18
M. Gomez Marzoa 1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA WG4 Meeting - 12 th December 2012

M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

Embed Size (px)

DESCRIPTION

PrototypeD12D13D14D15 Type High cond. plateHigh cond. plate, squeezed pipesHigh cond. plate Water tests---- C4F10 tests30/11/201210/12/ CommentsSimilar to D06 prototype Test if squeezed pipes will stand working with an overpressure Narrower pipes Similar to D12 and D06, optimized roof assembly High conductivity plate w stave [mm]15.0 h stave [mm]5.0 Stave length [mm]290.0 Plate materialK1100 Thornel Plate thickness [mm] Graphite layer thick. [mm]0.03- C. fleece enc. thick. [mm]0.02 Roof materialM60J Roof fibers diameter [mm]0.3 N fibers at the roof [-]38 Pipe ID [mm] Pipe OD [mm] Pipe pos. in stave w [mm]0.33 GluingHand-made CommentsSi not included Heater Heater width [mm]13 Heater length [mm]270 Overview WG4 Meeting - 12th December 20123M. Gomez Marzoa

Citation preview

Page 1: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

M. Gomez Marzoa 1WG4 Meeting - 12th December 2012

Update on stave thermal testing

Claudio BORTOLIN

Enrico DA RIVA

Corrado GARGIULO

Manuel GOMEZ MARZOA

WG4 Meeting - 12th December 2012

Page 2: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

Contents

WG4 Meeting - 12th December 2012 2M. Gomez Marzoa

1. Overview2. Wound-truss prototypes plus carbon plate with embedded pipes: thermal tests

D12: non-squeezed pipes3. Results:

@0.3 W cm-2 & @0.5 W cm-2

D12 (C4F10) vs. D06 (water) D12 vs. D08 (C4F10) Summary plot

4. General conclusion & test plan

Page 3: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

Prototype D12 D13 D14 D15Type High cond. plate High cond. plate, squeezed pipes High cond. plate High cond. plateWater tests - - - -C4F10 tests 30/11/2012 10/12/2012 - -Comments Similar to D06 prototype Test if squeezed pipes will stand working

with an overpressure Narrower pipes Similar to D12 and D06, optimized roof assembly

High conductivity plate w stave [mm] 15.0 15.0 15.0 15.0h stave [mm] 5.0 5.0 5.0 5.0Stave length [mm] 290.0 290.0 290.0 290.0Plate material K1100 Thornel K1100 Thornel K1100 Thornel K1100 ThornelPlate thickness [mm] 0.07 0.14 0.07 0.07Graphite layer thick. [mm] 0.03 - 0.03 0.03C. fleece enc. thick. [mm] 0.02 0.02 0.02 0.02Roof material M60J M60J M60J M60JRoof fibers diameter [mm] 0.3 0.3 0.3 0.3N fibers at the roof [-] 38 38 38 38Pipe ID [mm] 1.45 1.45 9.36 1.45Pipe OD [mm] 1.514 1.514 1.00 1.514Pipe pos. in stave w [mm] 0.33 0.33 0.33 0.33Gluing Hand-made Hand-made Hand-made Hand-madeComments Si not included Si not included Si not included Si not includedHeater Heater width [mm] 13 13Heater length [mm] 270 270

Overview

WG4 Meeting - 12th December 2012 3M. Gomez Marzoa

Page 4: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

Prototype D12 D13 D14 D15Type High cond. plate High cond. plate, squeezed pipes High cond. plate High cond. plateWater tests - - - -C4F10 tests 30/11/2012 10/12/2012 - -Comments Similar to D06 prototype Test if squeezed pipes will stand working

with an overpressure Narrower pipes Similar to D12 and D06, optimized roof assembly

High conductivity plate w stave [mm] 15.0 15.0 15.0 15.0h stave [mm] 5.0 5.0 5.0 5.0Stave length [mm] 290.0 290.0 290.0 290.0Plate material K1100 Thornel K1100 Thornel K1100 Thornel K1100 ThornelPlate thickness [mm] 0.07 0.14 0.07 0.07Graphite layer thick. [mm] 0.03 - 0.03 0.03C. fleece enc. thick. [mm] 0.02 0.02 0.02 0.02Roof material M60J M60J M60J M60JRoof fibers diameter [mm] 0.3 0.3 0.3 0.3N fibers at the roof [-] 38 38 38 38Pipe ID [mm] 1.45 1.45 9.36 1.45Pipe OD [mm] 1.514 1.514 1.00 1.514Pipe pos. in stave w [mm] 0.33 0.33 0.33 0.33Gluing Hand-made Hand-made Hand-made Hand-madeComments Si not included Si not included Si not included Si not includedHeater Heater width [mm] 13 13Heater length [mm] 270 270

Overview

WG4 Meeting - 12th December 2012 4M. Gomez Marzoa

TESTED

Page 5: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

WG4 Meeting - 12th December 2012 5M. Gomez Marzoa

D12 prototype testsStw3

1Stw3

1Stw3

1 Experimental setup.

Flow visualization at stave entrance and outlet

D12 prototype view.C4F10 evaporative test bench: initial setup.

