75
1 [email protected] Novel Physics of Nitride Devices M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25, 2004 Flagstaff, Arizona, USA

M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Novel Physics of Nitride Devices

M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, US

Tutorial

ICPS 2004July 25, 2004

Flagstaff, Arizona, USA

Page 2: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Outline

• Potential applications• Polarization effects

– Piezo –Pyro -Movable Quantum Dots and THz• Electron transport

– Low field - High field– Ballistic and overshoot transport

• Trapping• Noise• New FET physics – MOSHFET and Current Collapse• Plasma wave electronics• Conclusions

Page 3: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Device Universe Is Both Infinite and Expanding

1970 1975 1980 1985 1990 1995 20000

100

200

300

400

500

600

700

800

900

1000

1100

1200 INSPEC search query: Gallium Nitrideor Indium Nitrideor Aluminum Nitride

Num

ber o

f Pub

licat

ions

Year

New Nitride Galactic

Page 4: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

“The Universe is full of magical things patiently waiting for our wits to grow sharper”

Eden Phillpott

Lembach Villa, MunichIsa Genzken (born 1948)Basic research

Page 5: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Potential and Existing Applications of Nitride Devices

• Blue, green, white light, and UV emitters– Traffic lights– Displays– Water, food, air sterilization and detection of biological

agents– Solid state lighting

• Visible-blind and solar-blind photodetectors• High power microwave sources• High power and microwave switches• Wireless communications• High temperature electronics• SAW and acousto-optoelectronics• Pyroelectric sensors• Terahertz electronics• Non volatile memories

Page 6: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

White and UV applications (for 250 nm – 340 nm). Sensing and beyond

• Environmental protection• Homeland security• Plant growth• Surgery lighting• Visual stimuli • Capillaroscopy• Monitoring of arterial oxygen• Phototherapyherapy of Seasonal

Affective Disorder• Water and air purification• Solid-state white lighting• Dense data storage• Ballistic missile defense• Photopolymerization of Dental

Composites • Photobioreactors

Applications of U of V/RPI/SET quadrichromatic Versatile Solid-State Lamp: Phototherapy of seasonal affective disorder at Psychiatric Clinic of Vilnius University

UV-LED Based Fluorimeter with IntegratedLock-in Amplifier (after Prof. Zukauskas, U of V.)

Page 7: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Nitrides: New Symmetry, New Physics

Zinc Blende Structure (GaAs)Diamond Structure (Si, Ge) Wurtzite Structure (SiC, GaN)

GaAs bouleSi boule AlN boule (Courtesy Crystal IS)

Page 8: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Crystal symmetry of pyroelectric crystals Crystal system Crystal class

(Schönflies)

Crystal class

(Hermann-Mauguin)

Triclinic C1 1

Monoclinic Cs

C2

m

2

Orthorhombic C2v 2mm

Tetragonal C4

C4v

4

4mm

Rhombohedral C3

C3v

3

3m

Hexagonal C6

C6v

6

6mm

?

HEXAGONAL6

6mm

C6

C6V

Page 9: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Wide Gap SemiconductorsEnabling Technology for Piezoelectronics and

Pyroelectronics

• Zinc blende structure• No PE or SP effect in

<100> direction• PE coefficient <111>

~0.15 C/m2

• No PE/SP ‘doping’ reported

• Wurtzite structure• c-axis growth direction • PE coefficient in c-

direction ~1 C/m2

• PE/SP ‘doping’demonstrated

GaAs GaN/AlN

Page 10: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Nitride Heterostructures: Polarization Induced Electron and Hole 2D Gases

From A. Bykhovski, B. Gelmont, and M. S. Shur, J. Appl. Phys.74, p. 6734-6739 (1993)

AlGaN on GaN

From O. Ambacher et alJAP 87, 334 (2000)

46vC mcP 36

Page 11: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Polarization signs

GaN

GaN

GaN

AlGaN

AlGaN

AlGaN

Relaxed

Relaxed

TensileStrain

CompressiveStrain

Relaxed

Relaxed

GaN

GaN

GaN

AlGaN

AlGaN

AlGaN

Psp

Psp

Psp

Psp

Ppe

Ppe

Psp

Psp

Ppe

Ppe

Psp

Psp

PspPsp

-σ +σ

[0001] [0001]

Ga face N face

After O. Ambacher et al. J.Appl. Phys. 85, 3222 (1999)

2D electrons

2D holes

2D holes

2D electrons

Page 12: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Spontaneous polarization

For comparison, in BaTiO3, Ps = 0.25 C/m2 (1.93x1015cm-2)

-0.0453.47 1014

-0.0574.39 1014

-0.0322.46 1014

-0.0292.23 1014

-0.0816.24 1014

Spontaneous polarization(C/m2)(cm-2)

BeOZnOInNGaNAlNAfter F. Bernardini et al. Phys Rev. 56, 10024(1997)

Page 13: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Pyroelectric effect

b

-100-50

050

-4 0 4 8 12 16 20

Time, s

-1

0

1

2

3

-4 0 4 8 12 16 20

0

-40

-80

a

c

-0.2

0.1

0.4

0.7

1

0 2 4 6 8 10 12Time, s

0

50

1000 2 4 6 8 10 120 2 4 6 8 10 12

50

0

(after A. D. Bykhovski, V. V. Kaminski, M. S. Shur, Q. C. Chen, and M. A. Khan "Pyroelectricity in gallium nitride thin films", Appl. Phys. Lett., 69, 3254 (1996)).

