciproquement, si X estun variable aléatoire de Bernouilli, on peut toujours écrire X = 1A en définissant A = ω ∈Ω, X (ω) = 1.

3.3.2 Loi uniforme sur un ensemble fini de réels

Définition 3.3.2. La variable aléatoire X suit la uniforme sur l’ensemble des réels x1,...,xnsi P X est l’équiprobabilité sur cet ensemble.

Autrement dit, l’ensemble des valeurs possibles de X est X (Ω) = x1,...,xn et :

∀k ∈ 1,...,n P (X = xk) =1

n

Par exemple, le nombre de points indiqué par un dé suit la loi uniforme sur 1, 2, 3, 4, 5, 6.

3.3.3 Lois binomiales

Définition 3.3.3. La variable aléatoire X suit la loi binomiale de paramètres n et p (n ∈ N∗

et p

∈[0, 1]) si l’ensemble des valeurs possibles est X (Ω) =

0, 1,...,n

et :

∀k ∈ 0, 1,...,n P (X = k) = C kn pk(1 − p)n−k

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 20/32

20 Chapitre 3. Variables aléatoires

Notation. X ∼ B (n, p)

La forme ci-dessus définit bien une loi de probabilité puisuqe les C kn pk(1− p)n−k sont positifs

et :n

k=0

C kn pk(1 − p)n−k = ( p + (1 − p))n = 1n = 1

en appliquant la formule du binôme de Newton (d’où le nom de la loi). La loi binomiale B (n, p)est la loi du nombre de succès obtenus en une suite de n épreuves répétées indépendantes avecpour chaque épreuve une probabilité de succès p.

De même, soit A1,...,An une famille de n événements mutuellement indépendants ayanttous même probabilité p et notons X i la variable de Bernouilli indicatrice de Ai :

X i(ω) =

1 si ω ∈ Ai

0 si ω ∈ AC i

Alors la variable aléatoire S n =

ni=1 X i suit la loi binomiale B (n, p).

3.3.4 Lois hypergéométriques

Alors que la loi binomiale intervient dans les tirages avec remise, la loi hypergéométriquecorrespond aux tirages sans remise.

Exemple 3.3.1. Dans une production totale de N objets dont M sont défectueux, on prélèveau hasard un échantillon de n objets (tirage sans remise). Soit X le nombre aléatoire d’objetsdéfectueux dans l’échantillon. Quelle est sa loi ?

On peut prendre comme espace Ω l’ensemble de tous les échantillons possibles (toutes les

parties à n éléments d’un ensemble de cardinal N ) muni de l’équiprobabilité. Chaque échantillona ainsi une probabilité 1/C nN d’être choisi. Les échantillons (événements élémentaires) réalisentl’événement X = k sont ceux qui contiennent k objets défectueux et n − k objets défectueux.Ceci n’est réalisable que si 0 ≤ k ≤ M et 0 ≤ n−k ≤ N −M . On dénombre ces échantillons. Onles forme en choisissant k objets défectueux dans une sous-population de M et en complétantpar n−k objets non défectueux chosis dans une population de N −M . Il y en a donc C kM ×C n−k

N −M .Finalement :

P (X = k) =C kM × C n−k

N −M

C nN

si

0 ≤ k ≤ M

0 ≤ n − k ≤ N − M

Définition 3.3.4. La loi définie par l’équation suivante :

P (X = k) =C kM × C n−k

N −M

C nN

si

0 ≤ k ≤ M

0 ≤ n − k ≤ N − M

s’appelle la loi hypergéométrique de paramètres N , M et n. Notation : X ∼ H(N , M , n). Leparamètre N est l’effectif de la population totale, M celui de la sous-population à laquelle ons’interesse et n la taille de l’échantillon observé.

