26
M1 Thermal Control 25 August 2003 ATST CoDR Dr. Nathan Dalrymple Air Force Research Laboratory Space Vehicles Directorate

M1 Thermal Control

  • Upload
    rance

  • View
    42

  • Download
    0

Embed Size (px)

DESCRIPTION

M1 Thermal Control. 25 August 2003 ATST CoDR. Dr. Nathan Dalrymple Air Force Research Laboratory Space Vehicles Directorate. -0.69x10 -6 K -1. 0.28x10 -6 mbar -1. Primary Mirror (M1) Thermal Control. Function: Mitigate mirror seeing. seeing. Requirements. Minimize mirror seeing - PowerPoint PPT Presentation

Citation preview

Page 1: M1 Thermal Control

M1 Thermal Control

25 August 2003 ATST CoDR Dr. Nathan Dalrymple

Air Force Research LaboratorySpace Vehicles Directorate

Page 2: M1 Thermal Control

Primary Mirror (M1) Thermal Control

• Function: Mitigate mirror seeing

seeing

K

mbar61 106.77

T

Pn −⋅−≅

PP

nT

T

nn Δ

∂∂

+Δ∂∂

= 111

-0.69x10-6 K-1 0.28x10-6 mbar-1

Page 3: M1 Thermal Control

Requirements

1. Minimize mirror seeing

a. Racine experiment: = 0.38 TM - Te) 1.2

b. Iye experiment: greatly reduced by flushing

c. IR HB aerodynamic analysis: = ΔTV, d. Bottom line: requirements on surface-air ΔT and

wind flushing

Ref: Racine, Rene, “Mirror, dome, and natural seeing at CFHT,”

PASP, v. 103, p. 1020, 1991.

Iye, M.; Noguchi, T.; Torii, Y.; Mikama, Y.; Ando, H. "Evaluation of Seeing on a 62-cm Mirror". PASP 103, 712, 1991

Page 4: M1 Thermal Control

Error Budgets

(nm) Error budget Description

500 20 nmDiffraction-

limited

1600 0.05 arcsecSeeing-limited

1000 0.05 arcsec Coronal

Page 5: M1 Thermal Control

IR Handbook Seeing Analysis

Given layer thickness and ΔT, we can estimate .

zlG z

Hd2

0

222 ∫ ′= ρσ

Wavefront variance

Gladstone-Dale parameterFluctuating density Line-of-sight correlation length

Layer thickness

HlT

TGz2

10

22

ρπ

πσφ Δ

≈=

Phase variance

2.01.0 −≅Hlz

Surface-air temperature difference

⎪⎩

⎪⎨

<−

≥≈

)(1)exp(

)(33.3

s2

D

s

aberrationweak

aberrationstronglz

φφφθ

φφσ

θ

Blur angle

Strong/weak cutoff ~ 2 rad

Ref: Gilbert, Keith G., Otten, L. John, Rose, William C., “Aerodynamic Effects” in The Infrared and Electro-Optical Systems Handbook, v. 2, Frederick G. Smith, Ed., SPIE Optical Engineering Press, 1993.

Page 6: M1 Thermal Control

IR Handbook Seeing Analysis (cont.)

Layer thickness (mks units):

2.0

8.05.05.1

0392.0184.0V

L

V

TLH +

Δ≅

L: upstream heated length (m)ΔT: average temperature difference over upstream length (˚C)V: wind speed (m/s)

Buoyancy term Hydrodynamic term

Assume: If ΔT < 0 then buoyancy term does not contribute to layer thickness.

Page 7: M1 Thermal Control

Convection Types and Loci

Wind is good.

Page 8: M1 Thermal Control

Diffraction-Limited Error Budget

Blue contours: rms wavefront error (nm)

Acceptable operating range, assuming no AO correction. AO correction will extend the “green” range.

= 500 nm

Page 9: M1 Thermal Control

Seeing-Limited Error Budget

Blue contours: 50% encircled energy (arcsec)

Acceptable operating range

= 1600 nm

Page 10: M1 Thermal Control

Coronal Error Budget

Blue contours: 50% encircled energy (arcsec)

Acceptable operating range

= 1000 nm

Page 11: M1 Thermal Control

Composite 4m mirror seeing estimateRacine [1991] used for natural convection; Zago [1995] used for mixed convection;

Gilbert et al. [1993] used for forced convection

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8

V (m/s)

mirror seeing (arcsec)

0.2 K

0.5 K

1.0 K

2.0 K

5.0 K

GEMINI (0.2 K)

An Alternate View

For a particular ΔT, V combination,

read over on the vertical axis to find seeing

Page 12: M1 Thermal Control

Mirror Thermal Control

• Time-dependent problem• Backside cooling• Controlled frontside temperature

time lag through substrate

knobs

Page 13: M1 Thermal Control

M1 Thermal Loading

• Time-dependent problem; this is one snapshot

Page 14: M1 Thermal Control

Thermal Control System Concept

Desiccant chamber included in cell to dry air

Page 15: M1 Thermal Control

Flow Loop

Concept A: Closed cycle, liquid coolant (heats or cools)

Page 16: M1 Thermal Control

Flow Loop (cont.)

Concept B: Open cycle, air coolant (only cools)

Page 17: M1 Thermal Control

1D,t Finite-Difference Model Inputs: Ideal Day

• Desired set point: 1–3 ˚C below ambient temperature

Physical Case 4: Input Profiles

-15

-10

-5

0

5

10

15

20

0 6 12 18 24

t (hours)

0

50

100

150

Sunside air temp (K)

Backside air temp (K)

Absorbed solar flux (W/m^2)

Page 18: M1 Thermal Control

1D,t Finite-Difference Model Results: Ideal Day

Fix with profile optimization

M1 temperature OK over most of day

Page 19: M1 Thermal Control

Seeing Performance: Ideal Day

Very good performance until positive ΔT at end of observing day

These results assume calm air.Wind helps both thermal control and seeing.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 1 2 3 4 5 6 7 8 9 10 11 12

time (hr)

M1 seeing (arcsec)

Page 20: M1 Thermal Control

Physical Case 4: Input Profiles

-15

-10

-5

0

5

10

15

20

0 12 24 36 48 60

t (hours)

0

50

100

150

Backside air temp (K)

u1 (K)

Absorbed solar flux (W/m^2)

1D,t Finite-Difference Inputs: Sac Peak Te

• 23 – 25 June 2001 (60 hr run)• Desired set point: 1–3 ˚C below ambient temperature

t (hr)

Page 21: M1 Thermal Control

1D,t Finite-Difference Results: Sac Peak Te

Same cooling profile used for both days

t (hr)

Page 22: M1 Thermal Control

Seeing Performance: Sac Peak Te

day day

Good performance over both days

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 12 24 36 48 60

time (hr)

t (hr)

Page 23: M1 Thermal Control

-500

0

500

1000

1500

2000

2500

3000

3500

0 6 12 18 24

time (hrs)

Heat Removal Rate: Ideal Day

Peaks at 3200 W

• Next steps:•Fan and system curves•Heat exchanger specs•Chiller specs•Time response of fluid volume

Page 24: M1 Thermal Control

2D,t NASTRAN Results

• Response to 2002 workshop comments• Result: actuator thermal “print-through” negligible

Page 25: M1 Thermal Control

Flushing System Concept

42 vent gates

168 m2 flow area,each side

Covered in greaterdetail in Enclosureslides.

Page 26: M1 Thermal Control

Flushing System Performance (Sample)

Covered in greaterdetail in Enclosureslides.