IpPyroelectr icm aterial

Page 14: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Pyroelectric voltage for primarypyroelectric effect (changing flux magnitude

and direction)

0 20

0

0.4 (c )

0

20

(a)

-20

0

(b)

Bat

h te

mp

erat

ure

(oC

)H

eat

flux

(a

.u)

Tim e (s )10 30 40

-0.4Vo

ltage

(m

V)

20

40

(after A. D. Bykhovski, V. V. Kaminski, M. S. Shur, Q. C. Chen, and M. A. Khan "Pyroelectricity in gallium nitride thin films", Appl. Phys. Lett., 69, 3254 (1996)).

b

-100-50

050

-4 0 4 8 12 16 20

Time, s

-1

0

1

2

3

-4 0 4 8 12 16 20

0

-40

-80

a

c

Two time constants:Sample cooling andCharge relaxation

0

0

4

8

b .

0

a .Ga N

T(o

C)

300

200

100

12

Vol

tag

e (m

V)

10 20 30 40

Tim e (s )

Primary pyroelectric effect at 300o C(High Temperature Operation!)

Page 15: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Strain from the lattice mismatch

• uxx = (aGaN -aAlGaN)/aGaN

• Ppe = 2 uxx (e31-e33 C13/C33)

How Piezoelectric constants are determined?

•Electromechanical coefficients (difficult)•Optical experiments (indirect)•Estimate from transport measurements (very indirect)

Page 16: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Effect of Strain on Dislocation-Free Growth

• Critical thickness as a function of Al mole fraction in AlxGa1-xN/GaN: superlattice (solid line), SIS structure (dashed line).

From A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, J. Appl. Phys. 81 (9), 6332-6338 (1997)

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

Al Mole Fraction

Thickness, nm

100 200 300 400 500 600

1,000

2,000

3,000

300K

77K

Hal

l Mob

ility

(cm

2 /Vs)

AlGaN Thickness (A)

Effect of Critical Thickness on Electron Mobility

Page 17: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

SIS sensor

• Piezoelectric sensors• Pyroelectric sensors

After R. Gaska, J. Yang, A. D. Bykhovski, M. S. Shur, V. V. Kaminski, S. M. Soloviev,

Appl. Phys. Lett. 71(26), 3817 (1997)

n - GaN 0.4 µm

AlN 30 Å - 100 Å

n - GaN 1.0 µm

i - GaN 1.0 µm

AlN Buffer

Sapphire

Top ContactBottomContact

Twice as largeas in SiC

Short range superlatticeis four timeslarger than inSiCGaN

n

F

(1) (2) (3)

GaNn

Ef

Ev

Ec

L

AlNu

B A B A B A

44.4

44.5

44.6

44.7

44.8

44.9

45

45.1

45.2

45.3

0 0.5 1 1.5 2 2.5 3

Res

ista

nce,

Ω

Strain (compression), 10-4

Page 18: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Polarization domain structure

After A. D. Bykhovski, V. V. Kaminskii, M. S. Shur, Q. C. Chen, and M. Asif Khan, Piezoresistive Effect in Wurtzite n-type GaN, Appl. Phys. Lett., 68 (6), pp. 818-819 (1996)

N

GaGa

GaSurface

N

GaGa

N N

GaGa

NSurface

NGaGaN

Surface

NGaGaN

N

N N

Ga

Page 19: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Superlattice Band Diagram and resistance change in SRSL

y

A A A A AB B B BBeffec tiveband gap

(000 1)En

erg

y (e

V)

After A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, Elastic Strain Relaxation in GaN-AlN, GaN-AlGaN, and GaN-InGaN Superlattices, J. Appl. Phys. Vol. 81, No. 9, pp. 6332, May (1997)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

5

10

15

20

25

3

21

δR/R

(10-3

)

Strain (10-4 )

Relative change in resistance under applied strain. (o) - correspond to [(AlN)6-(GaN)3]150 SRSL ; (∆) - [(AlN)3-(GaN)8]150 SRSL; solid line 1 shows dependence measured for GaN-AlN-GaN SIS 1; dashed line 2 - SiC p-n junction 1 ; 3 - GaAs 2. The GF for the measured samples was in the 30 to 90 range.The larger GF (higher sensitivity to strain) was measured in SRSLs with higher Al content.

1 J. S. Shor, L. Bemis, and A. D. Kurtz, IEEE Trans. Electron Dev. , 41 (5), 661 (1994).2 A. Sagar, Phys. Rev., 112, 1533 (1958); 117, 101 (1960).

1 SRSL

2 SiC

3 GaN

Page 20: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Static Gauge factors (GF)(measured under longitudinal mechanical deformation)

GaNn-type GF=10

p-type GF > 200

GaN/AlN/GaN SapphireGF = 50

AlN/GaN Short Range Superlattices

GF = 30-80

AlGaN/GaN HeterostructuresGF = 10-15

0 1 2 3 4 50 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1 0

0 .1 2

p -G a N

S iS iC

G a N /A lN /G a NδR/R

S tra in , 1 0 -4

High Temperature p-GaN Pressure Sensor

From R. Gaska, M. S. Shur, A. D. Bykhovski, J. W. Yang, M. A. Khan, V. V. Kaminski and S. M. Soloviov, Piezoresistive Effect in Metal-Semiconductor-Metal Structures on p-type GaN, Appl. Phys. Lett., vol. 76, No. 26, pp. 3956-3958, June 26 (2000)

Page 21: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Polarization effects in undoped and doped channel GaN/AlGaN HFETs

.