Pour une taille d’échantillon n fixée, plus N et M sont grands, moins les tirages sans remise

diffèrent des tirages avec remise. Plus précisement, la loi hypergéométrique converge vers la loibinomiale au sens suivant :

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 21/32

Chapitre 3. Variables aléatoires 21

Theorème 3.3.1. On suppose que quand N tend vers +∞, M = M (N ) tend vers +∞ en vérifiant la condition :

limN →+∞

M

N = p avec 0 < p < 1

Alors, n restant fixé, la loi hypergéométrique H(N , M , n) converge la loi binomiale B (n, p), cequi signifie que si (X N )N ≥1 est une suite de variable aléatoire avec X N ∼ H(N , M , n) et Y est

une variable de loi binomiale B (n, p) alors :

∀k ∈ 0, 1,...,n limN →+∞

P (X N = k) = P (Y = k)

autrement dit :

∀k ∈ 0, 1,...,n limN →+∞

C kM × C n−kN −M

C nN

= C kn pk(1 − p)n−k

3.3.5 Lois géométriques

Exemple 3.3.2. Une variable aléatoire X suit la loi géométrique de paramètre p∈

]0, 1[, siX (Ω) = N∗ et :

∀k ∈ N∗, P (X = k) = (1 − p)k−1 p

Notation. X ∼ G( p)

G( p) est la loi du nombre de tentatives en n épreuves indépendantes.

3.3.6 Lois de Poisson

Définition 3.3.5. On dit que la variable aléatoire discrète X suit la loi de Poisson de paramètreλ > 0, si l’ensemble des valeurs possibles est X (Ω) = N et :

∀k ∈ N P (X = k) =e−λλk

k!

Notation. X ∼ P (λ)

3.4 Variables aléatoires continues

3.4.1 Généralités

Définition 3.4.1. Soit X une variable aléatoire à valeurs dans R et f X une densité de pro-

babilité sur R. On dit que X est une variable aléatoire continue de densité f X si pour toutintervalle A de R on a :

P (X ∈ A) = A

f X(x)dx

La loi de la variable aléatoire X est la loi continue sur R de densité f X .

Pour déterminer la loi d’une variable aléatoire continue, il faut donc calculer sa densité.De manière équivalente, on déterminer la loi d’une variable continue en donnant la probabilitéqu’elle appartienne à un intervalle I quelconque.

Une variable aléatoire continue X , de densité f X , tombe entre a et b avec une probabilitéégale à :

P (a < X < b) = ba

f X(x)dx

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 22/32

22 Chapitre 3. Variables aléatoires

Plus la densité f X est élevée au dessus d’un segment, plus les chances que X a d’atteindre cesegment sont élevées, ce qui justifie le terme "densité".

On a :P (X ∈ [a, b]) = P (X ∈ [a, b[) = P (X ∈]a, b[) = P (X ∈]a, b[)

3.4.2 Loi pour les variables aléatoires continues

Loi uniforme

X ∼ U [a, b] alors :

f X(x) =1

b − a1[a,b]

Loi gausienne (loi normale)

X ∼ N (a, σ2

), a ∈ R2

, σ ≥ 0, si :

f X(x) =1√ 2πσ

exp

−(x − a)2

2σ2

3.4.3 Analogie entre variable aléatoire continue et discrète

F (x) = P X ≤ x = P X ∈] − ∞, x] = ]−∞,x] f X(t)dt = t

−∞ f X(t)dt

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 23/32

Chapitre 3. Variables aléatoires 23

3.5 Indépendance des variables aléatoires

3.5.1 Introduction

Soient X et Y deux variables aléatoires. On a :

X

∈B

Y

∈C

On va dire que X et Y sont indépendants si les événements X ∈ B et Y ∈ C sontindépendants.

3.5.2 Généralités

Définition 3.5.1. Soient X 1,...,X n variables aléatoires. On dit qu’ils sont indépendants si lesévénements X 1 ∈ B1,...,X n ∈ Bn sont indépendants, ∀B1,...,Bn ⊂ R.

Theorème 3.5.1. X 1,...,X n variables aléatoires discrètes et

a j

alors :

X 1,...,X n indépendants ⇔ P X 1 = a j1 ,...,X n = a jn =n

k=1

P X k = a jk

pour chaque j1,...,jn.