Inlet/outlet180 deg turn

Inflow

Outflow

Page 6: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

WG4 Meeting - 12th December 2012 6M. Gomez Marzoa

D12 prototype testsExperimental setup.

C4F10 evaporative test bench: initial setup.

C4F10 evaporative test bench: optimized setup.

The circuit setup was the one used for the Si microchannel tests. Need to re-arrange it for the stave testing.

1. No subcooling tracking2. Lamination before the

coriolis flow meter: wrong reading

3. Flow instability and unknown vapor quality at stave entrance

1. Subcooling estimation Subcooled liquid into

flow meter2. Lamination before the stave3. Thermodynamic state

tracked at stave entrance

1 2 3

Page 7: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

WG4 Meeting - 12th December 2012 7M. Gomez Marzoa

D12 prototype testsExperimental setup.

C4F10 evaporative test bench: initial setup.

C4F10 evaporative test bench: optimized setup.

The circuit setup was the one used for the Si microchannel tests. Need to re-arrange it for the stave testing.

1. No subcooling tracking2. Lamination before the

coriolis flow meter: wrong reading

3. Flow instability and unknown vapor quality at stave entrance

1. Subcooling estimation Subcooled liquid into

flow meter2. Lamination before the stave3. Thermodynamic state

tracked at stave entrance

1 2 3

PRELIMINARY RESULTS OBTAINED

ONGOING

Page 8: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

D12 C4F10 tests: results @0.3 W cm-2

WG4 Meeting - 12th December 2012 8M. Gomez Marzoa

Heater T map m [g s-1] ΔpSt [bar] TC4F10-In [°C]

TC4F10-Out [°C]

ΔTflow-stave [°C]

0.30 0.33 18.9 15.7 3.2

0.31 0.31 18.8 15.7 3.1

0.43 0.35 19.0 15.5 3.4

0.50 0.34 18.7 15.5 3.3

0.66 0.51 20.3 15.1 5.2

0.82 0.61 20.4 14.9 5.5

Page 9: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

WG4 Meeting - 12th December 2012 9M. Gomez Marzoa

Heater T map m [g s-1] ΔpSt [bar] TC4F10-In [°C]

TC4F10-Out [°C]

ΔTflow-stave [°C]

0.33 0.39 19.5 16.4 3.1

0.42 0.42 19.5 15.7 3.8

0.49 0.43 18.7 15.5 3.2

0.66 0.62 21.0 15.1 6.0

0.83 0.73 22.4 14.9 7.5

D12 C4F10 tests: results @0.5 W cm-2

Conclusions for D12: Qualitatively significant results obtained: prototype can keep T < 30 °C (0.3 W cm-2) For 0.5 W cm-2, the maximum temperature is kept around 30 °C. The lack of control over the flow regime and state prevents from quantifying the

response of the prototype under different flow conditions.

Page 10: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

WG4 Meeting - 12th December 2012 10M. Gomez Marzoa

D12 m [g s-1] ΔpSt [bar] TC4F10-In [°C]

TC4F10-Out [°C]

ΔTflow-stave [°C]

0.43 0.35 19.0 15.5 3.4

D06 Q [L h-1] Δp [bar] TH20-In [°C]

TH20-Out [°C]

ΔTflow-stave [°C]

3.0 0.23 15.2 17.6 2.4

D12 (C4F10) vs. D06 (water)

D12 m [g s-1] ΔpSt [bar] TC4F10-In [°C]

TC4F10-Out [°C]

ΔTflow-stave [°C]

0.42 0.42 19.5 15.7 3.8

D06 Q [L h-1] Δp [bar] TH20-In [°C]

TH20-Out [°C]

ΔTflow-stave [°C]

3.0 0.24 15.4 19.3 3.9

0.5 W cm-2

0.3 W cm-2

Page 11: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

WG4 Meeting - 12th December 2012 11M. Gomez Marzoa

D12 m [g s-1] ΔpSt [bar] TC4F10-In [°C]

TC4F10-Out [°C]

ΔTflow-stave [°C]

0.43 0.35 19.0 15.5 3.4

D08 m [g s-1] ΔpSt [bar] TC4F10-In [°C]

TC4F10-Out [°C]

ΔTflow-stave [°C]

0.40 0.06 13.3 13.4 -0.1

D12 vs. D08 (both C4F10)

D12 m [g s-1] ΔpSt [bar] TC4F10-In [°C]

TC4F10-Out [°C]

ΔTflow-stave [°C]