2

-20 20 40

0

Ener

g y (e

V)

Distance (nm)

Undoped

Nd = 5x1017 cm-3 1

After M. S. Shur, GaN and related materials for high power applications, Mat. Res. Soc. Proc. Vol. 483, pp. 15-26 (1998) and From A. D. Bykhovski, R. Gaska, and M. S. Shur, Appl. Phys. Lett. 73 (24) (1998).

-4

0

Ener

gy (e

V)

Distance (nm)

-20

-2

20 40

••••••••

•••••••••••••

••••••••••••••••••••••••••••••

••••••••••••••••••••••••••

0

0.002

0.004

0.006

0.008

0.01

-16 -12 -8 -4 0Voltage, V

10 nm (100% strained)

20 nm (100% strained)

40 nm (60%)60 nm (30%)100 nm (0%)

Page 22: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Piezoelectric and Pyroelectric Doping in AlGaN/GaN

A l M o la r F r a c t io n

0

1

2

3

4

5

6

0 0 .2 0 .4 0 .6 0 .8 1

State-of-the-art

0

5

10

15

20

25

30

35

GaA

s/A

lGa A

s

InG

aAs/

AlG

a As

GaN

/Al G

a N

GaN

/AlIn

GaN

Page 23: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Al - 9%

Al - 17%

0.0 0.5 1.0 1.5 2.00.10

0.15

0.20

0.25

∆c (A

ngst

rom

s)∆E

g(e

V)

In Molar Fraction (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M. Asif Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, Hans-Conrad zur Loye, G. Tamulaitis, A. Zukauskas, David J. Smith, D. Chandrasekhar, and R. Bicknell-Tassius, Lattice and Energy Band Engineering in AlInGaN/GaN Heterostructures, Appl. Phys. Lett 76 (9) pp. 1161-1163 (2000)

Strain and Energy Band Engineering

•Graded composition profile and quaternary AlGaInN •Superlattice buffers for strain relief•PALE and MEMOCVD epitaxial growth•Homoepitaxial substrates•Non-polar substrates

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40

50

60

70

Thic

knes

s (n

m)

Al molar fractionA. D. Bykhovski, B. L. Gelmont, and M. S. Shur, Elastic Strain Relaxation in GaN-AlN Superlattices, Proceedings of International Semiconductor Device Research Symposium, Vol. II, pp. 541-544, Charlottesville, VA, ISBN 1-880920-04-4, Dec. 1995

Page 24: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

New Screening Mechanism in Multilayer Pyroelectrics

Screening the polarization induced dipole involves smaller charges than the charges in polarization dipole

0 L z

p y r o e l e c t r i c ( 2 )

s e m i c o n d u c t o r

m a t r i x

a c c u m u l a t i o n

r e g i o n ( 1 )

d e p l e t i o n

r e g i o n ( 3 )

L d

P o

Polarization dipole

+

Screening dipole – smaller changesbut at larger separation

New screening length (larger than Debye but smaller than depletion)

Page 25: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Electronic island at the surface of semiconductor grain in pyroelectric matrix

(MQDs -Moveable Quantum Dots)

Control by external field – Zero dimensional Field Effect (ZFE)

Po

Semiconductor

Electronic island

PyroelectricPo

Semiconductor

Electronic inversion island

Pyroelectric

Hole inversion island

Inversion electron and hole islands at the surface of pyroelectric grain in semiconductor matrix

V. Kachorovskiy and M. S. Shur, APL, March 29 (2004)

Page 26: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Basic Equations04

2 p

PE πε ε

=+ 2

43

dc

en ReNER

πε ε

= =

3(4 3) dN n Rπ= /

polarization inducedelectric field

total number of electrons in the grain 0 dP en R>>

Electrons cannot screen polarization induced field. Strong field push electrons into small 2D island

Coulomb repulsionenergy

W should be minimal provided that the total charge of the island, Q=eN , is constant

For typical values of polarization the size of electron island is small compared to R

dn donor concentrationThe size of the island should be determined by the minimum of the total energy

screening field

Potential energy in the field E

Page 27: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Terahertz oscillations

MOVABLE QUANTUM DOTS (MQD)

SWITCH OR SHIFT FREQUENCY BY EXTERNAL FIELD OR BY LIGHT

1 THz to 30 THz

2D island might oscillate as a whole over grain surface. The oscillations can be exited by ac field perpendicular to P0

00

4( 2 )p

ePmR

=+

πωε ε

Oscillation frequency is of the order of a terahertz

0 2~ω π/

Oscillation frequency

Page 28: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

New Physics of Movable Quantum Dots• Self-assembled quantum dot arrays• Coulomb blockade• Light concentration in quantum dots• Left handed materials

• Terahertz detectors• Terahertz emitters• Terahertz mixers• Photonic terahertz devices• Photonic crystals• Plasmonic crystals• Solar cells and thermo voltaic cells

New Potential Applications

Page 29: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

New features of electron transport in nitrides

• Large polar optical phonon energy leads to two step scattering optical photon absorption and re-emissionresulting in an elastic scattering process [1]

• In high electric fields, an electron runaway plays a key role [2]. The runaway effects are enhanced in 2D electron gas [3]

• In very short GaN-based structures, ballistic and overshoot effects are very pronounced [4]

1. B. Gelmont, K. S. Kim, and M. S. Shur, J. Appl. Phys. 74, 1818 (1993)2. B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, Solid State Communications. 118, 79(2001) 3. A. Dmitriev, V. Kachorovskii, M. S. Shur, and M. Stroscio, International Journal of High Speed

