13
M16028 - Application of MLH for improvement of depth maps produced by DERS February 1st, 2009, Lausanne Olgierd Stankiewicz Krzysztof Wegner team supervisor: Marek Domański Chair of Multimedia Telecommunications and Microelectronics Poznań University of Technology, Poland

M16028 - Application of M LH for improvement of depth maps produced by D ERS

Embed Size (px)

DESCRIPTION

M16028 - Application of M LH for improvement of depth maps produced by D ERS. Olgierd Stankiewicz Krzysztof Wegner team supervisor: Marek Domański Chair of Multimedia Telecommunications and Microelectronics Poznań University of Technology, Poland. February 1st, 2009, Lausanne. Introduction. - PowerPoint PPT Presentation

Citation preview

M16028 - Application of MLH for improvement of depth maps

produced by DERS

February 1st, 2009, Lausanne

Olgierd StankiewiczKrzysztof Wegner

team supervisor: Marek DomańskiChair of Multimedia Telecommunications and Microelectronics

Poznań University of Technology, Poland

m16028 2

Introduction

Results of experiments in M16027 Already existing tool, presented to

MPEG in M15338 Used for improvement of DERS

(Nagoya) instead of PUT

m16028 3

What is MLH?

Mid-Level Hypothesis algorithm Post-processing tool that

introduces sub-pixel precision to already estimated depth maps,

Low computational complexity

m16028 4

Experiments

Similar to EEs, according to guidlines in W9991,

MLH upgraded to be DERS compatible Configuration files Depth maps

Limited set of sequences

m16028 5

Alt MoabitPSNR of synthesis for view 8 based on views 7 and 10

(Camera Distance 1)

33,8

34

34,2

34,4

34,6

34,8

35

35,2

35,4

35,6

35,8

36

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

PSNR of synthesis for view 8 based on views 7 and 10(Camera Distance 2)

33,5

34

34,5

35

35,5

36

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

PSNR of synthesis for view 8 based on views 7 and 10(Camera Distance 3)

34

34,2

34,4

34,6

34,8

35

35,2

35,4

35,6

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

PSNR of synthesis for view 8 based on views 7 and 10(Camera Distance 4)

34

34,2

34,4

34,6

34,8

35

35,2

35,4

35,6

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

m16028 6

Lovebird 1PSNR of synthesis for view 8 based on views 7 and 10

(Camera Distance 1)

26

26,5

27

27,5

28

28,5

29

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

PSNR of synthesis for view 8 based on views 7 and 10(Camera Distance 2)

27,6

27,7

27,8

27,9

28

28,1

28,2

28,3

28,4

28,5

28,6

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

m16028 7

Book arrivalPSNR of synthesis for view 8 based on views 7 and 10

(Camera Distance 1)

34

34,5

35

35,5

36

36,5

37

37,5

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

PSNR of synthesis for view 8 based on views 7 and 10(Camera Distance 2)

35

35,5

36

36,5

37

37,5

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

PSNR of synthesis for view 8 based on views 7 and 10(Camera Distance 3)

31,5

32

32,5

33

33,5

34

34,5

35

35,5

36

36,5

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

PSNR of synthesis for view 8 based on views 7 and 10(Camera Distance 4)

34,9

35

35,1

35,2

35,3

35,4

35,5

35,6

35,7

35,8

35,9

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

m16028 8

NewspaperPSNR of synthesis for view 8 based on views 7 and 10

(Camera Distance 1)

23

24

25

26

27

28

29

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

PSNR of synthesis for view 8 based on views 7 and 10(Camera Distance 2)

27

27,5

28

28,5

29

29,5

30

30,5

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Smoothing coefficient

MLH

Ref-Pel

Ref-HPel

m16028 9

DERS – QPel precision

m16028 10

DERS – Pixel precision

m16028 11

DERS + MLH –> QPel precision

m16028 12

Conclusions - improvement

Compared to DERS Pel precision 0.5 dB to 2 dB of PSNR gain

Compared to DERS HPel precision up to 1 dB of PSNR gain

Subjectively more ‘smooth’

m16028 13

Conclusions

Can be used with little effort Low computational cost Further test over variety of

sequences are encouraged