0.42 0.42 19.5 15.7 3.8

D08 m [g s-1] ΔpSt [bar] TC4F10-In [°C]

TC4F10-Out [°C]

ΔTflow-stave [°C]

0.40 0.17 15.1 13.4 -1.7

0.5 W cm-2

0.3 W cm-2

Page 12: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

WG4 Meeting - 12th December 2012 12M. Gomez Marzoa

D06 (water) vs. D08 vs D12 (C4F10)

Page 13: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

General conclusion & test plan

WG4 Meeting - 12th December 2012 13M. Gomez Marzoa

Performance of the D12 prototype using evaporative C4F10 was qualitatively assessed and benchmarked against the D06 prototype (with HC plate) and the D08 structure (the wound-truss, no-plate prototype structure performing the best).

However, no identification of the flow regime can be done with the present C4F10 setup. New setup would allow to identify the vapor quality at every point and so estimate flow

regimes, possibility of dryout, etc.

D13, D14, D14 prototypes will be tested: D13: performance of the squeezed pipes concept. D14: influence of a 1 mm pipe ID. D15: same as D06 and D12, allow to assess repeatibility.+ D12 will be tested again under different conditions.

Page 14: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

M. Gomez Marzoa 14WG4 Meeting - 12th December 2012

Update on stave thermal testing

Claudio BORTOLIN

Enrico DA RIVA

Corrado GARGIULO

Manuel GOMEZ MARZOA

WG4 Meeting - 12th December 2012

Page 15: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

M. Gomez Marzoa 15WG4 Meeting - 12th December 2012

Backup

Page 16: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

Overview D12

WG4 Meeting - 12th December 2012 16M. Gomez Marzoa

Maximum ΔT admissible at cooling system

T1

T2

T1+0.5*ΔTStave

If T2 – T1 = 6 K, the maximum ΔT at the stave would be 0.5*(T2-T1) = 3 K In the prototypes tested up to now, ΔT in the water maximum was 3 K A smaller flow rate can be set at the prototype for the configuration above.

Depositions in pipe/erosion considerations

Usually, two characteristic velocities of the fluid are important: Minimum velocity: avoiding depositions inside the piping. Maximum velocity: avoiding failure by erosion throughout piping lifetime.

Contacted manufacturer: limits for erosion not known for polyimide tubes Contacting medical companies and experts

Page 17: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

2-phase C4F10 tests @DSF

ALICE Cooling Meeting - 4th September 2012 17M. Gomez Marzoa

p [b

ar]

h [kJ kg-1]

12

4

Qstave [W]

𝑥=𝑚𝑉𝑎𝑝𝑜𝑟

𝑚𝐿𝑖𝑞=

h2−h𝐿𝑖𝑞𝑆𝑎𝑡 |𝑝 2

h𝑉𝑎𝑝𝑆𝑎𝑡 |𝑝 2

−h𝐿𝑖𝑞𝑆𝑎𝑡 |𝑝2

Δ𝑇 h𝑆𝑢𝑝𝑒𝑟 𝑒𝑎𝑡𝑖𝑛𝑔=𝑇 4−𝑇 3′

Inlet vapor quality:

Superheating at stave outlet:

x = const

T = const

Mass flow rate calculation:

�̇�=�̇� 𝐿 Δ𝑥2− 3 ;̇𝑚= �̇�𝐿 Δ𝑥2−3

Usually:

𝐿=h𝑉𝑎𝑝𝑆𝑎𝑡 −h𝐿𝑖𝑞

𝑆𝑎𝑡where L is latent heat [kJ kg-1]:

0.2<𝑥𝐸𝑣𝑎𝑝𝐼𝑛 <0.3

𝑥𝐷𝑟𝑦𝑜𝑢𝑡❑ 0.8÷0.9

Δ𝑥𝐸𝑣𝑎𝑝❑ <0.5

3

5

Page 18: M. Gomez Marzoa1 WG4 Meeting - 12th December 2012 Update on stave thermal testing Claudio BORTOLIN Enrico DA RIVA Corrado GARGIULO Manuel GOMEZ MARZOA

Prototype summary

WG4 Meeting - 12th December 2012 18M. Gomez Marzoa

Wound truss structures: Wound-truss structures, with no high conductivity plate. D10:

CF is 0.1 mm thick, instead of 0.07 mm (D08). Stave width: 15 mm.

D11: similar to D08. CF 0.07 mm thick. Stave width: 15 mm. Added thick glue layer (avoid hotspots).

Wound truss structures plus a high conductivity plate: D06:

CF is 0.07 mm thick. Stave width: 15 mm. Pipe ID: 1.45 mm

D12: similar to D06. Peek connectors

Geometry of half a wound-truss prototype.

Front view of the high conductivity plate prototypes.

D12 prototype: real geometry.