Démonstration. (⇒) Bk = a jk alors X 1 = a j1,...,X n = a jn sont indépendants. On aalors :

P X 1 = a j1,...,X n = a jn =n

k=1

P X k = a jk

(⇐)P X 1 ∈ B1,...,X n ∈ Bn =

P X k ∈ Bk

On remarquera que :

X 1 ∈ B1,...,X n ∈ Bn =(∗)

X 1 ∈ a j1,...,X n ∈ a jn

avec (∗) = ( j1,...,jn) | a jk ∈ Bk pour k = 1,...,n.

P

X 1

∈B1,...,X n

∈Bn

= (∗) P

X = a j1 ,...,X n = a jn

=

(∗)

nk=1

P X k = a jk

=

P X k = a jk=

nk=1

P X k ∈ Bk → indépendants

car :

P Ai∩A j∩Ak = P X i ∈ Bi, X j ∈ B j, X k ∈ Bk = P X 1 ∈ R,...,X i−1 ∈ R, X i ∈ Bi, X i+1 ∈ R, ..

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 24/32

24 Chapitre 3. Variables aléatoires

3.6 Epreuves de Bernouilli

Définition 3.6.1. Soit k un événement et εk sa variable aléatoire dont les valeurs de εk sont 0et 1 (de probabilités respectives q = 1 − p et p). On considère la suite (ε1,...,εn) avec ε1,...,εn

indépendants. On appelle la suite de n épreuves de Bernouilli l’ensemble des εk, ∀k = 1,...,n.Les événements εk suivent la loi de Bernouilli de paramètre p.

Soit ν n

le nombre de succès de ces n événements alors :

ν n =n

k=1

εk

Proposition 3.6.1. ν n ∼ B (n, p) c’est-à-dire :

pn(k) = P ν n = k = C kn pk(1 − p)n−k, ∀k ∈ 1,...,n

Démonstration.

P ν k = k =

(∗)P ε1 = a1, ε2 = a2,...,εn = an ()

avec (∗) = (a1,...,an) | ai = 0, 1 etn

i=1

ai = k.

ν k = k =(∗)

ε1 = a1, ε2 = a2,...,εn = an

P ε1 = a1,...,εn = an =

P εk = ak = pk(1 − p)n−k

() = pk(1 − p)n−k card(A)

avec :

A =(a1,...,an)

ai =0

1et

ni=1

ai = k

et card(A) = C nk .

Theorème 3.6.2 (Poisson). Soit pn(k) et p = pn tel que npn → λ. Alors ∀k, pn(k) → λk

k!e−λ.

Démonstration. pn(k) = n!

k!(n−k)! pk(1 − p)n−k

= 1k!

n(n − 1)...(n − k + 1) pk(1 − p)n−k

= 1k!

(n−1)...(n−k+1)nk−1

(np)k(1 − p)n−k

= 1kn − 1n ...n − k + 1n

An

(np)k Bn

(1 − p)n−k C n

On alors :

An =n − 1

n

n − 2

n...

n − k + 1

n=

1 − 1

n

1 − 2

n

...

1 − k − 1

n

→ 1

Bn = (np)k = (npn)k → λk

C n = (1 − p)n−k =

1 +

xn

n n 1

(1 + xn

n

)n

avec xn = npn → −λ → e−λ. D’où la formule.

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 25/32

Chapitre 3. Variables aléatoires 25

Theorème 3.6.3 (Théorème local de Moivre-Laplace). Soit S n une variable aléatoire qui suit une loi binomiale de paramètre p alors pour n suffisamment grand la variable :

Z n =S n − np√

npq

converge en loi vers une loi normale centrée

N (0, 1).

pn(x) =1

npq

1√ 2π

e−x2nk

/2

c’est-à-dire :

maxk∈I n

pn(k)

f n(k)− 1

→ 0

avec I n = k | |xnk ≤ C et xnk = k−np√ npq

.