Electronics and Systems, 10, 103 (2000)4. B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999)

Page 30: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Consequence of high polar optical energy: two step optical polar scattering process

Active region

Passive region

From B. Gelmont, K. S. Kim, and M. S. Shur, J. Appl. Phys. 74, 1818 (1993)

hω0 K = 0.6

K = 0K = 0.3

mob

il ity

(cm

2 /V

s)0

100

1,000

1017 1018 1019

Doping (cm-3)

Page 31: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Temperature dependencies

300 400 500 6000

500

1000

1500

2000

300 400 500 6000

2000

4000

6000

8000

10000Ga A s Ga N

Temperat ure ( K) Temperat ure ( K)

To t al To t al

No impurit yscat t er ing

No impurit yscat t er ing

n = 5 x10 1 7 cm-3 n = 5x10 1 7 cm-3

(a) (b)

Mob

ility

(cm

2 /V

-s)

Mob

ility

(cm

2 /V

-s)

After M. S. Shur, Solid State Electronics, 42, 2131 (1998)

Weaker contribution of impurity scattering for GaN because of heavier mass

Page 32: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Evidence of penetration into AlGaN or 2D-3D transition

From R. Gaska, M. S. Shur, A. D. Bykhovski, A. O. Orlov, and G. L. Snider, Appl. Phys. Lett. 74, 287 (1999)

0 5 10 15 200

20

40

60

RD

S (Ω

)

L (µm)

-8 -6 -4 -2 0 2 4

0,0

0,5

1,0

1,5

2,0

2,5 VT = -5.6 V

107 C

G (

F/cm

2 )

Gate voltage, VG (V)

-6 -4 -2 0 20

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0 1.20

400

800

1200

1600

Gch

(mA

/V)

VG (V)

Mob

ility

, µ (c

m 2/V

s)

ns / 1013 (cm-2)

X. Hu, J. Deng, N. Pala, R. Gaska, M. S. Shur, C. Q. Chen, J. Yang, S. Simin, and A. Khan, C. Rojo, L. Schowalter, AlGaN/GaN Hetero-structure Field Effect Transistor on Single Crystal Bulk AlN, Appl. Phys. Lett, 82, No 8, pp. 1299-1302, 24 Feb (2003)

Page 33: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Effect of Substrates: Bulk GaN on GaN

1x104

2x104

3x104

4x104

5x104

6x104

1 10 1000

2

4

6

8

10

12

14

16

1820

22

24

Al0.13

Ga0.87

N : 20 nm

n-type GaN : 1 µm

Mg-doped GaN crystal

150 µm

(a)

Hal

l mo b

ility

µ H(cm

2 /Vs )

630 µm

10 µm

110 µm

150 µm

(b)

GaN/saphire GaN/6H-SiC

carri

er d

ensi

ty n H*

1012

(cm

-2)

Temperature (K)

GaN on bulk

From E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean and J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, G. Simin, X. Hu, M. Asif Khan, M. Shur, R. Gaska, and D. Maude, Applied Physics Letters, 77, 2551 (2000)

Vds= +10V

0

20

40

60

80

100

120

140

160

-10 -8 -6 -4 -2 0 2

Vgs(V)

g m(m

S/m

m)

SiCbulk GaNSapphire

After M. Asif Khan and J. W. Yang, W. Knap, E. Frayssinet, X. Hu and G. Simin, P. Prystawko, M. Leszczynski, Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire, and G. Neu, GaN-AlGaN Heterostructure Field Effect Transistors Over Bulk GaN Substrates, Appl. Phys. Lett. 76, No. 25, pp. 3807-3809, 19 June (2000)

Page 34: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Shubnikov de Hass (SdHO) and magnetoresistance results

• Parallel conduction model yields the room-temperature 2D carrier mobility exceeded 2,650 cm2/Vs

After E. Frayssinet, W. Knap, P. Lorenzini, N. Grandjean and J. Massies, C. Skierbiszewski, T. Suski, I. Grzegory, S. Porowski, G. Simin, X. Hu, M. Asif Khan, M. Shur, R. Gaska, and D. Maude, Applied Physics Letters, 77, 2551 (2000)

High mobility channel

Low mobility channel

Ec

Distance

GaNAlGaN

2D electrons

Page 35: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Cryogenic low field transport:Acoustic Scattering

Inverse Linear Dependence at Low Temperatures

0 5 10 15 20 25 30 35 40 45 50 551.0x10-5

2.0x10-5

3.0x10-5

4.0x10-5

5.0x10-5

6.0x10-5

7.0x10-5

8.0x10-5

9.0x10-5

Sample D Ns~5.4x1012

sample C Ns~5.7x1012

Sample A&B Ns~2.4x1012& Ns~2.7x1012 1/µ

(Vs/

cm2 )

Temperature (K)

ExtractedDeformation potential

ac=8.1 0.2 eV

From W. Knap, E. Borovitskaya, M. S. Shur, L. Hsu, W. Walukiewicz, E. Frayssinet, P. Lorenzini, N. Grandjean, C. Skierbiszewski, P. Prystawko, M. Leszczynski, I. Grzegory, Appl. Phys. Lett., 80, 1228 ( 2002)

