4
1. a.  (i)-B,  (ii)-D, (iii)-A,  (iv)-C b.  The equilibria are given by  ˙  x 1    ˙  x 2   0. This gives  x 2   0 and sin(  x 1 ) 0, hence  x (kπ , 0), k 0, ±1, . . . . The linearized equation is given by  ˙ ˜  x  A ˜  x where  A 0 1 (1) k 1 The eigenvalues are given by  λ 2 +λ +(1) k 0. The system is hence locally asymptotically stable (a stable focus) for even  k and unstable (a saddle) for odd  k. 2. a.  The equilibria are given by  ¨  y    ˙  y    0. This gives the matrix equ ation  K y 0, hence  y T  K y 0, hence  y 0 since  K  is positive denite. b.  Try the function V    1 2 ˙  y T  M  ˙  y +  1 2  y T  K y as Lya pun ov equat ion. Clearl y  V   0 and  V    0 gives  ˙  y T  M  ˙  y    0 and  y T  K y    0. Since  M  and  K  are positive denite this give  y    ˙  y    0. Furthermore  V  →∞ as  x →∞. This can be seen from ˙  yM  ˙  y +  y T  K y λ min (  M ) ˙  y T ˙  y + λ min (  K )  y T  y Differentiation of  V  gives ˙ V    ˙  y T  M  ¨  y + y T  K  ˙  y ˙  y T  D ˙  y 0 Note that we hav e  ˙ V    0 if  ˙  y    0. But  ˙  y    0 giv es  ¨  y    0 and hence  K y    0. There fore  y    0. The only invari ant set is hence  y    ˙  y    0. By Lyapunov‘s theorem on invariant sets we can therefore conclude global asymptotic stability . 3. a.  a 1   0  (see problem b)  and b 1  2 T   2 π 0 sinω t(  A sin ω t) 5 dt  2  A 5 T   2 π 0  e i ω t  e i ω t 2i 6 dt  2  A 5 20 ω T  2 6  ⋅ 2π    5  A 5 8 (Use  2π 0  e ikx dx 0 for  k 0). Therefore  N (  A)  5  A 4 8 1

Lund 9904 Sol

Embed Size (px)

Citation preview

Page 1: Lund 9904 Sol

8/13/2019 Lund 9904 Sol

http://slidepdf.com/reader/full/lund-9904-sol 1/4

1.

a.   (i)-B,   (ii)-D,   (iii)-A,   (iv)-C

b.  The equilibria are given by   ˙ x1     ˙ x2  0. This gives  x2   0 and sin( x1) 0,

hence  x (kπ , 0), k 0, ±1, . . . . The linearized equation is given by   ˙̃ x  A ˜ x

where

 A

0 1

(−1)k −1

The eigenvalues are given by  λ 2 +λ +(−1)k 0. The system is hence locally

asymptotically stable (a stable focus) for even k and unstable (a saddle) for

odd k.

2.

a.   The equilibria are given by   ¨ y     ˙ y     0. This gives the matrix equation

 Ky 0, hence   yT 

 Ky 0, hence   y 0 since  K   is positive definite.

b.   Try the function

V     1

2˙ yT  M  ˙ y +

 1

2 yT  Ky

as Lyapunov equation. Clearly   V   ≥   0 and   V     0 gives   ˙ yT  M  ˙ y     0 and

 yT  Ky     0. Since   M   and   K   are positive definite this give   y     ˙ y     0.

Furthermore V   → ∞  as  x → ∞. This can be seen from

˙ yM  ˙ y+  yT  Ky ≥ λ min( M ) ˙ yT  ˙ y + λ min( K ) yT  y

Differentiation of  V   gives

V̇     ˙ yT  M  ¨ y+  yT  K  ˙ y − ˙ yT  D ˙ y ≤ 0

Note that we have  V̇     0 if   ˙ y     0. But   ˙ y     0 gives   ¨ y     0 and hence

 Ky     0. Therefore   y     0. The only invariant set is hence   y     ˙ y     0.

By Lyapunov‘s theorem on invariant sets we can therefore conclude global

asymptotic stability.