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 26/32

Chapitre 4

Espérance mathématique

4.1 Généralités

4.1.1 Aspect discret

Définition 4.1.1. Soit X une variable aléatoire vérifiant :xk∈X(Ω)

|xk|P (X = xk) < ∞

On appelle espérance mathématique de X le réel EX défini par :

EX =

xk∈X(Ω)

xkP (X = xk)

L’espérance de X apparaît ainsi comme le barycentre des valeurs possibles de X pondérées par

leurs probabilités de réalisation.Propriété 4.1.1. 1) Si X = c alors EX = c

2) Si X > 0 alors EX ≥ 0

3) E(aX ) = aEX (Linéarité de l’espérance)

Démonstration du 3). X = a j ⇔ aX = aa j

E(aX ) = j

aa j p j = a j

a j p j = aEX

4) E(X + Y ) = EX + EY

Démonstration du 4). Soit X = ai, pi = P X = ai et Y = b j , q j = P Y = b j. Soit :

A = j

(A ∩ y = b j)

On a : pi = P X = ai =

j

P X = ai, Y = b j

q j = pY = b j = i

P X = ai, Y = b j

26

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 27/32

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 28/32

28 Chapitre 4. Espérance mathématique

3) Soit X suivant une loi de Poisson, k = 0, 1, 2,...

P X = k =λk

k!e−λ

On a :

EX =∞

k=0

kλk

k!

e−λ = e−λ∞

k=1

kλk

k!

= λe−λ∞

k=1

λk−1

(k − 1)!= λe−λeλ = λ

4.1.2 Aspect continu

Définition 4.1.2. Soit X une variable aléatoire continue de densité p(x) ≥ 0. On a :

P X ∈ I = I p(x) = 0

On note X h = hk si X ∈ [kh, (k + 1)h[. On a alors que :

E(X h) =k∈Z

khX h = kh =k∈Z

kh kh+h

kh p(x)dx =

k∈Z

kh+h

khkhp(x)dx

=k∈Z

+∞−∞

1∆k(x) p(x)dx =

∞−∞

k∈Z

1∆k(x) p(x)dx

= ∞−∞

gh(x) p(x)dx = ∞−∞

xp(x)dx

Elle existe si : ∞−∞

|x| p(x)dx < ∞

4.1.3 Retour à l’aspect discret

Proposition 4.1.2. X , Y deux variables discrètes et indépendantes. Alors :

E(XY ) = EX EY

Démonstration. Soit X de valeurs ai et de probabilité pi et Y de valeurs b j et de probabilité q jalors :

EX EY =i

ai pi

j

b jq j =i

j

aib j piq j

=i

j

aib jP X = aiP Y = b j =i

j

P X = ai, Y = b j = E(XY )

Proposition 4.1.3. Soit X de valeurs ai et de probabilité pi. Soit f : R → R tel que pour Y = f (X ), EY existe. Alors :

EY = Ef (X ) = i

f (ai) pi

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 29/32

Chapitre 4. Espérance mathématique 29

Démonstration. Soit Y de valeurs b j et de probabilités q j :

EY = j

b jP Y = b j (∗)

On a :P Y = b j = P f (X ) = b j (∗)

On pose :T j = k|f (ak) = b j

Alors :(∗) =

k∈T j

pk

et :

(∗) = j

b j

k∈T j

pk

=

j

k∈T j

f (ak) pk

=

i

f (ai) pi

Exemple 4.1.2. 1) Si X suit la loi uniforme sur l’ensemble fini x1,...,xn, EX est égale à lamoyenne arithmétique des xi.

2) Si X suit la loi géométrique de paramétre p > 0 alors :

EX =1

p

3) Si X suit la loi hypergéométrique H(N , M , n) alors :

E

X = n

M

N

Des exemples sont données dans le polycopié de cours.

Exemple 4.1.3. 1) X ∼ U ([a, b])

p(x) =1

b − a1[a,b](x)

EX = ∞−∞

xp(x)dx = ba

x1

b − adx =

1

b − a

x2

2

ba

=a + b

2

2) X ∼ N (a, σ2

) alors EX = a.