0

11µ

T += αµ

Page 36: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

New Features of Low Field Transport

• “Quasi-elastic” optical polar scattering

• 2D electron wave function penetration into AlGaN in undoped GaN channels

• 2D-3D electron transition in doped GaN channels

• Limiting role of acoustic scattering at cryogenic temperatures

Page 37: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

High field transport in NitridesDrift Velocity at Room and Elevated Temperatures

From: M. S. Shur, GaN and related materials for high power applications,Mat. Res. Soc. Symp. Proc., vol. 483, pp. 15-26 (1998)

3

2

1

0

300 K500 K1,000 K

0 . 1 0 . 2 0 . 3

Elect ric field (MV/ cm)

GaN 3

2

1

0 5 1 0 1 5 2 0

300 K500 K1,000 K

GaAs

Elect ric field ( kV/ cm)

( a) (b)

Page 38: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Intervalley Transition

From B. Gelmont, K. S. Kim, and M. S. Shur, J. Appl. Phys. 74, 1818 (1993)

Page 39: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Velocity-field characteristics of GaN:effect of doping and compensation

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300

Electric Field [kV/cm]

Elec

tron

Vel

ocity

[107 c

m/s

]

1e171e181e19

After B. E. Foutz, L. F. Eastman, U. V. Bhapkar, M. S. Shur, Appl. Phys. Lett., 70, No 21, pp. 2849-2851 (1997)

Page 40: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Velocity-Field Curves for Nitride Family

InN is the fastest nitride material

From B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999)

Page 41: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Ballistic and Overshoot Effects in GaN

246

8

GaN 600 kV/cmGaAs 30 kV/cm

Velocity (105 m/s)

Distance (micron)0 0.1 0.2 0.3 0.4 0.5

After B. E. Foutz, L. F. Eastman,U. V. Bhapkar, M. S. Shur, Comparison

of High Electron Transport in GaN andGaAs, Appl. Phys. Lett., 70, No 21,

pp. 2849-2851, 1997

Page 42: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

More on the overshoot

From B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999)

InN – higherovershoot atsmaller fields

Page 43: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

High Field Breakdown.Breakdown field measurement

1/(Vds-Vds sat)

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

0.014 0.016 0.018 0.02 0.022

ln (I

g/Id

)

experiment, T=23 oC, Vg=-4.75 V

ln(I leakage /I d )

ln(I hole /I d )

ln(I hole /I d ), approximation

After N. V. Dyakonova, A. Dickens, M. S. Shur, R. Gaska, J. W. Yang, Temperature dependence of impact ionization in AlGaN-GaN Heterostructure Field Effect Transistors, Applied Physics Letters, 72 (20), pp. 2562-2564, May 18 (1998)

Gate

High Field Region

+

-

Drain

Page 44: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Higher Breakdown Field inHeterostructures?

AlGaN

AlGaN

GaN Quantum Well

Breakdown field might be determined by cladding layers(see M. Dyakonov and M. S. Shur, Consequences of Space

Dependence of Effective Mass in Heterostructures, J. Appl. Phys. Vol. 84, No. 7, pp. 3726-3730, October 1 (1998))

Page 45: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

E

EC2 EC3

!Both EC and VC are smaller for 2D case than for 3D case:EC2 < EC3VC2 < VC3

Vdr

VC3

VC2 3D2D

3D and 2D Velocity-Field Characteristics2D peak velocity and peak field in compound semiconductors are smaller than for 3D electrons because of•Subband shift•Runaway effect

•Runaway is an unstable situation when •the electron energy loss as a result of the •collision is smaller then the average •energy gain in the electric field during •the free light time

Page 46: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

The bottom of the upper valley (2) with heavy mass rises less than the bottom of the central valley (1) with light mass.

21

2

1 amh

∝δ

22

2

2 amh

∝δ

m1 << m2 ⇒ δ1 >> δ 2

2

1

Shift of Valley Bottoms in 2D Case

Wave vector

Energy

Page 47: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Comparison of Runaway in 2D and 3D Systems

3D Case•Deformation scattering on acoustic and optical phonons does not lead to runaway•Polar optical scattering (forward!) leads to runaway

2D Case•Even deformation scattering leads to runaway

Page 48: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Experimental data

After V.T. Masselink, Applied Physics Letters, vol. 67(6), 801-805, 1995

Comparison of electron velocity in lightly doped In0.53Ga0.47As with that in a InGaAs/InAlAs modulation-doped heterostructure

Page 49: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

New physics of 2D transport

– High field velocity is smaller than in bulk (because of runaway)

– Impact ionization in quantum well is determined by cladding layers

Experimental date after V.T. Masselink, Applied Physics Letters, vol. 67(6), 801-805, 1995

EEC2 EC3

Vdr

VC3

VC2 3D

2D

EEC2 EC3

Vdr

VC3

VC2 3D

2D

Page 50: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Trapping in Nitrides:Reverse Gate Leakage Modeling

Direct tunneling and trap-assisted tunnelingFrom S. Karmalkar, D. Mahaveer Sathaiya, M. S. Shur, Mechanism of the Reverse Gate Leakage in AlGaN / GaNHEMTs, Appl. Phys. Lett. 82, 3976-3978 (2003)

Page 51: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Comparison with Experiment

From S. Karmalkar, D. Mahaveer Sathaiya, M. S. Shur, Mechanism of the Reverse Gate Leakage in AlGaN / GaNHEMTs, Appl. Phys. Lett. 82, 3976-3978 (2003)

Page 52: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

MOSHFET Gate Leakage

1. E- 08

1. E- 07

1. E- 06

1. E- 05

1. E- 04

1. E- 03

1. E- 02

1. E- 01

- 10 - 5 0 5Voltage ( V )