3.

a.   a1  0 (see problem b)  and

b1   2

   2π 

0

sinω t( A sinω t)5dt

 2 A5

   2π 

0

 eiω t − e−iω t

2i

6

dt

 2 A5 ⋅ 20

ω T   ⋅ 26  ⋅ 2π  

  5 A5

8

(Use 2π 

0  eikxdx 0 for  k

      0). Therefore

 N ( A)

  5 A4

8

1

Page 2: Lund 9904 Sol

8/13/2019 Lund 9904 Sol

http://slidepdf.com/reader/full/lund-9904-sol 2/4

b.   Put v(t)   f ( A sin(ω t)). It is clear that  v(T /2 − t) v(t). We therefore have

a1   2

   3T /4

−T /4

v(t) cos(ω t) dt

  4

T    T /4

−T /4 v(t) cos(ω t) + v(T /2 − t) cos(ω (T /2 − t)) dt 0

where we have also used that  cos(ω (T /2 − t) ) −cosω t.

4.

a.   Introduce the states  x1  v,  x2    y. A state-space description of the system

is obtained from the block diagram:

˙ x1   − 1T t x1 +   1

T tsat( x1)

˙ x2   − x2 + sat( x1)

b.  The steady state solution is obtained by setting    dxdt

   0 in the state-space

model. It can also be obtained directly from the block diagram. Note that

in steady-state, the input to the integrator must equal zero.

0 −1

T i y +

  1

T t(u − v)

 y  G(0)u u

u satv

Substituting   y  and  u  in the first equation gives:

v (1 − T t

T i) satv

This has, for  T i, T t > 0, the only solution

v 0  y u 0

( A  v       0 gives either   v < sat v  or  v  and sat v  have opposite signs).

c.  A round tour in the block diagram gives:

V    1

s

1

T t(U  − V ) −

  1

T iG p(s)U 

s +

  1

T t

V  

1

T t−

  1

T i

1

s+ 1

V     s + 1 − T t/T i(s + 1)(sT t + 1)

Considering the minus sign in the feedback loop gives:

Gtot(s) −  s + 1 − T t/T i

(s + 1)(sT t + 1)

2

Page 3: Lund 9904 Sol

8/13/2019 Lund 9904 Sol

http://slidepdf.com/reader/full/lund-9904-sol 3/4

d.   We have  k1    0 and   k2     1 in the circle criterion. The conclusion is that

the system is stable if the Nyquist curve satisfies ReG(iω ) ≥ −1.

5.   A linear system is passive if it is stable and its Nyquist plot is in the right

half plane, ReG(iω ) ≥ 0.

G(iω )   iω  + b

(iω  + a)(iω  + c)

Re  G(iω )  bac + ω 2(a + c − b)

(ω 2 + a2)(ω 2 + b2)

The system is thus passive if 

bac + ω 2(a + c − b) ≥ 0, ∀ω 

Since  a, b, c  > 0, the system is passive precisely when

a + c  ≥ b

6.   The system is normal so can put  n0  1. The Hamiltonian is

 H   u2 + λ tu

Minimization wrt  u  gives  u −λ (t)t/2. The adjoint equation is

λ̇   − H  x

0,   λ (T ) 2 x(T ).

This gives  u −tx(T ). If this is put into the system equation we get

 x(T ) −  x(0)

   T 0

−t2 x(T ) dt −T 3/3 x(T )

and hence   x(T )  x(0)/(1 + T 3/3). The optimal control signal is hence

u −  t

1 + T 3/3 x(T ).

3

Page 4: Lund 9904 Sol

8/13/2019 Lund 9904 Sol

http://slidepdf.com/reader/full/lund-9904-sol 4/4

7.   The small gain theorem  (or the circle crieterion)  can be used. The gain of 

the linear system is

G maxω 

G(iω ) 1

The nonlinear system consists of multiplication with a function   f (t) a sinω t. According to the lecture the gain of such a system is

maxt

 f (t) a

The SGT says that one has BIBO stability if the loop gain is smaller than 1.

This proves the statement.

4