4.2 Moments

Définition 4.2.1. Les expressions EX n, E|X | p, E|X − EX | p sont des moments.• EX n est le moment de X d’ordre n.• E|X | p est le moment absolu de X d’ordre p.• E|X −EX | p est le moment absolu centré d’ordre p.

Définition 4.2.2. On appelle variance de X :

Var X = E|X −EX |2

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 30/32

30 Chapitre 4. Espérance mathématique

Propriété 4.2.1. Var X = E(X )2 − (EX )2

Démonstration.

Var X = E|X −EX |2 = E(X 2 − 2X EX + (EX )2) = E(X 2) − 2EX EX + (EX )2

Exemple 4.2.1.

ε =

0 1 − p

1 p, Eε = p

Var ε = E(ε2) − p2 = p − p2 = p(1 − p)

Propriété 4.2.2. Var X ≥ 0 et Var X = 0 ⇔ X = c

Propriété 4.2.3. Var(cX ) = c2 Var X

Démonstration.

E(cX − E(cX )|2 = E|c − (X − EX )|2 = c2E|X − EX |2

Propriété 4.2.4. Var(X + a) = Var X

Propriété 4.2.5. X, Y indépendantes alors : Var(X + Y ) = Var X + Var Y

Démonstration. Soit a = EX et b = EY

Var(X + Y ) = Var(X + Y − (a + b)) = Var(X − a + Y − b) (∗)

On note X 1 = X − a et Y 1 = Y − b.

(∗) = E(X 1 + Y 1)2 = EX 21 + EY 21 + 2E|X 1Y 1|

= EX 21 + EY 21 = Var X + Var Y

Exemple 4.2.2. X ∼ B (n, p), EX = np

Var X =n

k=0

|k − np|2C kn pk(1 − p)n−k

On a que X ∼ ν n

Var X = Var(ν n) = Var(ε1 + ... + εn) = Var ε1 + ... + Var εn = np(1 − p)

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 31/32

Chapitre 4. Espérance mathématique 31

4.3 Inégalité de Markov et Tchebychev

Proposition 4.3.1 (Inégalité de Markov). Soit X ≥ 0, alors ∀t ≥ 0

P X ≤ t ≤ EX

t

Démonstration dans le cas discret. Soit X de valeurs ai et de probabilité pi. On a que ai ≥ 0

P X ≤ t =

i|ai≥t

pi ≤ i|ai≥t

ai

tpi ≤ 1

t

i

ai pi =EX

t

Proposition 4.3.2 (Inégalité de Tchebychev). Soit X une variable alétaoire tel que EX et Var X existent alors ∀t ≥ 0 :

P

|X

−EX

| ≥t

=

Var X

t2

Démonstration.

P |X − EX | ≥ t = P |X − EX |2 Y

≥ t2 s

=EY

s=E|X −EX |2

t2=

Var X

t2

8/8/2019 M206ICP : Introduction au calcul des probabilités

http://slidepdf.com/reader/full/m206icp-introduction-au-calcul-des-probabilites 32/32

Chapitre 5

Loi des grands nombres

5.1 Loi des grands nombres

Theorème 5.1.1 (Loi des grands nombres). Soit (X n) variables aléatoires de même loi, EX k =a, Var X k = σ2 <

∞. Alors :

S nn

P −→ a

Notation.n

k=1

X k = S n

Définition 5.1.1. Y nP −→ Y si ∀ε > 0 :

P |Y n − Y | > ε −−−−→n→+∞ 0

Démonstration. Soit ε > 0

P S n

n− a

< ε

≤ E

S nn

− a

≤ Var

S nn

− a

ε2=

1n2

Var S nε2

=1

ε21

n2

ni=1

Var(X i)

=1

ε2nσ2

n=

σ2

ε21

n−−−−→n→+∞ 0

Exemple 5.1.1. Soit A de valeurs εi de probabilité p :

εi =1 si A à la i-ème épreuve

0 si AC à la i-ème épreuve

nA

n=

ε1 + ... + εn

nP −→ Eε1 = p = P (A)