Gat

e Cu

rrent

Den

sity

(A/c

m^2

)

25oC

50oC

75oC100oC

150oC

Traps and leakage:Complexities of highly non-ideal systems

From F. W. Clarke, Fat Duen Ho, M. A. Khan, G. Simin, J. Yang, R. Gaska, M. S. Shur, J. Deng, S. Karmalkar, Gate Current Modeling for Insulating Gate III-N Heterostructure Field-Effect Transistors, Mat. Res. Symp. Proc. Vol. 743, L 9.10 (2003)

Page 53: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

GaN 1/f Noise surprises

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+0110

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

GaN[8]

Si [1-2]

GaAs[1-2]

SiC [3-4]

GaN HFETon Sapphire [8-9]

GaAsHEMTs [5]

GaN HFETon SiC [9]

Si NMOS [6-7]

GaN MOS-HFET [10]

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+0110

10-7

10-6

10-5

10-4

10-3

10-2

10-1

110

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

GaN[8]

Si [1-2]

GaAs[1-2]

SiC [3-4]

GaN HFETon Sapphire [8-9]

GaAsHEMTs [5]

GaN HFETon SiC [9]

Si NMOS [6-7]

GaN MOS-HFET [10]

Device noise is smaller than materials noise!!!

Page 54: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Data from• [1] R.H. Clevers, Volume and temperature dependence of the 1/f noise parameter

alpha in Si, Physica B Vol.154, pp. 214-224, (1989)• [2] F.N. Hooge, M. Tacano, Experimental studies of 1/f noise in n-GaAs Physica

B Vol.190, pp. 145-149, (1993) • [3] M. Levinshtein, S. Rumyantsev, J. Palmour, and D. Slater, Low frequency

noise in 4H Silicon Carbide, Journ. Appl. Phys. Vol. 81, No.4, 1758-1762, (1997))

• [4] M. Tacano and Y. Sugiyama, Comparison of 1/f noise of AlGaAs/GaAs HEMTs and GaAs MESFETs, Solid State Elect. Vol.34. No 10, pp. 1049-53,(1991).

• [5] D. Fleetwood, T.L. Meisenheimer, J. Scofield, 1/f noise and radiation effects in MOS devices IEEE Trans. Electron Dev. Vol. 41, No 11, pp. 1953-1964 (1994)

• [6] L.K. J Vandamme, X. Li, D. Rigaud, 1/f noise in MOS devices, mobility or number fluctuations? IEEE Trans. Electron Dev. Vol. 41, No:11, pp. 1936-1945 (1994)

• [7] A. Balandin, S. Morozov, G. Wijeratne, C. Cai, L. Wang, C. Viswanathan, Effect of channel doping on the low-frequency noise in GaN/AlGaN heterostructure field-effect transistors, Appl. Phys. Lett. V. 75, No 14 pp. 2064-2066 (1999)

• [8] S. Rumyantsev, M.E. Levinshtein, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, Low-frequency noise in AlGaN/GaN heterojunction field effect transistors on SiC and sapphire substrates" Journal of Applied Physics, Vol. 87, No4, pp. 1849-1854 (2000)

• [9] N. Pala, R. Gaska, S. Rumyantsev, M. S. Shur M. Asif Khan, X. Hu, G. Simin, and J. Yang, Low frequency noise in AlGaN/GaN MOS-HFETs, Electronics Lett. Vol.36,No.3, pp. 268-270, (2000)

Page 55: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

A relatively low level of noise in GaN-based HFETsis related to a very high density of channel carriers

0.1

10

-5 0 5 10

3

Sn

ΕF /kT

1,000

-10

Dependence of noise on the Fermi level position in bulk semiconductorfrom E. Borovitskaya, M. Shur, On theory of 1/f nose in semiconductors Solid-State Electronics Vol. 45, No. 7, 1067 (2001)

0 is the bottom of the conduction band

Page 56: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Correlation between current slump and 1/f noise in GaN transistors

0 5x10-3 1x10-2 2x10-2

0.0

0.5

1.0

b

α=0.1-0.4

α=(5-8) x 10-3

Dra

in v

olta

ge, a

rb. u

nits

Time t, s

0 5x10-8 1x10-7 1x10-7 2x10-7

0.0

0.5

1.0

a

MOS-HFET

HFET

α=(0.8-2) x 10-3

Time t, s

Dra

in v

olta

ge, a

rb. u

nits

Longer transient – higher Hooge constant

From S. L. Rumyantsev, M. S. Shur, R. Gaska, M. Asif Khan, G. Simin, J. Yang, N. Zhang, S. DenBaars, and U. Mishra, Transient Processes in AlGaN/GaN Heterostructure Field Effect Transistors, Electronics Letters, vol. 36, No.8, p. 757-759 (2000)

Page 57: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

In devices with relatively high noise no correlation between

1/f noise and gate leakage

10-5 10-4 10-3 10-2 10-1-140

-130

-120

-110

-100

-90

-80

Vg=0

HFETs

MOSHFETs

S I/I2 , d

B/H

z

Drain current I d, A

No leakage in MOSHFETsGate leakage in HFETs

After S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asif Khan, G. Simin, X. Hu, and J. Yang, Effect of gate leakage current on noise properties of AlGaN/GaN field effect transistors",J. Appl. Phys., Vol. 88, No. 11, pp. 6726-6730, (2000)

Page 58: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

AlGaN barrier layer is main source of generation-recombination noise

Arrhenius plots for several samples.diamonds—HFET, Fig. 1(b); crosses—MOS-HFET,Fig. 1(c). All other symbols represent HFETs. The slope of the lines determinesactivation energies of local level E 0:8–1.0 eV.

S. L. Rumyantsev, N. Pala, M. S. Shur, E. Borovitskaya, A. P. Dmitriev, M. E. Levinshtein, R. Gaska, M. A. Khan, J. Yang, X. Hu, and G. Simin, Generation-Recombination Noise in GaN/ GaAlN Heterostructure Field Effect Transistors, IEEE Trans. Electron Dev. Vol. 48, No 3, pp. 530-533 (2001)

Page 59: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Where the traps are (from GR noise)

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.24 eV [42]

AlGaN thin films

1 eV [54]

1.6 eV [41]

0.2 eV [38]1-3 meV [30]

0.35-0.36 eV [36,38]

0.42 eV [37]

0.85 eV [38]

1 eV [4]1 eV [33]

EC

AlGaN/InGaN/GaN heterostructures

AlGaN/GaN heterostructures

GaNphotodetectors

Ene

rgy

E (

eV)

From S. L. Rumyantsev, Nezih Pala, M. E. Levinshtein, M. S. Shur, R. Gaska, M. Asif Khan and G. Simin, Generation-Recombination Noise in GaN-based Devices, from GaN-based Materials and Devices: Growth, Fabrication, Characterization and Performance, M. S. Shur and R. Davis,

Editors, World Scientific, 2004

Page 60: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Nitride-based FETs – promises and problems

Promises• 30 W/mm at 10 GHz versus 1.5 W/mm• > 150 W per chip Problems• Gate leakage• Gate lag and current collapse• Reliability• YieldSolutions• Strain energy band engineering• MEMOCVDtm

• Insulated gate designs• Gate edge engineering

M. A. Khan, M. S. Shur, Q. C. Chen, and J. N. Kuznia, Current-Voltage Characteristic Collapse in AlGaN/GaN Heterostructure Insulated Gate Field Effect Transistors at High Drain Bias, Electronics Letters, Vol. 30, No. 25, p. 2175-2176, Dec. 8, 1994

Page 61: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

High Electron Sheet Density Allows for a New Approach: AlGaN/GaN MISFET

M. A. Khan, M. S. Shur, Q. C. Chen, and J. N. Kuznia, Current-Voltage Characteristic Collapse in AlGaN/GaN Heterostructure Insulated Gate Field Effect Transistors at High Drain Bias, Electronics Letters, Vol. 30, No. 25, p. 2175-2176, Dec. 8, 1994

Page 62: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

MOSHFET (SiO2 )

I-SiC

Pd/Ag/AuGaN AlN

Pd/Ag/AuAlInGaN

S G D

SiO2

AlGaN/ InGaN GaN DHFET

I-SiC

Pd/Ag/AuGaN AlN

InGaN AlInGaN

S G D

Si3N4 /SiO2

I-SiC

Pd/Ag/AuGaN AlN

InGaN AlInGaN

S G D

MISDHFET

MISHFET Si3N4 I-SiC

Pd/Ag/AuGaN AlN

Pd/Ag/AuAlInGaN

S G D

Si3N4Reducing the gate leakage current (104 - 106 times)

Reducing current collapse, Improving carrier confinement

Combining the advantages

Resolving the issues: AlGaInN, gate dielectrics, InGaN channel

Page 63: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Unified charge control model (UCCM)

V V a n n V nnGT F s th

s− = − +⎛⎝⎜

⎞⎠⎟α η( ) ln0

0

MOSFETs and HFETs

www.aimspice.com

-12 -10 -8 -6 -4 -2 0 2 4 60.0

0.5

1.0

1.5

2.0

2.5

σ s (mS)

Vg ( V )

HFET Exp. HFET Sim.

MOSHFET Exp. MOSHFET Sim.

Real space transfer

VDS = 0.5 V

Page 64: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

0

10

20

30

40

50

60

-10 -8 -6 -4 -2

Idc(VG= 0)

VG(t)

Id (return @ VG= 0)

VG= 0

Id (VG)

Current collapse

Tarakji, G. Simin, N. Ilinskaya, X. Hu, A. Kumar, A. Koudymov, J. Zhang,and M. Asif Khan, M.S. Shur and R. Gaska, Appl. Phys. Lett., 78, N 15, pp.

2169-2171 (2001) G. Simin, A. Koudymov, A. Tarakji , X. Hu, J. Yang and

M. Asif Khan, M. S. Shur and R. Gaska APL October 15 2001

VG

Gate Lag and Current collapse in AlGaN/GaN HFETs:Pulsed measurements of “return current”

Time

Time

IDS

VT

“Return” current

Current collapse

Page 65: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Nearly Identical Gate Lag Current Collapse was observed in:

I-SiC/Sapphire

Pd/Ag/AuGaN AlN

AlGaN S G D

I-SiC/Sapphire

Pd/Ag/AuGaN AlN

n-GaN S G D

GaN MESFET AlGaN/GaN HFET AlGaN/GaN MOSHFET

I-SiC

Pd/Ag/AuGaN AlN

AlGaN

S G D

SiO2

0 20 40 60 80 100 120 1400.00.20.40.60.81.01.21.41.61.82.02.22.4

R, k

Ω

LG, µm

R(0) R(τ)

LG

• AlGaN cap layer is not primarily responsible for CC

• Only the gate edge regions contribute to the CC

GTLM pattern (LG variable, LGS= LGD =const)

Page 66: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Load impedance scan @ constant VD = 10 V… 30 V

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

10

20

30

40

50

60

RL = 50 Ω....1kΩ

DC I-V (VG = 0)

RL

Drain bias: 30 V 20 V 10 V

Dra

in C

urre

nt, m

A

Drain Voltage, V

Peak

dra

in c

urre

nt (@

max

VG

)

0 10 20 300

102030405060

RLRD

0 200 400 600 800-5.0-4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.50.0

Calculated from dynamic I-VsPRF ~ RL/(RD+RL)

2

Measured @ 2GHz

RF

Pow

er, d

B

Load Impedance, Ω

A. Koudymov, G. Simin and M. Asif Khan, A. Tarakji, M. S. Shur, and R. Gaska, Dynamic I-V Characteristics of III-N Heterostructure Field Effect transistors, IEEE EDL, Vol. 24, No. 11, pp. 680-682, November (2003)

Dynamic I-V characteristics of AlGaN-GaN HFETs

Page 67: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

G. Simin et.al. Jpn. J. Appl. Phys. Vol.40 No.11A pp.L1142 - L1144 (2001)

• Better 2DEG confinement and Partial strain compensation• Significantly reduced carrier spillover

•No current collapse

I-SiC

Pd/Ag/Au

GaN

AlN

InGaN (x ≤ 5%, 50 A) AlGaN (x=0.25,250 A)

S G D

I-SiC

Pd/Ag/Au

GaN

AlN

InGaN (x ≤ 5%, 50 A) AlGaN (x=0.25,250 A)

S G DS G D S G D

1017

1016

1014

~0.1 µm

Regular HFET InGaN channel DHFET

1014

~0.05 µm

InGaN channel DHFET Design – 2D simulationsG-Pisces (VG= -1; VD = 20 V)

Page 68: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Two Dimensional Simulation (ISE)

From N. Braga, R. Gaska, R. Mickevicius, M. S. Shur, M. Asif Khan, G. Simin, Simulation of Hot Electron and Quantum Effects in AlGaN/GaN HFET, submitted to JAP

ISE 2D GaN device simulator

Page 69: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Band Diagrams

(a) (b)

From N. Braga, R. Gaska, R. Mickevicius, M. S. Shur, M. Asif Khan, G. Simin, Simulation of Hot Electron and Quantum Effects in AlGaN/GaN HFET, accepted in JAP

Page 70: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Electron temperature contour map VD = 10V and VS = VG = 0V

From N. Braga, R. Gaska, R. Mickevicius, M. S. Shur, M. Asif Khan, G. Simin, Simulation of Hot Electron and Quantum Effects in AlGaN/GaN HFET, submitted to JAP

Importance of gate edge engineeringconfirmed

Page 71: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Mechanism of current collapse in GaN FETs

• Current collapse is not related to AlGaN layer alone

• Current collapse is caused by trapping at gate edges

• Current collapse can be eliminated by using DHFET structures

• Current collapse time delay correlates with 1/f noise spectrum

• SOLVE THE CURRENT COLLAPSE ISSUE BY CHANNEL AND GATE EDGE ENGINEERING

Page 72: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

RF Power of collapse free DHFET and MISHFET RF Power stability

Page 73: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Plasma Wave THz DevicesDeep submicron FETs can operate in a new PLASMA regime at frequencies up to 20 times higher than for conventional transit mode of operation

-600 -500 -400 -300 -200 -100 0

0

1

2

3

4

5

C

B

A

Res

onan

t Pea

k (a

.u.)

Gate Voltage(mV)

THz emission from 60 nm InGaAs HEMTResonant detectionOf sub-THz and THz

0 2 4 6 8 10 1202468

101214161820

0 1 2 30.0

0.5

1.0

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

InGaAs-HEMT

f (TH

z)

Usd (V)f (THz)

Em

issi

on (a

.u.)

Emis

sion

Inte

nsity

(a.U

.)

Detection Frequency (THz)

InSb-bulka)

b)

From W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. Popov, and M. S. Shur, Emission of terahertz radiation by plasma waves in sub-0.1 micron AlInAs/InGaAs high electron mobility transistors, Appl. Phys. Lett. , March 29 (2004)

Page 74: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

Plasma Wave Electronics

-4 -2 0 2 4

0.0

2.0

4.0

6.0

8.0 T=8 K, GaN HEMT600 GHz

Indu

ced

V s-Vd (m

V) (L

ock-

In X

Out

put)

Vg (V)

50 75 100 125 150 175 200 225 250

0.0

1.0

2.0

3.0

4.0

5.0

Inte

nsity

(a.u

.)

Frequency (GHz)

Radiation intensity from 1.5 micron GaN HFET at 8 K.

600 GHz radiation response of GaN HEMT at 8 K

8 GHz cutoff

Page 75: M. S. Shur CIE and ECSE Department, RPI, Troy, 12180, USshur/NovelNitrideDevicePhysicsTutorial_ShurICPS04.pdfCIE and ECSE Department, RPI, Troy, 12180, US Tutorial ICPS 2004 July 25,

[email protected]

•New device physics of nitride based materials requires new designs and new modeling approaches

• Polarization devices•Pyroelectric sensors•Piezoelectric sensors

• Electron runaway and overshoot effects determine high field transport

• Traps can be easier filled because of high electron densities

• Noise determined by tunneling into traps• Strain control: Strain Energy Band Engineering• FETs – MOSHFET, DHFET, MOSDHFET• Terahertz applications – plasma wave devices

Conclusions